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Abstract 

We analyze the familiar effect of the pulling of a magnetizable rod by a mag-
netic field inside a solenoid. We find that the analogy with the pulling of a di-
electric slab by a charged capacitor is not as direct as usually thought. Indeed, 
there are two possibilities to pursue the analogy, according to the correspon-
dence used, either →E B  and →D H , or →E H  and →D B . One 
of these results in an incorrect sign in the force, while the other gives the cor-
rect result. We avoid this ambiguity in the usual energy method applying a 
momentum balance equation derived from Maxwell’s equations. This method 
permits the calculation of the force with a volume integration of a force den-
sity, or with a surface integration of a stress tensor. An interpretation of our 
results establishes that the force acts at the interface and has its origin in 
Maxwell´s magnetic stresses at the medium-vacuum interface. This approach 
provides new insights and a new perspective of the origin of this force.  
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1. Introduction 

It is a well-known effect the pulling of a magnetizable rod into a solenoid where 
a magnetic field is established. There are many practical applications of this ef-
fect, like the Bendix mechanism, relays, etc., but how it arises is hardly discussed. 
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This effect is considered analogous to the pulling of a dielectric slab into a paral-
lel plate capacitor. The similarity of these effects has been discussed by Boyer [1], 
and is also discussed in some intermediate texts on electromagnetism [2], [3], 
[4]. There is, however, a difference about the supposed origin of these effects in 
the electric and magnetic cases. In the electric case the force acting on the di-
electric slab is usually assumed to be caused by the non-uniform fringing field 
outside the capacitor, [5], [6], [7], [8], [9], while in the magnetic case the fring-
ing effects are explicitly neglected [2], [3], and there is no explanation of its ori-
gin. 

In the electric case, therefore, the force is explained as the action of the 
non-uniform fringing field on the dipoles of the dielectric slab. We have shown 
[10] that this force arises rather from the uniform field inside the capacitor 
transmitted through the Maxwell stresses. In the magnetic case we have a uni-
form magnetic field inside the solenoid, which can only align the magnetic di-
poles. Therefore, we have the question of how this uniform field can exert a net 
force on the magnetic dipoles. This is the question we address in the present 
work. It is rather a conceptual question that we will answer applying the Max-
wellian notion of electromagnetic stresses. We use a particular electromagnetic 
momentum balance equation derived elsewhere [11] from Maxwell’s equations. 

We revise first (Section 2) the usual derivation of the magnetic force with 
energy methods. We find that the usual shortcut of copying the electric case by 
changing the fields  

→E B  and →D H                        (1) 

leads to a wrong sign in the magnetic force. We also discuss the arguments of 
Landau and Lifshits [12] (Section 3) to show that sometimes the magnetic fields 
analogous to E  and D  are rather H  and B , respectively. 

Our results point to the tension part of the magnetic stress tensor acting at the 
interface as the origin of this force (Section 4), explaining in this way how a uni-
form magnetic field can exert a net force on magnetizable matter. This consti-
tutes a novel point of view that provides insights respect to the electromagnetic 
force, which is transmitted through stresses, as Faraday and Maxwell anticipated. 
In Section 5 we present a new force density, Equation (61), from which the 
magnetic force can be obtained. In Sections 6 and 7 we give theoretical support 
to this force density showing how it appears in a momentum balance equation. 
Our approach represents therefore a novel point of view that provides insights 
respect how the magnetic force arises. 

2. Force on a Magnetic Rod inside a Solenoid with Constant  
Current I 

The device is a solenoid of length L, with n turns per unit length, cross area 0A  
and a constant current I circulating through it. A rod of magnetic material of 
permeability rµ  and magnetic susceptibility mχ  is partially introduced into 
the solenoid. A force appears that pulls the rod into the solenoid (Figure 1). 
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Figure 1. Cylindrical solenoid with a magnetizable rod partially inserted. 

 
Usually this force is derived from the equation 

( ) ,Iu=F ∇                             (2) 

where the sub-index I indicates that the process considered occurs with constant 
current I, hence the positive sign in this equation, and the magnetic energy mU  
is given by 

all space

1 d .
2mU V= ⋅∫ H Β                      (3) 

(we follow Griffiths [9] and Purcell and Morin [13] and take the field Β  as the 
magnetic field and H  as an auxiliary field). 

Then, by expressing the H  field in terms of the current, 

,nI=H                            (4) 

with the constitutive relations  

0 ,rµ µ=B H                          (5) 

and 

1,m rχ µ= −                          (6) 

one can find the known result for the force on the magnetic rod calculating the 
change in energy in displacing the rod a distance z∆  [2], [3], [4]. This force is 

2
0 0

1 ˆ.
2 mH Aµ χ=F k                      (7) 

With this procedure it is irrelevant the fringing magnetic field outside the so-
lenoid and what happens at the interface, as noted by Wangsness [2] and Reitz et 
al. [3]. 

Now, when a magnetizable material is introduced into a magnetic field, the 
fields Η  and B  change, and therefore also the energy changes. If initially 
there is a vacuum inside the solenoid, the fields are 0B  and 0H , while after 
introducing the magnetizable material maintaining the current constant, the 
fields are B  and Η . Therefore, the change in energy is 

( )int mat mag 0 0 0all space

1 d .
2mU U U V∆ = − = ⋅ ⋅∫ H Β H Β−          (8) 

https://doi.org/10.4236/jemaa.2018.1010013


J.-L. Jiménez-Ramírez et al. 
 

 

DOI: 10.4236/jemaa.2018.1010013 174 Journal of Electromagnetic Analysis and Applications 

 

This expression can be transformed in order to have a volume integral only 
over the volume V' occupied by the material. In the electrostatic case there is al-
so a transformation from, [2], [14], [15] 

( )int mat ele 0 0all space

1 d ,
2

U V∆ = ⋅ ⋅∫ E D E D−               (9) 

to  

( )int mat ele 0 0all space

1 d ,
2

U V∆ = ⋅ ⋅∫ E D E D−              (10) 

from which it is deduced that 

int mat ele 0
1 d .
2 V

U V
′

∆ = − ⋅∫ P E                   (11) 

In order to treat the magnetic case, Jackson [15] and Wangsness [2] propose 
the correspondence 

→E B , →D H                       (12) 

in the electric case as expressed in Equation (10), obtaining 

( )int mat mag Jac-Wan 0 0
1 d .
2 V

U V
′

∆ = ⋅ ⋅∫ B H H B−             (13) 

Following the steps that in the electric case lead from Equation (10) to Equa-
tion (11), they obtain 

int mat mag Jac-Wan 0
1 d ,
2 V

U V
′

∆ = ⋅∫ M B                  (14) 

equivalent to 

int mat mag Jac-Wan 0
1 d .
2 0 V

U Vµ
′

∆ = ⋅∫ M H                (15) 

Jackson [15] and Wangsness [2] call the attention to the difference in sign 
with respect to the electric case as given in Equation (11). This difference in sign 
implies a wrong direction in the force. Wangsness [2] obtains the correct result 
because he does not use result Equation (15) to calculate the force. 

It is worth noting that the correct result is obtained if in the electrostatic case, 
Equation (10), the correspondence →E B  and →D H  is made, obtaining 

int mat mag 0
1 d .
2 0 V

U Vµ
′

∆ = − ⋅∫ M H                 (16) 

In order to see the consequences of this difference in sign of the change in 
energy it is convenient to calculate the force with (2) and (15). The equation for 
the magnetization is 

( ) ( ) ,mz l zχ= Θ −M H                     (17) 

where Θ  is Heaviside´s distribution. Then, from Equation (15), the constitu-
tive relation (5), (6), and the fact that the H  field is constant inside the sole-
noid, even inside the magnetic rod, one obtains for the change in energy 

( ) 2
int mat mag Jac-Wan mat

1 d .
2 0 mV

U V l z Hµ χ
′

∆ = Θ −∫            (18) 
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When the gradient is taken using 

( ) ( ) ,z l z l zδ∂ Θ − = − −                     (19) 

the force results 

( ) 2
0 mat

1 d .
2 mV

F V l z Hµ χ δ
′

= − −∫                 (20) 

After integration the final expression of the force is 

2
0 0

1 ˆ,
2 mH Aµ χ= −F k                      (21) 

that is, the negative of the correct result (7). 
Therefore, the correct result ensues if in the electrostatic result (10) the subs-

titution 

→E H  and →D B                     (22) 

is made. This points to the fact that in some cases the magnetic fields analogous 
to the electric fields are 

→E B  and →D H                     (23) 

while in others it is the correspondence Equation (22). 
We have in this respect Stratton’s [16] observation: 
“Whatever the analytical advantages of the electrostatic analogy may be, it is 

well to remember that the physical structure of a field due to stationary distribu-
tions of currents differs fundamentally from that of any configuration of electric 
charges.” 

Landau and Liftshitz [12] (L & L in what follows) discuss the problem of elec-
tromagnetic fields in matter from a thermodynamic point of view and conclude 
that in the case of magnetostatics with constant currents the correct analogy is 
the later, Equation (22). They argue that 

1
2eu  = ⋅E D  and 1 ,

2mu  = ⋅H B                (24) 

are free energy densities, not total energies, which is fundamental for the under-
standing of the interaction of electromagnetic fields and matter. In the next sec-
tion we revise their arguments supporting the correspondence Equation (22). 

3. Landau and Lifshitz Thermodynamic Analysis 

It is convenient to review with some detail the procedure followed by Landau 
and Lifshitz [12] with which it is established that in this case the correct analogy 
is (22). 

In the electric case they begin with the work necessary to increase the charge 
of the system by qδ , 

.W qδ φδ=                          (25) 

This is the mechanical work performed by the electric field in bringing the 
charge qδ  from infinite to its final position. In terms of the electric fields this 
work is 
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d .W Vδ δ= ⋅∫ E D                        (26) 

Then the change in Helmholtz’s free energy, F U TS= − , is 

d .F S T Vδ δ δ= − + ⋅∫ E D                   (27) 

Note the correspondence 
.qδ δ→ D                          (28) 

Now, it is convenient to introduce a thermodynamic potential in which it ap-
pears δE  instead of δD . This is done by means of a Legendre transformation 

* * .F F= − ⋅E D                       (29) 

(quantities with asterisk represent densities). 
The change of this free energy is 

* .F S Tδ δ δ= − − ⋅D E                    (30) 

Therefore, the expressions for the infinitesimal changes in the quantities ex-
pressed in terms of the charges and potentials of the conductors are, respectively, 

( ) d ,k kkTF q q Vδ φ δ φδ= =∑ ∫                  (31) 

( ) d .k kkT
F q q Vδ δφ δφ= − = −∑ ∫                 (32) 

It is important to note the sign in Equation (32). We have then, besides Equa-
tion (27), the correspondence 

.δφ δ→ E                          (33) 

In the magnetic case we have an analogous situation, but some care is neces-
sary. We have instead of Equation (31) and Equation (32) the equations 

( ) d ,TF Vδ δ= ⋅∫ J A                     (34) 

( ) d
T

F Vδ δ= − ⋅∫ J A                    (35) 

and L & L point out that in macroscopic electrodynamics the role analogous to 
the currents is played by the potentials, not by the charges. 

These authors [12] observe that  
“It is useful to note that in macroscopic electrodynamics the currents (sources 

of the magnetic field) are mathematical analogues of potentials, not of charges 
(sources of the electric field). This is seen by comparing Formulaes (31.8) and 
(31.9) [our Equation (34) and Equation (35)] with the corresponding results for 
an electric field: [our Equation (31) and Equation (32)]. 

We observe that the charges and potentials appear in these formulae in the 
opposite order to the currents and potentials in Formulaes (31.8) and (31.9) [our 
Equations (34) and (35)].” 

In this way the equivalent expressions to (25) and (30) are 

d .W Vδ δ= ⋅∫ H B                      (36) 

d .F S T Vδ δ δ= − − ⋅∫ H B                   (37) 

And for the potential, or free energy, F  we have 

d .F S T Vδ δ δ= − − ⋅∫ B H                   (38) 
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With this approach they derive straightforwardly the correspondence (22), 
which implies that the analogy Equation (22) is correct, and therefore the correct 
expression for the change in energy is Equation (16). 

4. Where Does the Force Acts? 

The energy methods for calculating the force exerted by a uniform magnetic 
field inside a solenoid on a magnetizable rod, do not permit establish where and 
how the force acts. Also, in the analogous electric case of the force exerted on a 
dielectric slab partially inserted into a parallel plate charged capacitor, the energy 
method does not allow to establish where and how the force acts. In the electric 
case, it is said [5], [6], [7], [8], and [9] that it is the non-uniform electrostatic 
fringing field acting on the dipoles of the dielectric what causes this force. In the 
magnetic case the fringing non-uniform magnetic field is explicitly neglected. 

In order to establish clearly where and how the force arises, it is convenient to 
apply Maxwell’s magnetic stress tensor. The force in terms of this tensor is, [17] 

d ,
σ

= ⋅∫F S T




                        (39) 

where T


 is the magnetic stress tensor. 

( )1
2

 = − ⋅  
T BH I B H
 

                    (40) 

and σ  is a closed surface. The relevant surfaces for the calculation are flat sur-
face around the interfaces formed by a parallels surfaces close to the interface, 
one inside the rod and other in vacuum. 

Since for linear magnetic media the constitutive relation (5) implies that B  
and H  are parallel and in the k̂  direction, the stress tensor becomes 

1ˆ ˆ ,
2

BH  = −  
T kk I
 

                     (41) 

where the unit dyad I


 is 
ˆ̂ ˆ̂ ˆ ˆ.= + +I ii jj kk



                      (42) 

For the relevant surface we have the differential surface elements (Figure 2) 
 

 
Figure 2. The figure shows the surfaces on which the stress tensor is integrated. The 
integral over the ribbon that closes the surface σ is zero. 
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medium side

vacuum side

ˆd d
ˆd d

S

S

= −

=

S k

S k
                       (43) 

With the tensor (41) and the surface elements (43), the expression (39) for the 
force results 

( ) ( )medium vacuum

1 1ˆ ˆ ˆ ˆ ˆ ˆd d .
2 2

S BH S BH
σ σ

   = − ⋅ − − − ⋅ −      ∫ ∫F k kk I k kk I
 

   (44) 

We have also that 

0
ˆ ˆd .S A=∫ k k                           (45) 

Then Equation (44) becomes, using Equation (43), 

( ) ( ) ( ) ( )medium vacuum medium vacuum

1 1 1ˆ ˆ ˆ .
2 2 2

S BH BH S BH BH   = + = +    
F k k k  (46) 

Now we take into account the boundary condition 

normal medium normal vacuum ,B B=                      (47) 

which with the constitutive relation (5) implies that 

normal medium normal vacuum.r H Hµ =                    (48) 

Therefore 

( ) ( )medium vacuum

1 ,
r

BH BH
µ

=                     (49) 

and then Equation (46) can be written as 

( )0 vacuum
0

1 1ˆ 1 ,
2

A BH
µ

  
= − −  

   
F k                  (50) 

which can be rewritten as 

( ) ( )0 vacuum

1 ˆ 1 ,
2 rA BH µ = − F k                   (51) 

or in the form 

( )2
0 vacuum

1 ˆ .
2 mA H χ =  F k                    (52) 

This is the correct known result, Equation (7). 
We can then conclude that the force acts at the interface magnetic 

rod-vacuum inside the solenoid and arises from the Maxwell magnetic stress 
tensor. This “magnetic pressure” was introduced and discussed by Maxwell, thus 
confirming that the fringing field is irrelevant. 

5. The Force Density 

As in the electrostatic case, usually we do not deal directly with a force density; 
this is obtained as a gradient of an energy density and in this way the result Equ-
ation (7) is obtained. Now, what is the force density in terms of the fields B  or 
H  and the magnetization M ? 

What we want to explore is the possibility of a force density of type 
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( )new 0 0
1 ,
2M µ′ = − × ×f H M∇                   (53) 

analogous to the electric force density [15] 

( )new
1 ,
2E′ = − × ×f E P∇                     (54) 

from which the known result for the capacitor follows. 
In this case the magnetization M  depends only on z and is discontinuous at 

the interface. Since M  is in the direction of H , which points in the z direc-
tion, we have 

0,× =M∇                          (55) 

and therefore 

new 0,Mf ′ =                          (56) 

showing that we have here a different situation from that in the electrostatic 
case. However, if we consider the magnetic energy density analogous to that of 
the electrostatic field, 

0
1
2

u′ = − ⋅M H                        (57) 

and calculate ( )Iu=f ∇ , then 

0
1 .
2
µ = − ⋅ 

 
f M H∇                     (58) 

With the vector identity for the gradient of a scalar product, the force density 
results 

( ) ( ) ( ) ( )0
1 .
2

+ + +µ= × × × × ⋅ ⋅f H M MM H H H M∇ ∇ ∇ ∇    (59) 

The last term is zero, as argued above, while the magnetostatic nature of the 
field and the absence of free currents imply 

0× =H∇                          (60) 

leaving only the two first terms; but the field is uniform, so that we are left only 
with the second term, 

( )new 0
1
2M .µ= − ⋅f H M∇                    (61) 

This force density is also unusual, expecting rather something like 

( )new 0
1 ,
2M µ′ = − ⋅f M H∇                    (62) 

analogous to the known electrostatic force on a dielectric in a non-uniform elec-
trostatic field. In this case, the new force density Equation (61) results 

( )( )new 0
1
2M zH z .µ= − ∂f M                   (63) 

which is not zero even in the case of a uniform field. Moreover, since 

( ) ( ) ,mz l zχ= Θ −M H                      (64) 
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then from Equation (63) it follows that 

( )2
new 0 0

1 ˆ,
2M H l zµ χ δ= −f k                    (65) 

as in the electrostatic case. Integrating this force density over any volume around 
the interface gives 

newvol around interface
d dM S z.= ∫F f                    (66) 

Since the volume element is 0dA z , where 0A  is the cross section of the 
magnetizable bar, we have 

new 0vol around interface
d ,M A z= ∫F f                    (67) 

then 

( )2
0 0 0vol around interface

1 ˆ d
2

H l z A zµ χ δ= −∫F k              (68) 

and the force on the magnetic bar of cross section 0A  is then 

2
0 0 0

1 ˆ
2

H A ,µ χ=F k                       (69) 

which is the known result, [2], [3], [4], Equation (7), implying that the adequate 
force density is 

( )new 0
1
2M .µ= − ⋅f H M∇                     (70) 

We have then, as in the electrostatic case, a new force density that gives the 
correct result. The electrostatic and magnetostatic cases seem very similar, but 
the force densities differ in both cases. This motivates looking for a more general 
momentum balance equation that includes, in the magnetic case, the force den-
sity Equation (61). In the next section we search for such balance equation. 

6. Momentum Balance Equation for Magnetic Materials 

The question is if the momentum balance equation [17], [18] 

( ) ( ) ( )

( ) ( ) ( ) ( )

1
2

1
2

t

ρ

 ⋅ + − ⋅ + ⋅ − ∂ × 
 

= + × + ⋅ − ⋅ + ⋅ − ⋅  

DE BH I D E B H D B

E J B E D D E H B B H

∇

∇ ∇ ∇ ∇

    (71) 

includes the new force density Equation (61). The magnetostatic force density is 
different from the electrostatic force density, but we can proceed as in the elec-
trostatic case. 

If only magnetostaic fields are involved, and there are not free charges and 
currents, Equation (71) transforms in 

( ) ( ) ( )1 1 .
2 2

 ⋅ − ⋅ = ⋅ − ⋅     
BH I B H H B B H∇ ∇ ∇           (72) 

The constitutive relation 

( )0µ= +B H M                       (73) 
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and the dyadic identity 

( ) ( ) ( )⋅ = × × + ⋅a b a b a b∇ ∇ ∇                 (74) 

permits to write the right member of Equation (72) in the form 

( ) ( )

( ) ( ) ( ) ( )

1
2

1 .
2

⋅ − ⋅  

= × × + ⋅ − × × − ⋅  

H M M H

M H M H H M H M

∇ ∇

∇ ∇ ∇ ∇
    (75) 

Since we are dealing with the magnetostatic case without free current densi-
ties, we have 

0,× =H∇                        (76) 

and from Equation (55), 
0.× =M∇                        (77) 

Furthermore, the magnetic field and magnetization are in the z direction, so 

( ) 0,⋅ =M H∇                      (78) 

remaining  

( ) ( ) ( )0 0
1 1
2 2
µ µ⋅ − ⋅ = ⋅  H M M H H M∇ ∇ ∇−           (79) 

which is the result we were looking for and agrees with the force density Equa-
tion (61). Then we have 

( ) ( ) ( )

( )0 new

1 1
2 2

1 .
2 Mµ

 ⋅ − ⋅ = ⋅ − ⋅     

= ⋅ =

BH I B H H B B H

H M f

∇ ∇ ∇

∇−
         (80) 

7. General Balance Equation 

We can conclude from the above results that the balance equation Equation (71) 
implicitly contains the new electric and magnetic force densities, and it is conve-
nient therefore to rewrite it in a form where these force densities appear expli-
citly. This can be achieved gathering the result of Equation (79) and the analog-
ous one for the electric part [10], with which the balance Equation (71), can be 
written in the form 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0

1
2

1
2

1 .
2

t

ρ

µ

 ⋅ + − ⋅ + ⋅ − ∂ × 
 

= + × + ⋅ − ⋅ + ⋅ − ⋅  

+ × × + ⋅ − × × − ⋅  

DE BH I D E B H D B

E J B E D D E H B B H

M H M H H M H M

∇

∇ ∇ ∇ ∇

∇ ∇ ∇ ∇

   (81) 

In this form the balance equation results very long, but there appear explicitly 
the new force densities. It is worthwhile to remember that the balance equation 
Equation (71) is a transformation of the Maxwell equations with linear materials, 
and therefore is as sound as these equations. Hence, the force densities appear-
ing in this balance equation have a solid foundation on Maxwell’s equations. 
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8. Conclusions 

We have calculated, in a novel and insightful way that allows a physical explana-
tion, the well-known force that arises when a magnetizable rod is partially in-
troduced into the magnetic field of a solenoid. Our approach is an alternative to 
the usual calculation with the gradient of an energy. The usual calculation does 
not give any insight about where the force acts and how it arises, while our me-
thod does give such insights. This novel calculation is based on the volume inte-
gration of a force density and the surface integration of a magnetic stress tensor. 
Though the force density may seem unfamiliar, it is part of a momentum bal-
ance equation derived directly from the macroscopic Maxwell equations. Indeed, 
these balance equations contain many force densities, for example the Helmholtz 
force density [11], with which this magnetic force can also be calculated. This 
method leads to results that indicate that this force is exerted at the rod-vacuum 
interface, where the magnetic field is uniform, and has its origin in Maxwell’s 
magnetic stresses.  

We also analyze the analogy with the electric case, used sometimes to calculate 
the force as a gradient of a magnetic energy. The proposed analogy consists in 
substituting in the electric case E  with B  and D  with H . The analysis of 
this familiar effect shows that the classical theory of electromagnetism still con-
tains interesting conceptual aspects that deserve attention. 
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