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Abstract 
Presenting a unified model of motion and gravity has proved difficult as cur-
rent approaches to quantum and classical physics are incompatible. Using 
measurement quantization—a model that demonstrates the physical signi-
ficance of Planck’s units of length, mass, and time—measure is expressed as 
counts of the fundamental units establishing a common framework for de-
scribing quantum and cosmological phenomena with expressions that are de-
fined throughout the entire physical domain. Beginning with the Pythagorean 
Theorem, we demonstrate an understanding of measure with respect to static 
and moving references. The model is extended to include the measure of 
mass thus completing a single approach for describing the contraction and 
dilation of measure. With this new approach, relativistic effects are now de-
scribed as properties of quantized finite units of measure. In support of the 
model, several descriptions of phenomena are resolved that match our most 
precise data such as the measure of dark energy, universal expansion, mass 
distribution, and the age of the Cosmic Microwave Background.  
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1. Introduction 

We shall use the principles of Informativity [1], an approach that recognizes the 
countable nature of discrete units of measure, to describe the contraction and 
dilation of measure with respect to objects in motion and in gravitational fields. 
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The approach is based on the quantization of measure and has been successful 
in several disciplines with more than 20 physical predictions. Where not con-
strained by the precision of measurement data, a six-sigma correspondence is 
demonstrated (i.e. θsi = 3.26239 rad. corresponds to the 6th digit, ([1], Equation 
(19))). Valid throughout the entire measurement domain, the quantization of 
measure has allowed the development of a quantum model of gravity.  

Extending this work, we now present new expressions for the contraction and 
dilation of measure with respect to motion and gravity. We intentionally distin-
guish the approach from relativity as this approach does not take the same path 
presented by Einstein. Specifically, the approach is quantum, a description of 
phenomena as counts of physically significant units of measure. 

The approach uses only the Pythagorean Theorem and the aforementioned 
quantum description of gravity. Equivalence is an outcome, a prediction of the 
model in support of the axioms on which General Relativity (GR) [2] is pre-
mised. Notably, the approach succeeds in one area where GR does not. All ex-
pressions are valid for the entire measurement domain. There are no examples 
of division by zero or infinity. 

We shall also use the quantization of measure to describe properties of several 
other phenomena, for instance, why space demonstrates curvature. Calculations 
affected by the quantization of measure, such as the age of the Cosmic Micro-
wave Background (CMB), the mass/energy associated with dark energy, and the 
respective mass distributions for visible, observable, and non-observable mass 
are each shown to match our best measurement data. While not directly related 
to the contraction and dilation of measure, we also describe the transition event 
that causes inflation to end and expansion of the universe to begin. 

Lastly, while this paper may be understood with the information presented 
within, many of the expressions used are new to modern physics, first published 
in the Journal of High Energy Physics, Gravitation and Cosmology under the 
title “Measurement Quantization Unites Classical and Quantum Physics” [1]. 
This paper is an extension of the discoveries and supporting evidence presented 
in the prior. Readers will find a firmer footing, by starting there. 

1.1. Theoretical Landscape 

Informativity differs dramatically from the theoretical landscape in one impor-
tant way. 

Informativity is a model built on the idea that measure is discrete and that 
nature is non-discrete.  

The discreteness of measure is a physically significant property of observa-
tion ([1], see Equations (20)-(22), (31), (47), (57)). Over the last 100 years, 
several models have gained favor, namely the Standard Model, Quantum Me-
chanics, Special Relativity (SR), General Relativity (GR), Supersymmetry 
(SUSY), String Theory, Loop Quantum Gravity (LQG), Modified Newtonian 
Dynamics (MOND), ΛCDM and several lesser known models. Each demon-
strates success from a different point of view, but, in specific situations, they 
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break down. In an effort to unravel the puzzle a process of scope restriction, “fit-
ting” and sometimes perturbation theory are applied to align or approximate 
expressions with what is observed. We ask how can these models be accurate 
throughout most of the physical domain, yet inaccurate elsewhere? 

1.2. Axioms 

Axioms set the foundation of a model. In turn, expressions are defined and in-
terpreted with respect to those axioms. By example, most models follow one of 
these two axioms.  
 Nature is discrete.  
 Nature is non-discrete. 

To better understand the effects of axiom selection we may consider the ex-
pression v = ∆x/∆t. The expression is true for all macroscopic measure regard-
less of the selected axiom, but what about a description in the quantum do-
main … a velocity equal to 10−1000 m/s. In this case, the value will be physically 
significant in a non-discrete universe. But, if nature is discrete, that is quantized, 
then at what velocity is the quantization physically significant? Length and time 
will have invariant minimums. And as such, the measure may not be physically 
significant. 

The property of discreteness is relevant to all theories. Specifically, the Stan-
dard Model, GR/SR, ΛCDM, SUSY, String Theory and MOND are each built on 
the idea that nature is non-discrete. Quantum Mechanics and LQG, in contrast, 
are built on the idea that nature is discrete or at least some part of it. Informativ-
ity ascribes discreteness to a new consideration—measure—departing from the 
existing theoretical landscape.  

The development was a necessity that arose from a simple gedanken as de-
scribed in Figure 1. That led to expressions that describe gravity as the conti-
nuous loss of a remainder count above and beyond a whole unit count of a more 
precisely calculated distance count of a reference where c = (12 + b2)1/2. The idea 
is that measure is reference dependent and as such any remainder count QL less 
than the reference lf cannot be measured and is lost at each fundamental unit of 
time tf. The axiom, therefore, is that measure is discrete and that nature is 
non-discrete. A distinction between what we measure and what is nature is new 
to our understanding of the behavior of matter. In the case of gravity, these  
 

 
Figure 1. Counts of lf between a target and a center of gravity. 
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expressions describe what is measured and what is measured describes what is 
observed. 

The existence of physically significant fundamental measures, lf, mf and tf, car-
ries with it an implied physical scope where measure is valid. Measurement 
scope in turn describes how information is constrained, and thus what the ob-
server experiences, for instance, neatly dividing the matter we observe into that 
which is visible, observable, dark and never to be observed (i.e. because the light 
from that matter will never reach a given point in space-time) ([1], Equations 
(109), (110), (113), (115)). The frequency bounds between the measures set both 
upper and lower bounds to observation, not just between length and time, c = 
lf/tf, but between mass and time, mf/tf and between mass and length, mf/lf. Con-
sider the expression for escape velocity, 

1 2

2e
GMv

r
 =  
 

                         (1) 

Reduced to a fundamental nomenclature where c = lf/tf, r = nLrlf, M = nMmf 
and G = (lf/tf)3(tf/mf) ([1], Equation (31)), we consider the case at the surface of a 
black hole, ve = c, 

2Lr Mn n=                           (2) 

Without a bound to the amount of mass M in a given radius r, the Standard 
Model is unbounded in scope. LQG, conversely, is protected by its reliance on a 
discrete space-time. But, LQG does not establish physical evidence [3] for the 
discreteness of nature nor does it utilize expression operators that preserve the 
discrete elements being described. 

Consider now the change in position of a particle in a gravitational field. 
Notably, the change is less than the Planck length lf during any given unit of 
Planck time tf. Since we know lf and tf to be bounded, that is that each may not 
take on a value where lf/tf is greater than c, we must concede that space-time 
(nature) defies the idea of discreteness. Nevertheless, there are examples of dis-
crete behavior in the physical domain (e.g. blackbody radiation). An additional 
component must be the source of the quantization … namely measure. 

Informativity differs from many of the more speculative models, supported by 
more than 20 verifiable and verified experimental results across several discip-
lines. The Heisenberg Uncertainty Principle, for instance, demonstrates the 
physical significance of fundamental units of measure ([1], Equations (53)-(57)). 
The Shwartz and Harris experiments ([1], Table 1) demonstrate the physical sig-
nificance of θsi, an important constant and prediction of the model. Supporting 
measurements, each a match to four significant digits, of the quantity, age, den-
sity and temperature of the CMB extend the physical domain to the earliest 
epoch ([1], Section 3.15). Unlike the Standard Model, there is no need to intro-
duce scope parameters to avoid singularities. Those bounds are precisely de-
fined; for example one such bound where v < c is 

2Lr Mn n>                          (3) 
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Scope parameters, modifications of the known laws of physics (MOND), in-
flation theory, quintessence and perturbation theory all become unnecessary 
patches to a well-defined system of counting physically significant units of fun-
damental measure. 

1.3. Frameworks 

Framework selection also plays an important role in the success of a model. The 
term, framework, alludes to the level of detail carried by the terms in our expres-
sion nomenclature. Examples include terms such as G, ħ, c, v, t and E. Frame-
works also include operators, such as +, −, *, /, , σ and ∫. Poorly chosen 
frameworks do not invalidate expressions. They establish a level of granularity 
with which to describe nature in much the same way as precision determines the 
number of significant digits in a result. Naturally, if detail is lacking, we will not 
be able to resolve the underlying structure. 

Notably, the granularity of the terms lf, mf, θsi and tf are equally important. 
Writing expressions using a framework that preserves the fundamental measures 
or counts of them cannot be understated. Consider, for instance, what the ex-
pression for escape velocity at the surface of a black hole rc2 = 2GM describes 
(Standard Model). Now consider the same expression when written in a funda-
mental nomenclature, nLr > 2nM (Informativity). The latter, ideally, presents 
fewer questions. Consider now, theoretically, if we were to start the argument 
with the Pythagorean Theorem, derive the expression for escape velocity and 
then produce the fundamental expression nLr > 2nM. This presentation, ideally, 
would demonstrate a foundation that offers even fewer questions. The level of 
detail at which our variable nomenclature is defined and the operators used in 
simplifying those expressions determine how much detail is retained, how effec-
tive the model can be. 

1.4. Models 

In modern theory we ask, what is missing from the Standard Model in light of its 
limitations. For instance, we have not been able to use the Standard Model to 
solve for a quantum understanding of gravity. The model can provide no expla-
nation for universal expansion or dark matter. Particles have been suggested, but 
thus far no evidence has been demonstrated nor has the model provided viable 
candidates. At least one particle prediction is in conflict, the neutrino [4] which 
is predicted to have no mass under the classic Standard Model. Several other 
conflicts have been brought to the table, but discussion of these issues introduces 
lines of thought based on such a complex assortment of axioms, it is difficult to 
say where the issue is. As is true with all models, these challenges do not mean 
that a model is inaccurate, only that one or perhaps several axioms are not en-
tirely accurate. At issue, the Standard Model presumes an unbounded physical 
domain in contradiction of experimental support for a bound to measure ([1], 
Equation (57)). 
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General Relativity builds on top of the Standard Model with important de-
partures. For one, time is treated as an extra dimension along side of length. 
Mathematically and physically, this is supported, but it is no more valid than 
describing mass as a dimension. Integration of the physically distinct measures 
into a single mathematical nomenclature can afford us the ability to apply 
well-known geometric principles. At the same time, it disguises the details. 

A notable example is space-time curvature. Exactly, what is curved—space or 
time. Or, in light of a fundamental nomenclature, is curvature a differential in 
the discrete unit counts of space and time? The consideration reveals the issue. Is 
this not a framework issue? The expressions are accurate, but the details are 
blurred. 

This is not to say that GR hasn’t been successful or that any part of GR is in-
correct. GR is physically significant, but not applicable throughout the physical 
domain. Challenges are met at the extreme when applied, for example, to the 
birth of the universe. It is here that a discrete under-structure is required to de-
fine scope, protect from singularities [5] and provide the meaning we are seek-
ing. 

Quantum Mechanics is considerably different, a combination of a separable 
Hilbert space (a.ka. the state space) in conjunction with a complex number of 
norm 1, the phase factor. Where a given system is considered expressions are 
developed for each observable as a self-adjoint acting on the state space. Eigens-
tates of the observables correspond to respective eigenvectors of the operators 
and the eigenvalue corresponds to the value of the observable for that eigenstate. 
These mathematical constructs then allow for calculations of the probability of 
an outcome. Quantum Mechanics can tell us about the probability of an event 
and the effects of constrained information on a system. Quantum Mechanics can 
also tell us about events where information is not constrained, but these con-
structs become less effective at revealing the discrete details measured within the 
classical domain. While Informativity is able to precisely identify the demarca-
tion point between classical and quantum behavior (e.g. [1], Equation (57)), the 
two theories do not offer a mathematical bridge between them. In correspon-
dence to the physical data, a two model approach is essential and while quantum 
mechanics can provide a singular description of phenomena in both domains, 
the discrete components of classical behavior are incompatible with the mathe-
matical nomenclature needed to describe an information constrained quantum 
system. 

At the cosmological end of the measurement spectrum, ΛCDM has had ex-
ceptional success describing mass/energy distribution from the perspective of an 
inertial frame, but does so through a parameterization with respect to the cos-
mological constant. The model is challenged to tell a complete story, requiring 
inflation and quintessence to fill a gap that starts with the earliest epoch. Infla-
tion, in turn, requires faster-than-light expansion, a well-known violation of the 
laws of physics. But, these issues do not call into question the model, which is 
highly accurate at describing cosmological mass distribution, hydrogen/helium 
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distribution and the expansion of the universe. 
Unfortunately, like Quantum Mechanics, the discrete classical elements of 

physical behavior are lost in the nomenclature. More simply put, ΛCDM is not a 
quantum model nor does the approach allow for retention of a discrete nomen-
clature.  

Conversely, Informativity’s success in resolving the mass distributions is 
possible only because the fundamental units and there relation allow a calcula-
tion of the mass to length frequency bound, which gives us the fundamental 
mass of the universe ([1], Equation (93)). With that, the mass distributions (i.e. 
[1] dark mass (Equation (109)), visible (Equation (113)), observable (Equation 
(110)) and unobserved (Equation (115)) may be resolved. Without this, the 
physical domain is unbounded necessitating speculative patches such as infla-
tion, quintessence and artificial scope restriction. 

LQG takes an approach distinct from the Standard Model, a background in-
dependent framework and the quantization of space and time, with a significant 
investment in Riemannian geometry. The model begins with relativity as a plat-
form and then adds a discrete quantum fabric specifically for length and time. 
The goal is to integrate gravity into Einstein’s initial geometric formulations 
while at the same time avoiding the nonrenormalizable divergences encountered 
in quantum field theories. The approach describes space as a grid of interwoven 
finite loops called spin networks, a field of research known as Spin Foam Theory 
([6], Section IX, B). Perhaps one of the more interesting similarities between 
LQG and Informativity is the idea that gravitons might be the outcome of a 
semi-classical or weak field limit, clues that may arise from specific mathemati-
cal bounds created by the inference of a discrete space-time. This is not to say 
that Informativity supports the concept of gravitons – quite the opposite; only to 
say that limits and bounds are important to discrete models in explaining phe-
nomena. 

With respect to Informativity, LQG grabs hold of the key ingredients, a dis-
crete underlying fabric with background independence, features that have al-
lowed Informativity to present expressions for some of the most difficult prob-
lems in modern theory (e.g. dark energy, expansion, quantum inflation, quan-
tum gravity). LQG is largely hinged on the application of a discrete un-
der-structure on which everything is described, but no semi-classical limit reco-
vering GR has been shown to exist. This calls into question the primary axiom, 
that a Planck scale space-time ([6], Section I, A) has a corresponding continuum 
limit as described by GR. Of equal concern is the use of a Hamiltonian con-
straint ([9], Section II) also in the face of no experimental support [3]. Several 
other issues, for example the coupling to matter fields of quantum field theory 
and the renormalization of the graviton have created headwinds [7].  

Informativity is able to extend beyond these issues because of its differing 
axioms. Specifically, Informativity holds that it isn’t space-time that is discrete. 
Measure is discrete, a physically significant property of observation. Secondly, 
Informativity recognizes θsi as a physically significant and measurable value. 
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Several experimental results support its significance, for one the Shwartz and 
Harris experiments on quantum entanglement [8]. Informativity furthers that 
argument with experimental support in gravitation ([1], Section 3.3), dark ener-
gy ([1], Section 3.12), quantum inflation ([1], Section 3.14) and the CMB ([1], 
Section 3.15). 

1.5. Conclusions 

In this review we are repeatedly reminded that the choice of framework does not 
affect the accuracy of an expression. One may take the results as described in one 
framework and translate to a more granular framework revealing the underlying 
structure. Without a nomenclature defined with respect to the fundamental 
measures and operators well fitted to manipulating discrete measures, physical 
expressions are difficult to interpret; the granular details are lost. It is with this 
foundation that so many models of modern thought have found promise in the 
face of an unbounded physical domain. It might be proposed that small modifi-
cations to existing axioms could provide the scope restrictions that resolve the 
false outcomes and singularities. But, what does this achieve? 

Our analysis, thus far, has barely touched on the complexity of these models 
and there is an explicit reason for this. Attempts to correct axiom and nomen-
clature differences effectively translate those works into Informativity. Modify-
ing expressions from one framework to another by changing the nomenclature 
or underlying axioms fails to accomplish a goal. At best, we are subsuming the 
successes of other approaches. At worst, where two models differ in axiom, it is 
difficult to ascertain the accuracy or correctness of a result. Cross model com-
parisons are questionable, a mixing of truths and non-truths difficult to unravel. 

2. Methods 
2.1. Fundamental Measures 

Concepts prerequisite to understanding the expressions within will be visited 
such as measurement bounds, frames of reference and quantum gravity. 

As the physical significance of measure is instrumental to our discussion, we 
present Heisenberg’s Uncertainty Principle [9] as applied to the position and 
momentum of a particle. The expression when reduced to a count nM of mass mf 
in a system, a count nLr of length lf between an observed target and a center of 
gravity (i.e. the point from which the weight of the system may be considered to 
act), and a count nL of lf between the observer and the target describing the tar-
get’s speed is then ([1], Equation (54)) 

M Lr L fn n n l≥                           (4) 

Thus, as demonstrated by the Uncertainty Principle, we also find a funda-
mental unit of length lf to be physically significant, thereby defining a threshold. 
Using other physical constraints such as the speed of light c = lf/tf, this result can 
be extended to demonstrate the physical significance of time tf and the impor-
tance of fundamental mass mf as a countable value of significance. 
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The process of measurement quantization is one of converting existing physi-
cal descriptions into terms that represent counts of length lf, mass mf and time tf. 
It should be noted that while lf and tf each represent a smallest physically signifi-
cant measure, mf does not. Mass units do play an important role though in de-
scribing phenomena, and as such we refer to them as fundamental, which is only 
meant to say that they are countable and physically significant. 

To distinguish the approach from that of Planck’s Units [10] [11], we sub-
script each measure with the letter f, which has a historical importance where 
expressions sometimes mix Planck’s units of measure with those of Informativi-
ty. There is a correlation between the two and a reason for their difference, but 
the scope of this paper is confined to the contraction and dilation of measure. 

Also note, where the contraction and dilation of measure is commonly dis-
cussed, we instead use the phrase, measurement distortion. This is intended only 
as a short-hand to the longer more commonly used phrase. 

Measurement quantization may be described where you consider measuring 
the length of a stick as a count of some reference. You might take a similar stick, 
break it into small pieces and then use the smallest of those pieces as your refer-
ence. The reference may be used to define a unit of length and with that you can 
now resolve how many units of the reference are needed to match the length of 
any object. 

Nevertheless, in developing this approach, targets smaller than the reference 
are encountered. Fractional counts of the reference (i.e., length or time) fail our 
goal of finding an appropriate reference. As such, we need to continue breaking 
the stick until a reference is found that is smaller than all targets. We do not 
need to determine what the reference is or to resolve some understanding of its 
size. We only need to agree that the existence of a smallest reference is physically 
significant. 

With our reference, we now imagine a mathematical description of a pheno-
menon that is in length not a whole-unit count of the reference. For instance, 
consider the hypotenuse of a right triangle, i.e., the side opposite the right angle, 
the remaining sides being each a count of one unit of the reference. Such a de-
scription describes a hypotenuse that is 2  units of the reference. 

Observation of a fractional measure, in short, fails to comply with the defini-
tion of a reference—that all measures can only be a whole-unit count of the ref-
erence. The constraint divides the description of phenomena in half, expressions 
that describe a known and those that describe where information is constrained. 
Heisenberg’s Uncertainty Principle identifies a dividing point. 

Note that there is a distinction between measure and its properties where 
measure is applied. 

O1: Recognition of physically significant units of measure does not imply that 
the target is discrete, only that measure is discrete. 

That is to say, the physical significance of discrete units of length does not 
imply that space is discrete.  
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Finally, a discussion of the foundations of measurement quantization may be 
found by reading “Measurement Quantization Unites Classical and Quantum 
Physics” [1]. However, the subject of this paper is specific to measurement dis-
tortion and how application of measurement quantization leads to verifiable 
predictions for the entire measurement domain. 

2.2. Gravity 

We begin by refining our understanding of observation in terms of three meas-
ures. In contrast to Einstein’s presentation of Special Relativity (SR) [12], where 
expressions describe measurement distortion with respect to an inertial frame, 
we shall first look at what defines measure. 

Consider two points. We may use Figure 2 and the Pythagorean Theorem to 
describe the distance between them. Specifically, 

( ) 2 2
L L L Lb Q a b+ = +                        (5) 

21L L LQ b b= + −                         (6) 

and our reference count is always aL = 1. Then, there is some known count bL of 
the reference lf that resolves the unknown count, side c, between the target and a 
center of gravity. With QL the remainder beyond the whole-unit count, we find 
that the hypotenuse is always the count bL plus a fraction QL of the reference. 

Note that the distance between points A and C is described as a count of lf 
between a target and a center of gravity. This distance may also be described as a 
count of lf between a target and an observer; the distance to be used depends on 
whether we are discussing measurement distortion with respect to gravitation nLr 
(i.e., replace bL with nLr) or motion nLm. Presently, we shall summarize a quan-
tum description of gravity as originally presented in [1]. 

Multiplying the change ratio QL/nLr by length lf and dividing by time 2
ft  

places the expression in SI units. Multiplying by the speed of light c and dividing 
by the scalar constant S adjusts the expression for the expansion of space. Thus, 

22 3

2
L f L fL L

Lr f Lr f fLr f

Q l Q l cQ c Q cc
S n t S n l t S rSn t
= = =                (7) 

 

 
Figure 2. Counts of lf between a target and a center of gravity. 
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If the fractional count QL with respect to a center of gravity nLr is lost at each 
count of tf, then the fractional losses describe gravity in quantum form. 

We may set Newton’s expression G/r2 to be approximately equivalent to better 
understand their relation; 

3

2
LQ c G
rS r

≈                         (8) 

3
LQ rc GS≈                         (9) 

The scalar constant S is central to measurement quantization. Specifically, af-
ter converting an expression to counts of the fundamental measures, nearly 
every physical expression includes this constant. Informativity recognizes and 
cites several examples of measurement data demonstrating the physical signific-
ance of S, such as an angular measure specific to the polarization of X-rays in 
pure Bell states necessary to entangle photons and, as well, half the momentum 
of a fundamental measure of mass. For this reason, the constant is here on de-
noted by θsi, not because it is an angular measure in all situations, but to em-
phasize the invariant nature of this constant regardless of the frame of reference. 

Describing and supporting a complete understanding of θsi is beyond the 
scope of this paper but may be understood with greater detail in the first paper 
[1]. That said, we shall discuss the importance of frames of reference and how 
they affect our description of physical phenomena. At this juncture, note that 
frames of reference determine what units should be associated with θsi. In some 
instances, the described phenomenon requires an understanding as an angular 
measure or momentum, and in others θsi has no units at all (i.e., where the ex-
pression describes an upper or lower bound to measure). While the first two are 
commonly apparent, the latter is explored further in Section 3.8. 

For now, note that with θsi, c, and G, each of the fundamental measures are 
resolved ([1], Equations (20)-(22)) such that  

( )

11
35

3 3

2 2 6.67408 10 3.26239 1.61620 10 m
299792458

si
f

Gl
c
θ −

−× × ×
= = = × ,     (10) 

( )

11
44

4 4

2 2 6.67408 10 3.26239 5.39106 10 s
299792458

f si
f

l Gt
c c

θ −
−× × ×

= = = = × ,   (11) 

3
82 2 3.26239 2.17643 10 kg

299792458
si

f f
cm t
G c

θ −×
= = = = × .       (12) 

The three measures may be combined to reveal their relation as 

2f f si fl m tθ=                         (13) 

which we formally recognize as the fundamental expression. Notably, where 
limr=∞f(QLnLr) = 1/2 ([1], Appendix A), the expression is appropriate where grav-
ity is not a consideration. Where gravity is applicable, the expression is written 
as 

si f
f f

L Lr

t
l m

Q n
θ

= .                       (14) 
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Measurement quantization is a unique approach that allows for a quantum 
description of measure with respect to motion and gravitational fields. Nonethe-
less, it is difficult if not entirely inappropriate to compare Einstein’s work on the 
contraction and dilation of measure to that of Informativity. For one, the Infor-
mativity differential QLnLr describes a new form of measurement distortion, a 
specific outcome due to measurement bounds of the whole-unit count of a ref-
erence. The approach may be extended to measurement distortion for a static 
target as well as one in motion or in a gravitational field. 

In contrast, the effects described by Relativity in a gravitational field are pre-
mised on an understanding of space that differs from Informativity. GR intro-
duces the idea of a curved space-time. The implication is that the reference 
measures lf, mf, and tf vary in the local frame with respect to a center of gravity. 
Informativity is premised on the idea that the reference measures are simply ref-
erences, and as such any description of space (i.e., lf) cannot include properties 
that vary such as “curvature”. 

These points of view are incompatible, although the theories are not. Both In-
formativity and Relativity each make predictions that match our best measure-
ment data but do so with an important difference. When discussing measure-
ment distortion, Informativity recognizes that it is the count of the reference 
that varies in a gravitational field, not the reference. Furthermore, instrumen-
tal in describing curvature is the fact that the measure QL is less than the ref-
erence. 

2.3. Nomenclature 

Let us take this moment to discuss the nomenclature used to describe counts of 
the fundamental measures. Where all counts are denoted with the symbol n, 
each measure is recognized by a corresponding capitalized subscript, L for 
length, M for mass and T for time. To avoid confusion between length descrip-
tions of motion and those of gravitational fields, we append a subscript r (i.e., 
nLr) when describing a count of lf between an observed target and a center of 
gravity. Similarly, we append a subscript m (i.e., nLm) when describing a change 
in the count of lf with respect to a target in motion to the observer. 

When describing contraction and dilation expressions, these subscripts are 
understood to be fundamental unless otherwise noted. They are then followed 
by either a subscript l indicating measure in the “local” inertial frame (i.e., nLl) or 
a subscript o indicating measure of the “observed” frame (i.e., nLo). 

The nomenclature, in part, diverges from modern theory in describing relati-
vistic phenomena. Let us consider the classic example of a train and an observer 
beside the tracks. When describing the length contraction of a ruler held steady 
with respect to the motion of the train as observed by our observer, length is 
denoted by the term on the left l1 where 

1 22

1 2 21 vl l
c

 
= − 

 
.                      (15) 
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Conversely, when describing time dilation, for example, a clock held steady 
with respect to the motion of the train as observed by our observer, the measure 
being observed is now denoted by the term on the right t2 where 

2
1 1 22

21

tt
v
c

=
 
− 

 

.                      (16) 

In each instance, we are describing an object held steady with respect to the 
motion of the train as observed from the side of the tracks. However, for length, 
l1 represents the length of the object on the train and for time, t1 represents 
elapsed time in the local frame of the observer. With this approach, one de-
scribes length as contracted whereas time is dilated. This becomes very confus-
ing when we introduce counts of the fundamental measures. Both a count of 
length units representing the ruler and a count of time units elapsed on the clock 
contract; where both the ruler and the clock being observed are on the train, 
both counts are less. 

We continue to use the traditional terms contraction and dilation, but we al-
ways designate the observed measure with the subscript o and when possible to 
place this term on the left when presenting contraction and dilation expressions. 
Measures with subscript l always represent a measure in the “local” or rest frame 
of the observer and typically are found on the right side of the equality. For clar-
ity, the length and time expressions are then consistently written from the ob-
server’s point-of-view as 

1 22

21o l
vl l
c

 
= − 

 
,                     (17) 

1 22

21o l
vt t
c

 
= − 

 
.                     (18) 

Lastly, we commonly use the terms quantum and quantized throughout this 
paper. Neither should be understood as having a relation with respect to quan-
tum mechanics. Rather, the term quantum is intended to mean small as in a few 
tens, hundreds or thousands of fundamental units of measure. The term quan-
tized is intended to mean that expressions are composed of terms that are 
whole-unit counts of the fundamental units and that those units are physically 
significant. 

A quantized expression inherits qualities that are immensely valuable in our 
effort to describe nature. For one, quantized expressions are defined for the en-
tire measurement domain. Second, quantized expressions are nondimensiona-
lized. Nondimensionalization is not in itself a valuable endeavor but demon-
strating that all phenomena may be expressed entirely with nondimensionalized 
whole-unit counts of the fundamental measures contributes to a new under-
standing of measure that is finite and discrete. 
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3. Results 
3.1. Measurement Distortion with Respect to Motion 

In contrast to the traditional approach to describe the contraction and dilation 
of measure, we seek to describe length using our understanding of measurement 
bounds and Pythagoras’ Theorem, 

2 2 2a b c+ = .                          (19) 

We begin by defining terms that account for all possible values that a count of 
the fundamental measures may take. For example, a count of lf may take any 
value from 0 to 1.85492 × 1043 units/s (i.e., c/lf). Hence, describing each count 
range, there is then a maximum amax and a minimum bmin such that 

2 2 2
max min bounda b c+ = .                       (20) 

Next, we recognize that each bound may be described as a count n of a fun-
damental measure. Therefore, where nbound constrains nmax and nmin, we may in-
troduce the variable terms a and b to allow sides a and b to vary with respect to 
their count bounds. The construct then allows a to vary from 0 to nmax and b to 
vary from 0 to nmin, 

( ) ( )2 2 2
max min boundan bn n+ = .                   (21) 

There exist only two basic operators we may use to constrain nbound. Unfortu-
nately, the product cannot resolve a fixed interval that is consistent for both 
ranges, 

( ) ( )( )1 22 2
bound max min min min0n n n n n= + = ,             (22) 

( ) ( )( )1 22 2
bound max max min max0n n n n n= + = .             (23) 

However, when using a divisor relation 
2 2

2
bound

max min

a b n
n n

   
+ =   
  

,                  (24) 

then the corresponding intervals may be proportionally constrained, 
1 22 2

min
bound

max min

0 1nn
n n

     = + =       
,              (25) 

1 22 2
max

bound
max min

0 1
nn
n n

     = + =       
.              (26) 

We anchor each range at their shared interval endpoint. Variable a may take 
on any value between 0 and nmax to resolve the corresponding value for b,  

2 2

max min

1a b
n n

   
+ =   
  

.                   (27) 

As such, we recognize that all phenomena may be described either with or as a 
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modified form of this expression (i.e., gravity, mass, expansion). We refer to 
such expressions as unity expressions.  

By way of example, we use light to describe length. Replace nmax where nLc is 
the maximum count of lf traveled by light in a second and replace nmin where nLl 
is the corresponding minimum count of lf, both of which are given in the local 
frame,  

2 2

1
Lc Ll

a b
n n

   
+ =   

   
.                        (28) 

We now introduce the associated variables where nLm is a count of lf between 0 
and nLc describing the relative change (i.e., motion) of the observed frame. In 
addition, nLo is a count of lf between 0 and nLl describing the length in the ob-
served frame. The time interval selected is irrelevant so long as it is consistent 
for all terms. The assignments are constrained where nLo must be a minimum 
and therefore can only describe the observed fundamental length. In practice, 
any length may be chosen but only because all values are translated accordingly. 
Likewise, only the relative change nLm of the observed frame can vary from 0 to 
nLc, 

2 2

1Lm Lo

Lc Ll

n n
n n

   
+ =   

   
.                       (29) 

Using counts of lf draws attention to the mathematical qualities of the Pytha-
gorean relation. The expression is more commonly arranged in the form 

2 2

2 21Lo Lm

Ll Lc

n n
n n

 
= − 
 

,                        (30) 

1/22

21 Lm
Lo Ll

Lc

nn n
n

 
= − 

 
.                      (31) 

Finally, by translating the count terms to SI units with the ratio lf/tf, we recog-
nize that the speed parameter 2β  is 

2 2
2 2

2 2
Lm f fLm

f Lc fLc

n l tn v
t n ln c

   
= =      
   

.                  (32) 

By substitution, the corresponding expressions for time and mass are 
1 22

21 Lm
To Tl

Lc

nn n
n

 
= − 

 
,                      (33) 

1 22

21 Lm
Mo Ml

Lc

nn n
n

 
= − 

 
.                     (34) 

One typically measures the numerator (velocity) as a rate of change in posi-
tion and length contraction as a function of that change with respect to the up-
per bound nLc. In contrast, contraction may be described entirely as a count nLm 
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of lf reflecting the ratio of the target’s change in length count to the count bound 
nLc. Thus, the introduction of lf/tf with respect to these counts is an unnecessary 
and superfluous translation that does not contribute to describing the contrac-
tion or dilation of measure. We may then observe that: 

O2: The best suited description of the contraction and dilation of measure is a 
count change. 

To avoid confusion, we continue to use the terms contraction and dilation, 
but forthwith it is understood that we are talking about a count difference be-
tween two inertial frames. For consistency of nomenclature, we always identify 
counts as relative to the local inertial frame nLl (i.e., the observer) or the observed 
inertial frame nLo (i.e., the target). 

To present length contraction in SI units, multiply by lf (i.e., lo = nLolf, ll = nLllf), 
replace the speed parameter where 2 2 2 2

Lm Lcn n v c=  and consolidate such that 
Equation (31) becomes 

1 22

21 Lm
Lo f Ll f

Lc

nn l n l
n

 
= − 

 
,                    (35) 

1 22

21o l
vl l
c

 
= − 

 
.                       (36) 

The final expression now mirrors that of Einstein’s. Note well, our detour 
from the modern approach demonstrates new details that we may recognize as a 
required outcome of bound measure. 

In addition, measurement quantization introduces physically significant 
bounds to measure that are not properties of the observed phenomenon. A good 
example is the measure QL described at the outset of Section 2.2. If QL describes 
a physically significant phenomenon as an outcome of measure—gravity—this 
does not imply that the space around a mass varies in length. 

O3: Measurement quantization does not imply that space is discrete, only that 
measure is discrete. 

Lastly, we should note that the count bounds of the fundamental meas-
ures—length, mass, and time—are the same when defined relative to a given 
measure: 

8 432.99792458 10 1.85492 10L fn l= × = ×  units/s,          (37) 

35 434.0371111 10 1.85492 10M fn m= × = ×  units/s,        (38) 

431 1.85492 10T fn t= = ×  units/s.                (39) 

As such, one may interchange the upper bound counts as may apply to a 
measurement of the target.  

L T Mn n n= = .                         (40) 

While this can be useful, the correlation brings to our attention a principle. 
Identified measurement bounds can be used to interchange units or constrain an 
expression facilitating a solution. 
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3.2. Understanding Immeasurable Space 

When developing expressions that describe the contraction and dilation of 
measure in a gravitational field, one may use escape velocity to correlate the re-
lativistic effects of motion to that of gravity. An abundance of experimental re-
sults confirms this approach. 

Conversely, measurement quantization already recognizes gravitation as the 
loss of fractional counts QL of the reference lf with respect to the square of each 
instant in time tf. That is, measurement quantization describes gravitation as 
motion. We may use that understanding to present a quantum model of meas-
ure in a gravitational field. But, before we begin, let us establish a better under-
standing of QL, the immeasurable space. 

As depicted in Figure 3, we may provide a one-to-one correlation between the 
immeasurable space and the distance to a center of gravity nLr. Here, side a is ll = 
nLllf (the reference nLl = 1), side b is a known distance lr = nLrlf, and side c is the 
unknown distance from a point to a center of gravity (nLr + QL)lf; then, 

( )22 2
l r L rl l Q l+ = + ,                     (41) 

( ) ( )22 2 2 2
Ll Lr f L Lr fn n l Q n l+ = + ,                 (42) 

2 2 2 22Ll Lr L L Lr Lrn n Q Q n n+ = + + ,                 (43) 

21 2L L LrQ Q n= + ,                      (44) 

2 2 21 1 11
2 2 2

L L L
Lr

L L L

Q Q Qn
Q Q Q

 − − −
= = =  

 
,                (45) 

1 1
2Lr L

L

n Q
Q

 
= − 

 
.                      (46) 

One might ask, if the measure of space lf does not change near a mass yet the 
unit count does, then what accounts for the “missing space” with regard to a lo-
cation where gravity is greater? 

The missing space nearer a mass is still there and has been identified with the 
count term QL but it cannot be measured because it is smaller than the reference 
measure lf. We have described this space with the Informativity differential; it is 
what describes the phenomenon of gravitation. 
 

 
Figure 3. Count of distance measures between an observer and a center of gravity. 
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We should clarify that space (i.e., the measure of whole-unit counts of lf) is 
geometrically flat around a mass. Nevertheless, it is the physical significance of 
upper and lower bounds to measure that produce the phenomenon we recognize 
as gravity. Whereas modern theory recognizes a curved space lr, measurement 
quantization breaks down its component terms lr = nLrlf to demonstrate that it is 
not space lf that varies, but the count of the invariant and physically significant 
fundamental measures that vary with each increment of time tf. That variation is 
appropriately labeled as a count differential as described by the Informativity 
differential QLnLr. 

We may also arrange the expression to demonstrate that 

1 1
2 2

L
Lr

L

Q n
Q

 
+ =  

 
,                      (47) 

2 1lim
2 2Lr

L
L Lrn

Q Q n
→∞

 
+ = 

 
.                    (48) 

When considering a large distance, the left term drops out giving us the ab-
breviated form. The Informativity differential QLnLr is difficult to work with and 
for this reason the term is often incorporated into Informativity expressions at 
either the quantum (limnLr=1f(QLnLr) = 2 1− ) or cosmological limit 
(limnLr=∞f(QLnLr) = 1/2) ([1], Appendix A) depending on the relative distance of 
the phenomenon being observed. 

With this we may then present a quantum description of gravity as the loss of 
QL at every instant in time tf. Specifically, it is not that space is discrete. Rather, 
measure is discrete and its physical significance may be demonstrated with Hei-
senberg’s Uncertainty Principle, Equation (4). When an immeasurable distance 
is physically significant yet less than the reference, then it is conjectured that 
matter behaves as though the immeasurable distance is discarded at each instant 
in time tf. With this, gravity (G/r2) may be described as the product of the change 
in position with respect to a center of gravity QL/nLr converted to SI units 2

f fl t  
and multiplied by the expansion of space.  

Note also that universal expansion is defined such that the leading edge of the 
knowable universe will always move at the speed of light with respect to the in-
ertial frame of an observer at that edge. The radial rate of universal expansion is 
initially the unknown value θsi. With this we describe gravity as a product of the 
motion associated with the discarded distance 2

L f Lr fQ l n t  multiplied by the 
rate of linear change (i.e. the ratio of the upper bound c to the expansion θsi); 
that is c/θsi such that 

2
fL

Lr sif

lQ c
n t θ

.                         (49) 

The correlation of θsi to the Shwartz and Harris experiments is then realized as 
half the momentum of a fundamental unit of mass mf and the angle in radians 
that subtends a segment with an arc length of ħ meters. The descriptions collec-
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tively are shown to have been measured with respect to the polarization of 
X-rays in specific maximal Bell states necessary to entangle light as assessed in 
Table 1.  

Further details are described in the first paper ([1], Section 3.1) showing that 
θsi = 3.26239 radians [8]. With this a distance sensitive correlation may be ex-
pressed as 

22 3

2 2
L f L fL L

si Lr f si Lr f f si siLr f

Q l Q l cQ c Q cc G
n t n l t rn t rθ θ θ θ

= = = ≈ .          (50)  

The small difference between the two ratios is a reflection of the precision 
between the quantum model of Informativity in comparison to Newton’s pres-
entation. Newton’s expression does not include the distortion effect described by 
the Informativity differential QLnLr as numerically assessed in Table 2.  

By example, we may calculate QL at a distance of 1 meter. Using Equation (10) 
for lf, the inverse gives us a count of lf such that side b = 6.18735 × 1034 units of lf 
in one meter. In that side c = (1 + b2)1/2, then 

21LQ c b b b= − = + − ,                  (51) 

( ) 34 36234 6.18735 101 6.187 8.3 05 1 8100 100LQ −= + × − × = ×     (52) 

As distance increases, QLnLr decreases proportionally as assessed in Table 3. 
For distances where the difference from QLnLr = 1/2 is inconsequential, the 

expression may be reduced such that 
 
Table 1. Angle setting in radians of the k vectors of the pump, signal and idler for 
maximally entangled states at the degenerate frequency with corresponding Shwartz and 
Harris values (Reference [8]). 

Bell’s State 
k vector angle 

θp θs θi 

( ), , 2s i s iH V V H+  (lfc3/2G) − π (0.1208) π − (lfc3/2G) (−0.1208) π − (lfc3/2G) (−0.1208) 

 2π − (lfc3/2G) (3.02079) (lfc3/2G) (3.26239) (lfc3/2G) (3.26239) 

 
Table 2. Informativity difference from G/r2. 

 
Difference in G/r2 

50lf 150lf 300lf 500lf 1000lf 2248lf 

Difference 0.01000% 0.00111% 0.00028% 0.00010% 0.00003% 0.00000% 

 
Table 3. Calculation of the informativity differential with increasing distance. 

 
Distance 

50lf 2000lf 1 m 1 ly 13.799 bly 

QL 9.99900 × 10−3 2.50000 × 10−4 8.08100 × 10−36 8.54747 × 10−52 6.19427 × 10−62 

½ − QLnLr 4.99900 × 10−5 3.12500 × 10−8 3.26512 × 10−71 3.65296 × 10−103 1.91845 × 10−123 
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3 32 3

2
L Lr f fL

si si si

Q n l c l cQ r cG
rθ θ θ

≈ =≈ .               (53)  

The expression may be further reduced when recognizing the following 
transform. Multiply c3/G by Planck’s expression for time tp = (ħG/c5)1/2, then we 
get Planck’s expression for mass 

2

1 21 2 1 23 6

5 5p
c G c G cm

cG GGc
    = = =    

    

  

.              (54) 

Thus Equation (53) when organized as c3/G = 2θsi/lf and multiplied by tf de-
scribes fundamental mass ([1], Equation (11)),  

3 2 si
f f f

f

cm t t
G l

θ
= =                       (55) 

which allows us to reduce G such that 
3

3 3

2 2
f f f

si si f

l c l t
G c c

mθ θ
= == .                  (56) 

Notably, Equation (55) provides the fundamental expression lfmf = 2θsitf cited 
in Equation (13).  

Also note that the Planck and fundamental masses are not value equivalent. 
The later incorporates time. The Informativity expression tf = Gθsi/QLnLrc4 = 
5.39106 × 10−44 s includes the effects of the Informativity differential as described 
in Table 2. As such, we find that the two expressions: 
 ( ) ( )1 2 82.176470 51 10 kgpm c G −= = ×  [11]; 
 3 82.17643 10 kgf fm t c G −= = ×  
differ by this effect, 0.4 × 10−12 kg.  

To clarify, the CODATA value for mp is calculated as an outcome of interac-
tions measured in relation to the calculation of ħ and G, mixing the quantum 
interactions typically used in the measure of ħ with the macroscopic measure of 
G. Conversely, the Informativity calculation corresponds to measurement data 
subject to variation in G and tf where remaining values are fixed in each inertial 
frame. In that G is measured macroscopically, QLnLr (i.e. tf = θsiG/QLnLrc4) is 
taken at its upper limit of 1/2 exposing the effects of the Informativity differen-
tial which we see as a difference between mf and mp. 

3.3. Distortion of Measure with Respect to Gravity 

Recognizing that the Informativity differential is a description of gravitation as 
motion, we may write expressions with respect to mass as easily as those with 
respect to motion, thus completing the quantized expressions with respect to a 
gravitational field. Starting with the expression above, then 

3 2 2f f f f

f f f f

t l t l
G c c c

m t m m
= = = ,                   (57) 

22 2 f

f

Gm
c

l
= ,                         (58) 
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1 2
2

2 f

f

Gm
c

l
 

=   
 

.                       (59) 

The expression correlates the numerical change in length count 2c  with 
respect to a gravitational field for the specific instance where Pythagorean sides a 
and b are each a count of 1 (i.e., ( )2 21 1 1 2 2+ = ). At this point, we focus only 
on what in modern theory is understood as the measurement distortion asso-
ciated with gravitation; we do not consider the effects of the Informativity diffe-
rential. In essence, we are taking the Informativity differential at its cosmological 
limit.  

To generalize the expression and encompass velocity as corresponds to any 
mass nMmf with respect to any radial distance nLrlf from a center of gravity, we 
introduce the respective count terms associated with each measure. This is more 
complex for the left term as the 2  is a Pythagorean result which must be ex-
panded. We attend to this first. To begin, we recognize from Figure 2 that 

2 2 2
Ll Lr Lmn n n+ = ,                        (60) 

and substitute 2  with the “generalized” count values ( )1 22 2
Ll Lrn n+  with nLm 

being the target’s change in position (i.e., motion nLm), 

2 2 2 2 22 1 1 Ll Lr Lm Lmc c n n c n c n c= + + = = .           (61) 

Recalling also Equation (26), 
2 2

2 2 1Lo Lm

Ll Lc

n n
n n

+ = ,                        (62) 

we recognize that the measure of side b when cast in SI units implies a time ref-
erence. With Equation (40), we recognize the value-equivalent relation nLc = nTc 
and make the substitution of units in the denominator. Then, for a given count 
nLm of lf per unit of tf, we resolve the associated gravitational motion, 

2 2 22 2
2 2 2

2 2 2 2 2
f Lm fLm m

Lm
Lc f Tc f c

l n ln ln c v
n t n t t

= = = = .               (63) 

The relation follows the form c = lf/tf (nL = nT) and differs where nLm < nTc. 
Thus v < c (i.e. nLmc is a fractional representation with respect to the speed of 
light). With 2Lmv n c c=  , we may then generalize the left portion of Equation 
(59) as the motion associated with this expression, 

1 2
2 f

f

Gm
v

l
 

=   
 

.                      (64) 

Now we generalize the right portion of the expression for arbitrary mass m = 
nMmf and gravitational radius r = nLrlf. This is not a substitution. The expression 
presently considers the quantum case, a description of motion in terms of fun-
damental units. To generalize the expression, we introduce a count nM of mf and 
a count nLr of lf for the two fundamental units of measure. A generalization is 
permissible only if the introduced variation is reflected in the left portion of the 
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expression v = lm/tc. With G = tfc3/mf from Equation (56), then the gravitational 
parameter is 

3
2 2 2M f f

M f
Lr f Lr f f

Gn m t c
v n m

n l n l m
= = ,                 (65) 

3 3 2
2 2 2 2M f M M

Lr f Lr Lr

n t c n c n cv
n l n c n

= = = ,                  (66) 

2

2 2 M

Lr

nv
nc

= .                          (67) 

As Equation (32) demonstrates that 2 2 2 2
Lm Lcv c n n=  along with v2/c2 = 

2nM/nLr, then the gravitational length contraction with respect to the upper 
bound nLc is 

2

2 2Lm M

LrLc

n n
nn

= ,                          (68) 

1 2

2 M
Lm Lc

Lr

nn n
n

 
=  

 
.                       (69) 

Note that the expression describes only the distorting effects of the gravita-
tional measurement but should also incorporate those of the Informativity diffe-
rential where we do not take the limit QLnLr = 1/2. Accounting for the distorting 
effects of both measurements, then  

1 2

2
M

Lm Lc
L Lr

nn n
Q n

 
=  

 
,                       (70) 

1 2

2
M

m c
L Lr

nl l
Q n

 
=  

 
.                        (71) 

If we then translate this expression to SI units where lm = nLmlf and lc = nLclf, we 
find it is inside-out. That is, the change in length count lm for the target is not 
arbitrary but rather the length count associated with the upper frequency bound, 
as measured with light in a given time frame. For example, the term lc represents 
the upper bound in the example range (0:1] whereas the gravitational parameter 
β = 2nM/nLr represents the variable that is also constrained to the range (0:1). To 
reverse the behavior of 

cl β ,                             (72) 

we need to invert the values for β in the same range, the inverse expression being 

1ml β− .                            (73) 

This was already known from Equation (67) where β = v2/c2 = 2nM/nLr. The 
gravitational parameter may then be applied directly to the newly developed 
quantum laws of motion, Equations (31), (33), (34).  

1 2

1 2 M
o l

Lr

nt t
n

 
= − 

 
,                        (74) 
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1 2

1 2 M
o l

Lr

nl l
n

 
= − 

 
,                        (75) 

1 2

1 2 M
o l

Lr

nm m
n

 
= − 

 
.                      (76) 

Note that as Equation (75) describes measurement distortion as a function of 
motion, the principle of equivalence is no longer a required axiom. The gravita-
tional distortion of measure is properly described as a geometric property of 
change between two inertial frames, an outcome of measurement bounds to the 
physically significant quantization of measure. As such, this description now 
serves to confirm that the motion that describes gravity and the motion known 
in classical theory are equivalent. Recognition of a principle of equivalence and 
the universality of free fall in a gravitational field are no longer axioms but pre-
dictions of measurement quantization.  

While Einstein disliked the concept of relativistic mass [13], measurement 
quantization describes the gravitational distortion of measure with defined val-
ues for the entire measurement domain. That is, there is an upper bound to mass 
density and as such there are no undefined results for relativistic mass. That 
bound is found to be 

1 22GMv
r

 =  
 

,                         (77) 

1 2 1 23 222 M siL M

si L Lr Lr

nQ rc n cc
r Q n c n

θ
θ

   
> >   

  
,               (78) 

2Lr Mn n> .                          (79) 

In other words, 

2 1M

Lr

n
n

< .                          (80) 

Matter may not have a density of more than two fundamental units of mass mf 
per fundamental unit of length lf of the gravitational radius considered. Doing so 
implies a relative count ratio greater than the speed of light violating the count 
bound nLm = 1.85492 × 1043 units/s. The term matter is conjectured to describe 
baryonic matter. The conjecture stems from our initial definition of mf as a 
physically significant countable unit of mass. While mf does not describe the 
smallest example of baryonic mass, the expression above does describe an upper 
bound to its density.  

Note also that nM ≠ 0 and as such Equations (78)-(80) cannot be ≥expressions. 
Such a description negates the correlation between length and mass invalidating 
the relation and detaching the description from the phenomenon it is describing. 

Finally, note that all expressions regarding measurement distortion, including 
those that describe count differentials within a gravitational field, Equation (75), 
may take the form of the Pythagorean Theorem, a2 + b2 = c2, and as such, length 
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contraction may also be presented as 
2 2 22Lo Lr Ll M Ll Lrn n n n n n+ = .                   (81) 

We bring attention to Einstein’s identification of the speed of light as a term 
instrumental in describing the curvature of space. The quantized expressions 
presented here are notably independent of the fundamental units of measure and 
as such reveal that macroscopic terms (i.e., c, v), inclusive of measure, introduce 
unnecessary descriptors into our understanding of nature. Rather, contraction 
and dilation are a function of counts of invariant fundamental measures, specif-
ically nLo, nLl and nM with respect to a center of gravity nLr. We may make two 
observations.  

O4: The measurement distortion with respect to motion includes a squared 
parameter 2 2

Lm Lcn n . Conversely, measurement distortion with respect to gravi-
tation is a first-order phenomenon nM/nLr. 

O5: The measurement distortion with respect to gravitation is “not” a stret-
ching of lf (i.e., of space), but a count differential. 

Notably, where Informativity approaches space-time curvature as a limitation 
of physically significant bounds to measure, Loop Quantum Gravity (LQG) has 
played a long role in the description of a quantized space from a different point 
of view. [6] That is, LQG uses a discrete geometry which first arose from solu-
tions to the spectral problem. Of particular interest is the convergence between 
the canonical quantization of GR and the same where resolved from the cova-
riant Ooguri theory to reduce the background field (BF) to gravity. Collectively 
these successes provide a framework connecting Einstein’s GR expressions with 
the Informativity space-time model, the later which operates at a fundamental 
scale.  

3.4. Frames of Reference 

Up to this point, our focus has been on how a measure may only be understood 
with respect to the remaining two measures. As such, we have described some 
expressions as self-referencing—but what does this mean? 

When anchored by the fundamental expression lfmf = 2θsitf, each of the three 
measures may be understood only in the context of the remaining two. That is, 
we may understand the fundamental measures with no other measure or logical 
relation that adds additional meaning to any of the measures. This is why we re-
fer to fundamental measures collectively as self-referencing.  

A framework is defined as a set of three references, each assigned to one of the 
three measures. Examples include the International System of Units (SI), 
Planck’s Units, and the fundamental units. Regardless of which set is used, a 
translation between frameworks is always possible. Thus, frameworks do not 
change our descriptions of phenomena, but some frameworks can provide more 
detail and assist in recognizing relationships that are physically significant in 
nature. 

There are phenomena that are better described with a framework defined with 
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respect to the universe. Such a framework would include counts of the funda-
mental measures where the count nTu of tf is defined with respect to the time 
elapsed since the dawn of the universe. Expressions using terms related to this 
framework are called self-defining in part because the universe does not have an 
external reference with which to compare a measure. The self-defining measures 
are the diameter DU, mass MU, and age AU of the universe. Likewise, the corres-
ponding self-defining counts of the fundamental measures are nLu, nMu and nTu. 
Because each of the measures represents an upper count bound to the pheno-
menon being described, the terms are additionally distinguished as system pa-
rameters. 

A mathematical approach to resolving values for system parameters is to first 
take the fundamental expression, set a fundamental measure to a value of one, 
and then resolve the corresponding count ratio for the remaining two. Applying 
this approach to mass, then 

1
2 si Tu

u
Lu

nm
c n
θ

= = ,                       (82) 

2 si Lu

Tu

n
c n
θ

= ,                         (83) 

Lu
f

Tu

nm
n

= .                         (84) 

Here nLu is a count of lf and nTu is a count of tf that describe the universe. We 
may now describe phenomena which are self-defining. For example, several ex-
pressions with the same precision and value as our best measurement data con-
cern mass accretion Macr (a count of mf per count of tf), the diameter DU and age 
AU of the universe, and the expansion of the universe HU ([1] Equations (135), 
(89), (90)), respectively 

2 32
1

2 2
Mu si si

acr
Tu

si
nM
n

θ θθ
 +

= = − = 
 

,              (85) 

Lu

Tu
U U

n c
n

D A= ,                       (86) 

2Lu
U si

Tu

nH c
n

θ= = .                     (87) 

Understanding self-referencing and self-defining frameworks is also impor-
tant in balancing units in Informativity expressions. Whereas the units for cer-
tain terms may differ in different frames of reference, the values associated with 
those terms are the same. This quality is central to understanding how nondi-
mensionalization applies to measurement quantization, especially the more 
complex expressions such as angular measure θsi = h/4πlf and momentum θsi = 
lfc3/2G, which if set equal to one another resolve the well-known expression for 
Planck’s length, [14] 

1 2

3 mp
Gl

c
 =  
 



.                     (88) 
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Unit analysis will not be central to the discussions within this paper. Never-
theless, the change in nomenclature from fundamental length lf to Planck’s 
length lp is physically significant and the two are related. 

3.5. Mass Distribution as a Property of the Universe 

The effects of measurement distortion will appear anywhere distance is consi-
dered. We emphasize that the construction of expressions with respect to the 
universe as a framework can more readily reveal relations that are not so nicely 
resolved when the frame of reference chosen is the local inertial frame.  

Framework consideration is important when describing events that occurred 
during the early formation of the universe and when describing phenomena that 
are best described as system properties where the universe is the system.  

By example, consider the expansion. In the local frame, universal expansion 
varies with time as expressed by H = (km∙Mpc−1)/AU = 70.860 km∙s−1∙Mpc−1. 
With time in the denominator, this expansion expression is decreasing but when 
expressed with respect to the universe, the expansion is invariant HU = 2θsi ly∙y−1. 
Notably, the former indicates only a rate of expansion and tells us little more. 
The invariant expression though tells us that expansion is an intrinsic property 
of the universe. Indeed, it is fixed and its invariance provides insight into a law 
of nature that is fundamental to our universe. Note lastly that the expression de-
scribes universal expansion, not stellar expansion.  

Without this deeper understanding of the relationship between our inertial 
frame and the universe, it is difficult to apply the effects of measurement distor-
tion to phenomena that are cosmological in scale.  

In a further example, let us explore how viewing the universe as a frame of 
reference can have a significant effect on our understanding of mass. We begin 
by citing the mass distribution expression ([1], Equation (118)) where 

( )2 tot f obs tot fM M M M M= + .                 (89) 

The expression describes the relationship between total Mtot and observable 
Mobs mass in the universe. Fundamental mass Mf ([1], Equation (93)) is new to 
modern theory and will require a short introduction.  

The principles that constrain fundamental mass are as follows. All measure is 
subject to an upper frequency of 1.85492 × 1043 events per second, Equation (38), 
and we call that upper bound the mass frequency. If a greater number of mass 
events should reach an observer, there would be no means to distinguish them. 
Mass frequency defines an upper bound to the total mass that may be observed. 
We recognize this bound with the term Mf, which has the formal definition 

535.7353 10 kgf
f U

f
si

m
M A

t
= θ = ×                (90) 

With this, we may now place the mass distribution expression into Pythago-
rean form. First, we divide Equation (89) by 2

fm . Thus, as presented in Figure 
4, where the total nMtot, observable nMobs, and fundamental nMf counts of mf for  
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Figure 4. Mass distributions of the universe. 

 
the universe are compared with the expression for length contraction 

2 2 2 2 2 2
Lo Lc Lm Ll Lc Lln n n n n n+ = ,                       (91) 

2Mobs Mtot Mobs Mf Mtot Mfn n n n n n+ = .                  (92) 

we find a one-to-one correspondence for each term: 
 2

Lo Mobsn n : observed; 

 2
Lm Mobsn n : change between frames; 

 2
Ll Mfn n : local; 

 2
Lc Mtotn n : upper bound. 

The two expressions are correlated with length contraction being a composite 
expression consisting of counts of lf defined with respect to the local frame 
(self-referencing), and mass distribution being a composite expression of counts 
of mf defined with respect to the universe (self-defining).  

The general form for the mass distribution, Equation (89), is more versatile as 
the terms may take mass values in kilograms or percentage distributions with 
respect to the total. Then, finally, when both expressions are in the same form, 
we may now present the mass distribution as a relativistic expression, 

2 obs
obs f

tot

MM M
M

 
= − 

 
                   (93) 

describing the observed mass Mobs as the fundamental mass Mf after applying the 
effects of measurement distortion. Note that Mobs/Mtot is a first-order gravita-
tional parameter and does not take the squared form of the speed parameter 
( 2 2

Lm Lcn n ). Likewise, comparing gravitational motion with the definition of the 
mass distribution, the observable mass Mobs is written with respect to the upper 
bound Mtot. 

The relativistic correlation is significant in that it validates our understanding 
of fundamental mass Mf as an upper bound to the observation of mass events. 
Second, the expression provides a conversion metric between measures in the 
local frame with respect to the self-defining frame (i.e., defined with respect to 
the universe). Understanding frames of reference is important when resolving 
conditions prior and up to the trigger event that initiates expansion. For brevity, 
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we symbolically identify this period as the quantum inflationary epoch although 
distinctly different from t0. 

3.6. Cosmic Microwave Background 

With Informativity, we can present expressions that describe the dawn of the 
universe from a quantum fluctuation, the ensuing inflationary expansion and the 
trigger event (i.e., 3U fR l= ) that causes inflation to cease, and no longer con-
strains the accumulating mass/energy 

3 4
367.00888 10 kg s

2
si f si

acr
f f

m
M

t l
θ θ

= = = ×               (94) 

at 
33 2e si

UA θ=  seconds as Cosmic Microwave Background (CMB) ([1] Sections 
3.13 - 3.15). Here the focus is not on a comprehensive review of those calcula-
tions. Rather, we explore why the calculated age of the CMB points to an elapsed 
time of 363,309 years [15] whereas the events that end inflation define a trigger 
at 678,889 years. 

Time dilation is the factor at play. We must account for the measurement 
distortion between the quantum events that led to the conclusion of CMB pro-
duction and our inertial frame within a universe expanding at HU = 2θsi. Taking 
the integral of the radius 3UR =  as described during quantum inflation at the 
time of the CMB trigger event, we may solve for the age of the universe ([1], Eq-
uations (151) and (152)), 

( )
3 3

2 2 lnf U f
U

si U si

l A l
R

Aθ θ
= =∫ ,                  (95) 

33 2 13e 1.14652 10 ssi
UA θ= = × .                 (96) 

Using the “expansion” expression for the radius of the universe RU = AUθsic 
from Equation (86), then the difference between the self-referencing age As-ref 
and the self-defining age AU is a function of volume where VU = (4/3)πR3 such 
that 

( ) ( )
( ) ( )

3
-

3

4 3 π
2

4 3 π
s ref si

si
U si

A c

A c

θ
θ

θ
= ,                  (97) 

( )1 3 13
- 2 2.14241 10 ss ref si UA Aθ= = × .              (98) 

To resolve the time dilation between the two frames of reference, we organize 
time from Equation (33) with respect to motion such that 

1 22

21To Lm

Tl Lc

n n
n n

 
= − 
 

.                     (99) 

Then we modify the expression for the self-referencing age, where As-ref = nTllf 
is given in the local frame during quantum inflation, and AU = nTolf is given in 
the observed frame as viewed from our perspective today, to get 
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( )1 3
- 2s ref U siA A θ= ,                      (100) 

( )1 32Tl To sin n θ= ,                       (101) 

( )1 3

1
2

To

Tl si

n
n θ

= .                       (102) 

Setting the expressions equal to one another, we then resolve the length con-
traction between the two frames, 

( )

1 22

1 3 2

1 1
2

Lm

Lcsi

n
nθ

 
= − 
 

,                    (103) 

( )

2
2 2

2 32
Lc

Lm Lc
si

nn n
θ

= − ,                    (104) 

( )2 3

11
2

Lm Lc
si

n n
θ

= − .                   (105) 

Note, this is a second-order contraction expression and as such does not need 
the inside-out transform we performed for mass in Equations (72) and (73). As 
expected, we find that the speed parameter 12/((2θsi)1/3)2 corresponds to Eins-
tein’s speed parameter v2/c2, but the frame of reference is the universe. We can-
not set the parameters equal in that doing so mixes two frames of reference, the 
local inertial frame with that of the universe. 

Multiplying Equation (104) by lf/nTtf, we resolve a contraction effect that cor-
responds to a velocity of 

( )2 3

11 84.4755%
2

Lm f T fLm

Lc T f Lc f si

n l n tn v
n n t n l c θ

= = = − =        (106) 

of the speed of light. Note that nT = (1/tf) is fixed by our definition of nLc in SI 
units. The terms cancel multiplicatively, but are retained for consistency in 
structure. 

Again, we are not just resolving the associated measurement distortion be-
tween two frames of reference. The magnitude of the time dilation is fixed by the 
expansion parameter 2θsi, which describes the self-referencing lower bound with 
respect to the three-dimensional volume of radius 3 fl . The trigger event 

3 1 2 2> >  where 2  rounds down and  
2

2 2 2 2 2a b a a b+ = + +                (107) 

2 2 2 2 2 21 1 1 3a a b+ + = + + =              (108) 

rounds up is what determines the precise elapsed time and associated space 
within the scope of the spatial framework.  

As a technical note, side b is not arbitrary. It is the only relation that can be 
resolved with the reference, the hypotenuse of a Pythagorean triangle with sides 
a = 1 and b = 1. Therefore, the square root of a2 + b2 becomes the square root of 
a2 + ((a2 + b2)1/2)2. 
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With a system radius of 3 fl , points outside of the bubble come into view, 
quantum inflation ends and the measurement framework expands at the speed 
of light. 

Given that the focus is on measurement distortion, a better explanation of the 
transition from quantum inflation to expansion has been a subject of interest. 
This can be explained without taking a significant tangent.  

Imagine the universe today. There are many points in space we might choose 
to reach, but there are constraints. For one, the rate of expansion which de-
scribes length change in the referential framework (i.e., the set of points an iner-
tial frame can reach) may not exceed the speed of light with respect to points at 
the outer edge of that framework. We also recognize that the rate of expansion is 
attained only when there are points that can be plotted as described by the Py-
thagorean Theorem with respect to a whole-unit count of the reference lf. 

Consider then, a universe that has a radius of 2 fl . How do you get past a 
point that is 1.414lf in distance with your reference measure lf (which must be a 
whole-unit count of lf) and your definition of distance a2 + b2 = c2 where a, b, 
and c are all whole-unit counts of lf? Indeed, you cannot. The space has a radius 
of lf; that being 2 fl  rounded down to lf, the closest whole-unit count of the 
reference. In that the reference describes the smallest physically significant dis-
tance, there exists only one reference point where distance has significance. 

Nonetheless, this does not imply that the system is static. Bounds to a measure 
do not imply that the properties of the system are necessarily constrained in the 
same way (see O1 and O3). With regards to this quantum bubble, the calculated 
radius is a function of time and may be resolved where ( ) 32 lnU U f siR A l θ=  
from Equation (95). 

The radius increases at a quantum rate for 363,309 years, Equation (96), until 
it reaches 3 1.732f fl l= . This value will round up to a whole-unit count of 
two, which means that new particles may now appear outside of the quantum 
bubble. The volume of the universe immediately proceeds to expand at the speed 
of light to a radius of 4 fl  without problem. The expansion continues to a ra-
dius of 5 2.236f fl l= , which rounds down. Why does the expansion not stop? 

Expansion does not stop because with a larger universe we now have new 
points of reference inside the universe. Some of those points are 3 fl  from the 
outer edge of the quantum bubble. With our larger universe, there are always 
points that are 3 fl  from the outer edge. Expansion is now the new behavior 
and from Equations (86) and (87) the radius obeys 

f
U U

f
si

l
R A

t
= θ ,                        (109) 

where c = lf/tf is given in SI units. 
If it were not for quantum inflation, mass/energy accretion, and an upper 

bound to mass density 2nM/nLr, conditions would not exist that lead to the ad-
dition of energy in the form of electromagnetic radiation. During the quantum 
inflationary epoch, the addition of energy exceeded the upper bound to mass 
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density as described in Equation (79). Energy accretion was restricted to 
non-baryonic forms and it is these conditions that constrained the universe to a 
very specific quantity, age, density, and temperature of the CMB, as described in 
the first paper [1]. 

3.7. What Defines Measure? 

Why is the fundamental measure for length lf = 2Gθsi/c3 = 1.61620 × 10−35 m? We 
know its relation to the other measures as given by the fundamental expression 
lfmf = 2θsitf. Therefore, what property of our universe anchors its value? Does it 
vary and, if not, then why is it invariant? 

We begin our analysis by first recognizing that progress can come only by 
looking to disciplines outside of measure. In this section, we entertain the idea 
that counts of the fundamental measures guide our understanding of their rela-
tionships and constrain their values. Taking Equation (103) and arranging it in 
the form a2 + b2 = c2, then 

( )

2

2 3 2

1 1
2

Lm

Lcsi

n
nθ

+ = .                       (110) 

The two components are anchored by the value 1. There is a minimum, a 
component which represents the lower count bound to measure 1/(2θsi)2/3. There 
is also a maximum, a component which represents the upper count bound to 
measure 2 2

Lm Lcn n . Note that nLm is a fixed value that corresponds to expansion. 
Next, we need to separate the squared terms from their components. We also 

want to replace 2θsi with the corresponding fundamental measures that we seek 
to define. Moreover, we want to correlate the physical description depicted in 
Figure 5. We call this a unity expression, 

21 3 2

1f Lm

f f Lc

t n
l m n

      + =         
.                  (111) 

 

 
Figure 5. The unity expression, the lower (side a) and upper bound (side 
b) metrics that define unity. 
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Having used the fundamental expression, the first term now contains each of 
the three measures, and for each dimension, we must take the root to conform to 
the term in the one-dimensional component term (side a) of the Pythagorean 
Theorem. Second, the three measures are the lower bound terms that define 
length, mass and time; the product of length and mass (3.51755 × 10−43 kg∙m) 
being the smallest significant value with respect to time (5.39106 × 10−44 s), the 
smallest value. 

The second component is a count relation representing the upper bound por-
tion of the relation. It consists of a ratio that describes the motion associated 
with expansion nLm with respect to the upper bound nLc. Together, the expres-
sion correlates measure with counts of those measures. 

Lastly, whereas the units in the second term nLm/nLc cancel, the leftmost term 
has units s/kg m which combine to provide unity. This is not to say that they 
should or should not cancel. We can only infer that: 

O6: Our study of both the unity and fundamental expressions continues to 
reinforce the idea of equality between time and the product of length and mass. 

When we apply this principle, using a maximum or minimum bound as our 
frame of reference, we find that θsi carries no units at all. Certainly, it may be 
argued that when focusing solely on the fundamental expression that θsi carries 
the inverse units kg m/s, but we are regularly reminded that this assignment 
meets with conflict as demonstrated above. Changes in the reference framework 
change the units under consideration. 

If we were now to consider a universe that differs from our own, then that 
difference would be expressed here. Any change in the rate of expansion HU = 
2θsi = nLuc/nTu ([1], Equation (81)) identifies only one set of fundamental meas-
ures in regard to that of the universe. The self-defining expression (i.e., defined 
with respect to the universe) for mass is ([1], Equation (79)) 

Lu
f

Tu

nm
n c

= ,                         (112) 

where nLu is the diameter per light-year and nTu is the age per year. Multiplica-
tion of nTu by c is necessary for SI units. Note that the remaining two measures lf 
= nMu/nTu and tf = 1/nMunLu ([1], Appendix D) are superfluous because nMu¬˜nTu, 
unlike mass where nLu∝nTu. 

The self-referencing expressions (i.e., defined with respect to the local frame) 
are 

3

2 si
f

Gl
c
θ

= ,                         (113) 

4

2 si
f

Gt
c
θ

= ,                         (114) 

2 si
fm

c
θ

= .                         (115) 
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They may not be factored of fundamental measures but may incorporate 
measure into an invariant bound such as θsi, G or c. We may even expand a 
measure to match an upper system bound such as the diameter DU in light-years 
and age AU in years of the universe, 

U
f

U

Dm
A c

= .                         (116) 

With HU = 2θsi and mf = 2θsi/c, we may combine the self-defining system con-
stant HU with the self-referencing measures to show their correlation, 

f f
U

f

m l
H

t
= .                        (117) 

As such, 

21 3 2
1 1Lm

U Lc

n
H n

      + =        
.                   (118) 

Sides a and b of this Pythagorean expression are an invariant description of a 
three-dimensional space-time expansion. (1/HU)1/3 describes ‘three’ dimensions 
and their correspondence to length nLm/nLc. That is, the measure of length is 
fixed by the equality. Each measure is also anchored as described by the funda-
mental expression. 

O7: While mathematical manipulation of physical description can offer us a 
many dimensional universe, an Informativity description of measure consistent-
ly offers only three dimensions. 

We may also attach importance to measure as a tangible object of physical 
significance. We can, for instance, demonstrate that their relation identifies a 
fixed set of parameters that describe invariant properties of the universe such as 
mass nMu, diameter nLu, age nTu, and expansion lfmf/tf. 

O8: One might ask if system parameters are a required numerical outcome, 
then do the phenomena they describe have significance beyond their mathemat-
ical certainty? 

Lastly, using Equation (112) to describe c, we find that 

Lu

Tu f

nc
n m

=                          (119) 

Lu
f f f

Tu

nl m t
n

=                         (120) 

which gives us the fundamental expression where the frame of reference is the 
universe. However, if c = nLlf/nTtf in the local frame such that nL = nT, then ap-
plied to the self-defining frame we get 

1 1Lu

Tu f f

nc
n m m

= =                       (121) 

https://doi.org/10.4236/jhepgc.2018.44038


J. A. Geiger 
 

 

DOI: 10.4236/jhepgc.2018.44038 688 Journal of High Energy Physics, Gravitation and Cosmology 
 

which is false. The paradox clarifies that length, mass, and time are not con-
served between the local and universal frames of reference. The analysis in the 
first paper demonstrates that mass accretes at a steady rate of ([1], Equation 
(136))  

3
367.00888 10 kg s

2
f si fMu

acr
Tu f f

m mnM
n t t

θ
= = = × .           (122) 

O9: Where length, mass, and time do not correspond between the local frame 
of reference and that of the universe, we find that the mass of the universe in-
creases with elapsed time. 

Notably, the expression may also be written as 4
acr si fM lθ= . If mass accre-

tion was not a property of the universe, not only would there be a conflict with 
our understanding of the speed of light, but we would be unable to resolve the 
age, quantity, density and temperature of the CMB. Those calculations match 
observational data to four significant digits and are predicated on mass accumu-
lating with elapsed time. 

3.8. The Quantum Crossover 

An understanding of measure should not occur without also bringing to your 
attention that the availability of information does not only affect measure. The 
availability of information also defines the quantum crossover—the attributes of 
a system which separate classical and quantum physics into two distinct classes 
of behavior. Until now, where this division occurs and why it exists has been 
elusive. Recall, Equation (1) defines one aspect of this division with respect to 
quantum uncertainty as nMnLrnL ≥ lf. The crossover is not entirely clear for all 
systems especially where quantum behavior can occur with respect to macros-
copic phenomena. 

O10: Those qualities of a system that divide the classical and quantum behavior 
of matter into two classes are a function of what information is available to the 
observer. That information regards the existence or lack thereof of an event. 

By example, consider the position and momentum of an electron. The posi-
tion of the electron has a precise location at all times, but it is not known nor can 
it be known as precisely in combination with the momentum. The quantum de-
scription provided by the wave function is the most appropriate in part because 
we seek to know the position of an object that is itself less in mass than the ref-
erence mf. 

But, this uncertainty in position should not be confused with the “uncertain-
ty” that prevents the observer from precisely measuring position and momen-
tum. What information is available is a distinctly separate behavior that arises 
from upper and lower bounds to measurement frequency particular to the sys-
tem. 

The wave function Ψ describes positional uncertainty, but what is going on 
underneath is less defined. That said, describing the accessibility of information 
as a collapse of the wave function can be less defining. The example entertains 
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only the presence or absence of information available to the observer. The im-
portance of information has always been evident in modern theory. What has 
not been evident is a model of quantum physics that formally separates where 
the classical laws of physical behavior cease and where the quantum laws begin. 
Informativity provides that model, Equation (4) being one example of its appli-
cation. 

From a more philosophical perspective, Einstein summarized his interpreta-
tion of objective reality when he asked Abraham Pais “whether [he] really be-
lieved that the moon exists only when I look at it” [16]. In light of Informativity, 
Einstein’s concern is protected; an observer does not need to receive information 
in order for a mass to exist or an event to occur. But what the observer’s beha-
vior will be will follow as though the mass or event did not exist and/or never 
occurred until that information reaches the observer. 

We should take this moment to also note where Heisenberg’s Uncertainty 
Principle resolves the crossover for fundamental length, substituting tf for lf in 
Equation (4) using the fundamental expression and Equation (87), then the cor-
responding crossover for time is 

2 f fLu
f si

f Tu f

t tnl
m n m

θ= = ,                    (123) 

M Lr L Tu f
f

Lu

n n n n m
t

n
≥ .                     (124) 

Something more approachable would be to take Heisenberg’s Uncertainty 
Principle with respect to the position and momentum of a particle σXσP ≥ ħ/2 
where ħ/2 = θsilf ([1], Equation (35)) and where universal expansion is HU = 2θsi 
and write 

X P si flσ σ θ≥ ,                        (125) 

2 X P U fH lσ σ ≥ .                       (126) 

Then the uncertainty in position and momentum describe a threshold where 
the radial expansion of the universe HU/2 multiplied by lf defines the threshold. 

3.9. Relation and Boundary Expressions 

We conclude our discussion on measurement distortion by emphasizing two 
classes of expressions that are physically distinct: relations and bounds. 

The conjecture is that all relations may be reduced to the fundamental expres-
sion, lfmf = 2θsitf. Relations such as the distribution of mass—visible, observable, 
fundamental, dark and total—are modifications of the fundamental expression. 
Other examples include the diameter DU and age AU of the universe as well as 
the constants associated with Planck ħ and Newton G ([1], Equations (118), (87) 
and (40)), 

2obs tot obs f tot fM M M M M M+ = ,               (127) 
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2U si UD Aθ= ,                        (128) 

2 34 siG cθ =  .                        (129) 

However, not all principles, laws or rules of nature are relations. There are al-
so bounds, such as the speed of light c, maximum mass density 2nM/nLr, and the 
gravitational constant G, respectively, 

f fc l t= ,                          (130) 

2 1M

Lr

n
n

< ,                          (131) 

f f f f

f f f f

l l l t
G

t t t m
= .                       (132) 

These expressions are important because they define upper and lower bounds 
to length, mass, time frequency, and combinations thereof. Bounds may incor-
porate relations and may also contain variables that are specific to the scope of 
measured phenomena. We may, for instance, use a relation such as the funda-
mental expression, to make similar substitutions to a bound and resolve other 
bounds. Starting with the expression for the gravitational constant G, we may 
resolve the associated velocity, 

f f f

f f f

Gm l l
l t t

= ,                       (133) 

1 2
2

2 f

f

Gm
c

l
 

=   
 

,                     (134) 

1 2

2 2 2
1 1 f

f

Gm
c

l
 

+ =   
 

.                   (135) 

The bound for velocity v = (2GM/r)1/2 arises from the expression for gravity. 
When multiplied by tf, 

1 2

2 2 2
1 1 f

f f
f

Gm
l t

l
 

+ =   
 

                  (136) 

the expression describes distance using the Pythagorean Theorem. Naturally, as 
c = lf/tf, the lower bound to velocity times tf is 2  units of lf, which resolves the 
reference lf on side a defined against itself, lf on side b. Finally, we generalize the 
expression as performed in Equations (59)-(64). 

Distinguishing relations from bounds is instrumental in recognizing that the 
development of a “unified field equation” implies that each of the four forces is a 
measurement bound. While this principle has been demonstrated for gravity, the 
construct for each of the three remaining forces is still a task for future research. 

3.10. Deflection of Light near the Sun 

Experimentally there are several approaches that may be taken to validate mea-
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surement quantization. That is, the predictions of Informativity do add some 
quantum detail where GR drops off. For one, there is an entirely new effect of 
measure distortion described by Informativity, which we have termed the In-
formativity differential. We do not present all possible experiments, as those 
proposals may be found in the first paper [1], but we discuss this new effect re-
garding the deflection of light grazing the Sun. 

This effect is six orders in magnitude smaller than that described by GR, θ = 
4GM/rc2 = 8.5 × 10−6 rad. Using the same expression, we may resolve the differ-
ence between GR and the Informativity differential by replacing Newton’s gra-
vitational term G/r2 as a difference QLc3/rθsi, thus revealing that the additional 
curvature due to the Informativity differential is 

( )33

2 2 2

44 si LL

si si

M G Q rcQ cG rM
rr c rc

θ
θ

θ θ

− 
∆ = − = 

 
,             (137) 

( ) ( )( )30 11 44 8 3

8 2

4 1.98855 10 6.67408 10 3.26239 1.15956306 10 6.969 10 299792458

6.969 10 299792458 3.26239
θ

− −× × × × − × × × ×
∆ =

× × ×
 (138) 

126.6 10 radθ −∆ = × .                        (139) 

The calculation is sensitive to the number of digits used in QL which is not a 
measured value.  

The experiment would provide a new approach to confirming the physical 
significance of the fundamental units and their application to gravitational fields. 
While several experiments described in the first paper are already well tested and 
do conform to this model, experiments that expose these quantum effects in a 
gravitational field would provide a new perspective. 

4. Discussion 

Measurement quantization has revealed several notable properties that apply to 
our understanding of space-time, to our understanding of relativity, and our 
understanding of cosmological phenomena, and hence are presented as proper-
ties of our universe. While we may describe these phenomena in several mathe-
matical forms, if it were not for measurement quantization, we would not see the 
numerical qualities of measurement distortion and how the Pythagorean Theo-
rem plays into that description. We would also have no recourse with which to 
gain a greater understanding of measure, constrained to a self-referencing 
framework of fundamental measures. 

Informativity brings us not just a new model of physical expression but focus-
es our attention on the self-defining framework as a means of understanding 
cosmological phenomena. With measurement quantization, we are able to pro-
vide a more refined understanding of gravitation, of the relations that underlie 
equivalence, and as expressed in the unity expression, an underlying description 
of measure and the geometric constraints that bind their values.  

Notably, we are able to expand on our understanding of measure to include 
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not only the self-referencing inertial frame of the observer, but also the 
self-defining frame of the universe. Without this broader understanding, we 
would find ourselves without a firm understanding of some of the greater cos-
mological mysteries such as dark energy, dark matter, dark mass, and the expan-
sion of the universe. 

5. Glossary of Terms 

Boundary Expressions 
Expressions define invariant upper and lower bounds to length, mass, time 

frequency, and combinations thereof. Examples include c = lf/tf, G = (lf/tf)3(tf/mf), 
ħ = 2θsilf, and HU = lfmf/tf. 

Framework 
A frame of reference against which a system of measure is applied. Frame-

works are commonly discussed in Informativity and are typically either that of 
the observer’s inertial frame, the observed target or that of the universe. 

Fundamental Expression 
The simplest expression correlates the three fundamental measures, lfmf = 

2θsitf. 
Fundamental Measure 
One of the measures length lf, mass mf, and time tf along with their correlation 

called the fundamental expression. Using measurement data from the Shwartz 
and Harris experiments in combination with Heisenberg’s Uncertainty Prin-
ciple, each is macroscopically defined and physically significant. 

Informativity Differential 
The Informativity differential QLnLr describes a new form of length contrac-

tion associated with the lower bound to measure. The loss of immeasurable 
space at each increment of tf describes gravity. 

Measurement Distortion 
A short-hand notation for the contraction and dilation of measure. 
Relation Expressions 
Any expression that may be reduced to the fundamental expression, lfmf = 

2θsitf. Examples include universal mass distribution and the correlation of the 
diameter to the age of the universe. 

Self-referencing 
An expression defined with respect to the observer’s inertial frame of refer-

ence. 
Self-defining 
An expression defined with respect to the universe as a frame of reference. 
System Parameters 
Any invariant value associated with a self-defining expression. 
Unity Expression 
A self-defining Pythagorean expression with terms describing measurement 

bounds and a hypotenuse equals to 1. 
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