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Abstract 
Microstructures in the liver are primarily composed of hepatocytes, hepatic 
blood, and biliary vessels. Because each hepatocyte comes in contact with both 
vessels, these vessels form three-dimensional (3D) periodic network patterns. 
Confocal microscope images are useful for observing 3D structures; however, 
it is necessary to explicitly describe the vessel structures using 3D images of 
sinusoidal endothelial cells. For this purpose, we propose a new approach for 
image segmentation based on the Turing reaction-diffusion model, in which 
temporal and spatial patterns are self-organized. Turing conditions provided 
reliable tools for describing the 3D structures. Moreover, using the proposed 
method, the sinusoidal patterns of rats fed a high-fat/high-cholesterol diet 
were examined; these rats exhibited pathological features similar to those of 
human patients with nonalcoholic steatohepatitis related to metabolic syn-
drome. The findings showed that the parameter in diffusion terms differed 
significantly among the experimental groups. This observation provided a 
heuristic argument for parameter selection leading to pattern recognition 
problems in diseased rats. 
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1. Introduction 

The liver is one of the most important organs and is capable of regenerating it-
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self [1]. Many researchers have become interested in development of methods 
for reconstruction of the liver based on tissue engineering techniques [2]. The 
sinusoid is defined as a group of small blood vessels and the bile canaliculus is a 
thin tube that collects bile secreted from hepatocytes; these two tissues are ar-
ranged along cords of hepatocytes, without crossing each other, as shown in 
Figure 1. From a mathematical perspective, these types of periodic networks 
cannot be fully understood in two dimensions [3] [4]. However, to date, imaging 
analyses in hepatology have largely relied on two-dimensional (2D) images be-
cause appropriate methods for three-dimensional (3D) reconstruction and quanti-
fication have not been developed.  

Confocal microscopy has been used to analyze 3D structures of cells and tis-
sues after immunofluorescence staining allowing the examination of relation-
ships between cell arrangement and metabolic function [1] [2]. To analyze the 
3D sinusoidal network, it is necessary to explicitly segment the sinusoid network 
because the sinusoids are formed by sinusoid endothelial cells, as shown in Fig-
ure 1(a), and these cells can be imaged by immunostaining using confocal mi-
croscopy. 

The segmentation process can be very time consuming; therefore, it is funda-
mental to choose the right techniques for filtering the image properly. An auto-
mated method for segmentation that saves time and human labor is always de-
sirable. 

A number of automated methods have been proposed [5] [6]. It is known that 
methods using a binary method and a region extraction processing using edge 
extraction as methods were proposed by the 1990s [6]. The methods using statis-
tical analysis and deformable shape model have been mainly used in recent re-
searches from the latter half of the 1990s [6]. 

Here, we propose a new method for segmentation of 3D sinusoidal networks 
utilizing the information performed with the reaction-diffusion (RD) model. 
Segmentation and edge detection of 2D images based on this model have been 
reported [7] [8]. In these previous studies, the excitable media-type RD model  
 

 
Figure 1. (a) A schematic structure of microstructures in the liver; (b) 3D fluorescence 
image reconstruction of the rat liver. Red and yellow-green points represent sinusoidal 
endothelial cells and bile canaliculi, respectively. By image analysis, the positions of he-
patocytes were determined (a representative is indicated in blue, although hepatocytes 
were positioned in all empty spaces in the reconstruction). 
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was used for segmentation one or two materials in the 2D image. In contrast, in 
this study, a Turing-type of RD system was used for segmentation of 3D periodic 
networks, in which various types of network patterns self-organized [9] [10] 
[11]. 

Liver disease is often associated with alterations in the microarchitecture of 
the liver [1]. Therefore, using the proposed method, the morphology of the 3D 
network patterns was evaluated during the changes in morphology observed in 
the context of nonalcoholic steatohepatitis (NASH), an advanced stage of non-
alcoholic fatty liver disease (NAFLD), which is related to metabolic syndrome. 
Rats fed a high-fat/high-cholesterol (HFC) diet, which causes pathological fea-
tures similar to those of human patients with NASH [12], were used to evaluate 
the 3D pattern index of 3D segmentation sinusoidal network patterns.   

2. Material and Methods 
2.1. Animal Experiments  

All animal experiments were performed in accordance with the Guideline for 
Animal Experiments of Kwansei Gakuin University and with approval of the 
Committee for Animal Research at Kwansei Gakuin University. Six-week-old 
male Wistar rats were purchased from Shimizu Laboratory Supplies Co. Japan, 
and randomly divided into eight groups. For the diets, stroke-prone control 
chow diet (20.8% crud protein, 4.8% crude liquid, 3.2% crude fiber, 5.0% crude 
ash, 8.0% moisture, and 58.2% carbohydrate) was used as a control diet, and the 
HFC diet was a mixture of 68% control diet, 25% palm oil, 5% cholesterol, and 
2% cholic acid. Control groups (Cont) were fed the control diet for 3, 6, 9, or 12 
weeks. HFC groups (HFC) were fed HFC diet for 3, 6, 9, or 12 weeks. Both diets 
were obtained from Funabashi Form (Chiba, Japan). The rats were housed in 
groups of three in standard breeding cages (27 × 22 × 12 cm) with freely availa-
ble food and water under a 12-h light/12-h dark cycle (light on at 08:00). 

After 18 - 20-h fast from the last feeding, all rats were sacrificed under pento-
barbital (70 mg/kg)-induced anesthesia, and the livers were removed. A part of 
each liver was fixed in 4% buffered paraformaldehyde for histological analysis. 

2.2. Immunofluorescent Staining and Observations by Confocal  
Microscopy 

An immunofluorescence technique was applied to 40-μm-thick frozen sections 
of liver using a monoclonal antibody specific for hepatic sinusoidal endothelial 
cells (Mouse anito-SE1; Immuno-Biological Laboratories Co. Ltd., Japan) [13] 
[14]. Alexa 594-conjugated rabbit secondary antibodies were purchased from 
Molecular Probes (Eugene, OR, USA).  

Primary antibodies were diluted in phosphate-buffered saline (PBS) with 1% 
bovine serum albumin (BSA) and 0.2% Triton X-100 (at 1:50) and applied over-
night at 4˚C. Fluorescence-conjugated antibodies were diluted in PBS with 1% 
BSA and 0.2% Triton X-100 (at 1:150), and the sections were incubated for 1 day 
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at 4˚C. Sections were washed three times with Tris buffer (0.1 M Tris-HCl, pH 
7.6, and 0.15 M NaCl) and twice with PBS with 0.2% Triton X-100, followed by 
overnight incubation with primary and fluorescence-tagged antibodies, respec-
tively. After sections were mounted in fluorescent mounting medium (Vector 
Laboratories, Inc., Burlingame, CA, USA), confocal Z-stack images were ob-
tained using an Olympus FV 1000 confocal microscope running FluoView ver-
sion 2.0 c software (Olympus, Tokyo, Japan). For each 3D fluorescence image, 
50 frames (640 × 640 pixel images) were obtained with a length of 0.50 μm be-
tween pixels and frames. 

2.3. 3D Sinusoidal Segmentation 

3D sinusoidal segmentation was based on a Turing RD model. To derive the sinu-
soid area in 3D reconstructed images, information processing was performed with 
a Turing RD model, in which temporal and spatial patterns are self-organized 
[9] [10]. In this system, the interesting phenomena of Turing pattern forma-
tion had been reported [9] [10] [11]. The method for image segmentation was 
based on the RD mode (FitzHugh-Nagumo equation), with modifications as 
follows: 
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where, uD , u vD D⋅ , α , β , γ , and ε  are positive constants; δ  is the con-
trol parameter; the variable ( ),u r t  and ( ),v r t  are local concentrations of the 
activator and inhibitor, respectively; and ( )U r  indicates the intensity of 3D 
fluorescence images of sinusoid endothelial cells. Figure 2 shows the schematic 
diagram of the segmentation process. We first scale the [0, 255] scale image into 
[−0.5, 0.5] range linearly. The initial conditions of ( ),u r t  and ( ),v r t  were 
given equilibrium value ,u v  with white noise without any spatial correlations. 

Setting ( ) 3,f u v u u v= − −  and ( ) ( ),g u v u vγ α β= − − , Turing conditions have 
been known as follows. Equation (1) includes a time-independent and uniform 
solution ,u v , which is defined through 3 0u u v− − =  and 0u vα β− − = . 
The steady state is stable in the ordinary differential equations given by f(u, v), 
and g(u, v), we have  
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where the partial derivatives are evaluated at equilibrium ,u v . Since the 
steady-state solution ,u v  becomes unstable in the partial differential equations 
given by Equation (1),  
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The model Equation (1) satisfying these conditions is called Turing system  
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Figure 2. A schematic showing of the diagram of numerical calculations. 

 
[10]. Parameters have been selected as satisfying these conditions. 

Figures 3(a)-(c) show the time-evolution of the distributions of u and v in 
one dimension. Previous studies have shown that static periodic patterns are 
self-organized [9] [10]. Moreover, 3D Turing patterns have been studied pre-
viously [4] [11]. In cases in which 0ε > , the self-organized patterns were en-
trained to the distribution of ( )U r . Figures 3(d)-(f) show the time-evolution 
of distributions of u and v with external data U in one dimension. Considering 
the situation in which local differences in intensities of fluorescence images ex-
isted and the distributions were of the kink type, with dents and different peri-
odicities, the prepared distribution of U was utilized, as shown in Figure 3(d). 
Figure 3(f) shows the obtained distribution. Although the prepared distribution 
U was bumpy and exhibited spatially different amplitudes, the amplitude of the 
obtained distribution u became almost the same throughout the area, and the 
local periodicities of u and U became identical after the numerical calculation 
process. 

To extend this method in 3D spaces, numerical simulations of Equation (1) 
were carried out in 3D. The space was divided into x v zN N N× ×  rectangle cells 
of sizes 640xN = , 640yN = , and 50zN = , which were the same size as the 
pixel sizes of the images obtained by confocal microscopy. The Neumann boun-
dary conditions were imposed at the system boundaries. The simple Euler algo-
rithm was used with a time step 0.00001t∆ = , and the stop time to calculate 
was set to t = 10.0 in the case with pixel information ( )U r . As shown in Figure 
2, after computation, we obtained ( ),10.0u r  as the output image, which was 
scaled back into the [0, 255] scale image to produce the final output.  
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Figure 3. Time evolution of ( ),u r t  (thick red line), and ( ),v r t  (thick blue line). (a)-(c) were ob-

tained numerically from Equation (1) with ε  = 0 for Du = 0.15, Dv = 15.0, α  = 0.50. β  = 0.02, 
γ  = 26.0, and δ  = 0.5; and (d)-(f) were self-organized under the pixel information for the same with 
ε  = 0.1. The dotted line indicates U(x). Since the patterns in (d)-(f) were generated much faster than 
that for (a)-(c), the times of the patterns are different between (b) and (e), and between (c) and (f). 

 
One of the most crucial problems is to determine the parameter choice of δ . 

By changing δ , the spatial period of the self-organized pattern would changes, 
verifying segmentation performed precisely with eyes. When 2

ck  was compara-
ble to the spatial period of fluorescence images, the patterns obtained using Eq-
uation (1) were almost identical. The simulations were repeated by changing the 
parameter δ . To identify the suitable δ  for fluorescence images, the pattern 
index was calculated as follows  

( ) ( ) ( ){ } ( ){ }1/ u UI V u r u U r U drδ σ σ= − −∫
  

          (2) 

where u , U , uσ , and Uσ are the mean and the variance of u and U, V is the 
total volume of the region, and ( )I δ  is the correlation between u and U. To 
each 3D fluorescence image obtained by confocal microscopy, the δ  with 
largest ( )I δ  was selected as the chosen parameter *δ  for segmentation of 3D 
sinusoidal network patterns (Figure 4). 

2.4. Statistical Analysis 

The results obtained for δ*, and volume ratios of 3D sinusoidal networks, were 
compared using two-tailed Mann-Whitney U-test (MW test) between Cont and 
HFC groups. Moreover, the results were evaluated by the Kruskal-Wallis (KW) 
test followed with the two-tailed MW test among HFC groups. The statistical 
analyses were performed using SPSS 16.0 for Macintosh (SPSS Inc., Chicago, IL, 
USA). 

3. Results 
3.1. 3D Segmentation Images of Sinusoidal Networks 

Figure 5 show representative results for 3D segmentation of sinusoid networks  
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Figure 4. An example of 3D segmentation of sinusoidal network patterns of HFC6w. (a), 
(b): 3D segmentation patterns using raw pixel data of the fluorescence image of sinusoid-
al endothelial cells, and (c), (d): 3D segmentation patterns obtained by RD processing of 
Equation (1) with Du = 0.15, Dv = 15.0, α  = 0.50. β  = 0.02, γ  = 26.0, ε  = 0.1, and 
δ* = 1.35. (a) and (c) indicate the 3D segmentation patterns of sinusoidal network (red 
tubes), and (b) and (d) show the slices at the middle position of the z-axis from (a) and 
(c), where the white area indicates the positions inside the sinusoids. 
 

 
Figure 5. Examples of 3D segmentation of sinusoidal networks. (a)-(d) and (e)-(h) show 
representative images from the Cont and HPC, respectively. (a) and (e): 3 weeks, (b) and 
(f): 6 weeks, (c) and (g): 9 weeks, and (d) and (h): 12 weeks. The red area indicates the si-
nusoidal network. The illustration of optical transmittance of 50% has been used. 
 
from fluorescence pixel information utilizing the RD algorisms. We note that the 
black rectangle domains close to the boundaries are not closely seen there since 
the illustration of optical transmittance of 50% has been used. Changing the pa-
rameter δ  in Equation (1), we calculated *δ  = 1.00, 1.05, 1.10, 1.10, 1.45, 
1.65, and 1.70 for Cont at 3, 6, 9, and 12 weeks, and the HFC at 3, 6, 9, and 
12weeks, respectively. We independently calculated *δ  for four segmentations 
of 3D sinusoidal networks for each individual. Since each experimental group 
has three individuals, we calculated twelve *δ  for each experimental group. 
Significant differences were observed between Cont and HFC at 3, 6, 9, and 12 
weeks. 

Moreover, we found that *δ  were increasing depending on the weeks of 
feeding of HFC diets, as shown in Figure 6. Significant differences were also ob-
served among the *δ  of HFC groups. The results of statistical analyses are pre-
sented in Figure 6. 
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Figure 6. Change in δ* with largest I(δ). The number of stars indicates the statistical level 
of significance (★: p < 0.05. ★★: p < 0.01). MW test between Cont at 3 weeks (Cont3w) 
vs. HFC at 3 weeks (HFC3w), p = 21.56 10−× , Cont6w vs. HFC6w, p = 42.21 10−× , 
Cont9w vs. HFC9w, p = 41.14 10−× : Cont12w vs. HFC12w, p = 41.69 10−× . KW test 
among HFC3w, HFC6w, HFC9w, and HFC12w, p = 82.93 10−× ; MW test between 
HFC3w vs. HFC6w, p = 52.49 10−× , HFC6w vs. HFC9w, p = 41.21 10−× ; HFC 9w vs. 
HFC12w, p = 23.04 10−× . 

3.2. Volume Ratios of Sinusoidal Network Volumes 

In the previous section, we demonstrated that *δ  were capable of differentia-
tion response the weeks of feeding, that is the degree of progress of NASH dis-
ease (shown in Figure 6). To evaluate the index proposed, the ratios of sinusoid-
al volumes were compared. Figure 7 shows the summary of the results. Signifi-
cant differences were found between Cont and HFC at 9 and 12 weeks, and only 
between 6 and 9 weeks among HFC groups. The results of statistical analyses are 
presented in Figure 7.  

4. Discussion 

In this study, a method for segmentation of 3D sinusoidal networks using the 
Turing RD model was proposed. The model could generate the distributions 
with the same degree of amplitude in all areas, although the pixel information 
obtained by confocal microscopy included the locality of the amplitude. Moreo-
ver, local periodicities of the distribution obtained from Equation (1) were the 
same as the pixel information, as shown in Figure 3(f). This was one of the ad-
vantages of the proposed method utilizing the Turing RD model. 

Two other advantages of this method were the cost and time for performing 
segmentation of 3D network patterns. Although some of commercial software 
for 3D reconstruction of cell tissue images is available, such software is expensive 
and requires high-performance computers with huge amount of memory to 
perform 3D structure analysis. However, the proposed system could be applied 
even with laptop computers using the simple code for numerical simulation 
shown in Equation (1). 

In this study, 3D structure analysis of rat livers was carried out using proposed  
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Figure 7. Change of volume ratios of 3D segmentation of sinusoidal networks. The number 
of stars indicates the statistical level of significance (★: p < 0.05. ★★: p < 0.01). MW test 
between Cont9w vs. HFC9w, p = 36.17 10−× : Cont12w vs. HFC12w, p = 32.70 10−× ; but 
Cont3w vs. HFC3w, p = 13.32 10−× , Cont6w vs. HFC6w, p = 29.27 10−× . KW test 
among HFC3w, HFC6w, HFC9w, and HFC12w, p = 41.30 10−× ; MW test between 
HFC6w vs. HFC9w, p = 21.76 10−× , but HFC3w vs. HFC6w, p = 25.07 10−× , HFC 9w vs. 
HFC12w, p = 26.18 10−× .  
 
algorithm. The parameter *δ  captured the variations in feeding patterns for 
rats fed the HFC diet: these patterns were related to the degree of progress of 
NASH. This is another advantage of the proposed method. 

Since the parameter *δ  is related to the period of the patterns obtained us-
ing Equation (1), it is possible that the periodicity of the 3D network pattern 
should be essential for detecting differences among the obtained patterns. How-
ever, strong localities in periodicities of 3D sinusoidal network pattern were ob-
served. Therefore, it was not possible to detect clear periodicities in 3D sinusoid-
al patterns using calculations such as Fourier analysis or spatial correlation 
analysis. 

Here, it is noted that the simulation time of Equation (1) is very short, 10 
times less than native self-organized mode generated as shown in Figure 3(c) 
and Figure 3(f). If we performed much longer time simulation to segmentation 
sinusoidal patterns, the periodic patterns with same periodicity with naive 
self-organized mode kc would be obtained. 

Although the index about the volume-ratios of sinusoid was good ones, *δ  
was better one. This may be cause by the fact that *δ  is related to diffusion 
coefficients that are squarely affected to the periodicities of pattern, whilst vo-
lumes are affected lineally.  

We also examined the 3D patterns of HFC at 16 weeks (n = 1) in the same way 
as described above, as precautionary measure. The index *δ  was not as large as 
ones of *δ  of HFC group at 12 weeks. The significant difference between HFC 
at 12 weeks and HFC at 16weeks was not detected (MW test HFC at 12 weeks vs. 
HFC at 16weeks, p = 0.743). It is known that the severe fibrosis would occur as 
the disease progresses on behalf of the morphological changes in those stages 
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[1]. Hence, it was likely that the increasing in *δ  might reach maximum be-
tween HFC at 9 weeks and HFC at 16weeks. Therefore, we did not test HFC at 
16weeks in details.  

Finally, the periodic patterns appearing in the biological and medical field of-
ten include more localities than those appearing in physical or electric processes. 
Thus, the method proposed in this study would be useful for detecting periodici-
ties with some localities. Therefore, the proposed method is expected facilitate 
further analysis of the 3D network structures encountered in biology or medi-
cine. 
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