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Abstract 
The 0/1 Multidimensional Knapsack Problem (0/1 MKP) is an interesting 
NP-hard combinatorial optimization problem that can model a number of 
challenging applications in logistics, finance, telecommunications and other 
fields. In the 0/1 MKP, a set of items is given, each with a size and value, 
which has to be placed into a knapsack that has a certain number of dimen-
sions having each a limited capacity. The goal is to find a subset of items 
leading to the maximum total profit while respecting the capacity constraints. 
Even though the 0/1 MKP is well studied in the literature, we can just find a 
little number of recent review papers on this problem. Furthermore, the ex-
isting reviews focus particularly on some specific issues. This paper aims to 
give a general and comprehensive survey of the considered problem so that it 
can be useful for both researchers and practitioners. Indeed, we first describe 
the 0/1 MKP and its relevant variants. Then, we present the detailed models 
of some important real-world applications of this problem. Moreover, an 
important collection of recently published heuristics and metaheuristics is 
categorized and briefly reviewed. These approaches are then quantitatively 
compared through some indicative statistics. Finally, some synthetic remarks 
and research directions are highlighted in the conclusion.  
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1. Introduction 

The 0/1 MKP can be informally stated as the problem of packing items into a 
knapsack while staying within the limits of different constraints (dimensions). 
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They can be, for example, the maximum weight that can be carried, the maxi-
mum available volume, or/and the maximum amount that can be afforded for 
the items. Each item has a profit level assigned to it, and weight at each dimen-
sion. Moreover, the knapsack has a limited capacity on each dimension. The goal 
is to select a sub-set of items that maximizes the sum of their profits and keep 
the total weight on each dimension no more than the corresponding capacity. A 
detailed description can be found in [1]. 

A study of the Stony Brook University Algorithm Repository [2], carried out 
in 1998, stipulates that the knapsack problem (especially the MKP) was the 18th 
most popular and the 4th most needed problem among 75 other algorithmic 
problems. The popularity of MKP stems from the fact that it has attracted re-
searchers from both camps: the theoreticians as well as the practitioners enjoy 
the fact that this problem is a special version of the general zero-one integer 
programming problem. On the other hand, due to its well-known NP-Hardness, 
many researchers choose the 0/1 MKP as a test problem for their new resolution 
approaches. Moreover, practitioners enjoy the fact that this simple structured 
problem can be used as a sub-problem to solve more complicated ones or can 
model many industrial problems like the loading problem [3] [4], cutting stock 
[5], task assignment and multiprocessor scheduling [6], as well as economic op-
portunities, such as project selection [7], capital budgeting [8] [9] [10], etc.  

The MKP first appeared in the context of capital budgeting [9] [10]. A com-
prehensive overview of practical and theoretical results for the MKP can be 
found in the monograph on knapsack problems by [11]. A review of the MKP 
was given by [12]. An Elaborate literature on the MKP and its relations to dif-
ferent problems are published elsewhere [13] [14] [15]. Furthermore, a recent 
survey of the most popular algorithms that have been used for solving MKP, in-
cluding exact and heuristic methods, can be found in [16]. We can also mention 
[17] for a recent survey of structures and algorithms of 0/1 MKP. On the other 
hand, [18] are interested in multi-objective MKP. They classify and briefly dis-
cuss the existing resolution approach on this topic, especially the metaheuristics. 
In the same way, [19] focused their research only on genetic algorithms. They 
review and compare 11 variants of this metaheuristic approach for solving MKP.  

The 0/1 MKP is strongly NP-hard problem [14]. In other words, its exact res-
olution is very expensive in terms of computing time. Thus, heuristic and meta-
heuristic approaches have been proposed in order to achieve an approximate 
solution within a reasonable amount of time, but without ensuring the optimality. 
Other hybrid methods can be developed by combining a heuristic/metaheuristic 
with another heuristic/metaheuristic [20], or by combining an exact method 
with another exact method [21], or by combining a heuristic/metaheuristic with 
an exact method [22] [23]. 

2. Variants of MKP  

The applicability of the 0/1 MKP in different areas has given rise to several va-
riants, which may be modeled differently depending on the constraints of the 
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problem, types of variables, types of data, dimensions of the bag, goals of the 
problem, etc. According to the types of data, there are two versions of 0/1 MKP: 
Deterministic and non-deterministic 0/1 MKP. In the first version, all data are as-
sumed to be known in advance. However, this is not the case in the second ver-
sion. 

2.1. Deterministic Variants of MKP 
2.1.1. Standard 0/1 MKP 
Given N items with profits 0ip >  and a knapsack with d dimensions. Each 
item i consumes an amount 0jiw ≥  from each dimension j. Knowing that each 
dimension has a capacity 0jC > , the goal is to maximize the sum of profits of 
the items in the knapsack so that the sum of weights in each dimension j does 
not exceed jC . Formally, the 0/1 MKP could be expressed with an integer pro-
gramming model: 

{ }
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Equation (2) is the capacity constraint of resources.  
Equation (3) indicates that ix  is a binary decision variable, it equals to 1 if 

i-th item is selected, and 0 otherwise. 
If d = 1, MKP reduces to the 0/1 Knapsack Problem: 
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2.1.2. The 0/1 Multiple MKP 
The 0/1 Multiple MKP (0/1 MMKP) differs from the 0/1 MKP in the number of 
knapsacks. Instead of a single knapsack, we consider multiple knapsacks where 
each one, say k, has d dimensions with limited capacity k

jC . Moreover, each 
item i consumes an amount k

ijw  from each dimension j of each knapsack k. The 
decision here is not only whether to select a single item but also to which knap-
sack it is packed. Similarly, we introduce a binary variable of 1ikx =  to 
represent that item i is selected and packed into knapsack k and 0ikx =  other-
wise. Mathematically, the 0/1 MMKP is given by: 
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Equation (8) means that the total size of items may not exceed the dimen-
sion’s capacity of each knapsack. 

Equation (9) ensures that each item appears at most once in all knapsacks. 

2.1.3. The 0/1 Multiple-Choice MKP 
The 0/1 Multiple-Choice MKP (0/1 MCMKP) is a more complex variant of the 
0/1 MKP. In fact, we are given a set of items N divided into n disjoint groups 

1 2 nNN N N=   , for all k { }1,2, ,k k n′≠ ∈   we have k kN N ′ = ∅ . 
Each item , ki i N∈ , has a profit 0ikp > , and requires resources given by the 
weight vector ikw  ( 1 2, , , d

ik ik ikw w w ) where d is the dimension of knapsack. The 
amounts of available resources are given by jC . The aim of the 0/1 MCMKP is 
to pick exactly one item from each class in order to maximize the total knap-
sack’s profit, without violating the capacity constraint of each dimension. In the 
same manner, we introduce a binary variable ikx  which equals to 1, if the item j 
of the k-th class is selected, and equals to 0 otherwise. Formally, the MCMKP 
can be stated as follows: 
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Equation (12) means that the sum of selected items may not exceed each di-
mension’s capacity of the knapsack. 

Equation (13) ensures that only one item is selected from each class. 

2.1.4. The 0/1 Multi-Objective MKP 
The 0/1 Multi-Objective MKP (0/1 MOMKP) is a MKP with conflicting objec-
tives (or criteria). In fact, we are given a knapsack with d dimensions, a set of N 
items, and a set of M objectives, where k

ijp  is the profit of item i relative to the 
objective k when it is selected for the j-th dimension of knapsack, ijw  is the 
weight of the item i when it is selected for the j-th dimension of knapsack, and 

jC  is the capacity of the j-th dimension of knapsack. The goal is to select a sub-
set of the items so that the total profit of the selected items about each objective 
is a maximum, while respecting the capacity constraint of each knapsack dimen-
sion. So, the 0/1 MOMKP can be formulated as follows:  
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Equation (16) is the capacity constraint of knapsack dimensions. 
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Equation (17) means that ijx  is a binary decision variable, it equals to 1 if the 
item i is selected for the j-th dimension of knapsack, and 0 otherwise.  

For more information about this problem, we invite readers to read the recent 
doctoral dissertation referenced in [24]. 

2.2. Non-Deterministic Variants of MKP 
2.2.1. The 0/1 Stochastic MKP 
In a stochastic version of the 0/1 MKP, we assume that the sizes of items are in-
dependent random variables that each size follows the same type of probability 
distribution, not necessarily with the same parameter. A joint probabilistic con-
straint is imposed on the capacity constraints and the objective function is the 
same as that of the deterministic problem. We denote the item sizes by jiξ  (in-
stead of jiw ), and we formulate the problem as a probabilistic constrained sto-
chastic programming, where capacity constraints of 0/1 MKP “Equation (2)” are 
replaced by the following joint probabilistic constraint: 
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where [ ]0,1q∈  is a fixed probability level (e.g. 0.9, 0.95). Assuming the random 
variables jiξ  are independent, the joint probabilistic constraint “Equation (19)” 
can be written as follows: 

1 1
.

d N

i ji j
j i
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= =

 
≤ ≥ 

 
∏ ∑                    (21) 

Note that in some real-life applications, we can’t assume that the random 
vectors are independent. In this case, we have the following inequality:  

1 1 1
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N d N

i ji j i ji j
i j i

Pr x C j d Pr x C qξ ξ
= = =

   
≤ = ≥ ≤ ≥   

   
∑ ∏ ∑     (22) 

Then by replacing “Equation (19)” with “Equation (21)”, the problem be-
comes as following: 
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For more details, you can refer to [25].  

2.2.2. The 0/1 Fuzzy MKP 
There are many knapsack-type problems that involve items whose weights or 
profits are not precisely known. One of the methods of dealing with imprecision 
is applying the fuzzy sets theory. Thus, the fuzzy numbers have been applied to 
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model the imprecise weights and profits in the 0/1 MKP. The goal of this varia-
tion of 0/1 MKP is to achieve a given accepted level of profit without exceeding a 
given capacity of each dimension of knapsack. Let ip  be a fuzzy interval which 
models the imprecise profit of item i and let jiw  be a fuzzy interval which 
models the imprecise weight of the item i in dimension j. So, the 0/1 Fuzzy MKP 
(0/1 FMKP) can be stated as follows: 
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3. Real-World Applications  

Many real-life problems can be modeled as the 0/1 MKP. In this section, we will 
give some examples issued from different fields: Logistics, informatics, tele-
communications, finance and civil engineering.  

3.1. Multi-Unit Combinatorial Auctions  

The Combinatorial Auctions (CAs), are a publicly held sale at which property or 
goods are sold to the highest bidder. Indeed, the auction is done in two main 
steps. Firstly, participants submit their bids. Secondly, the auctioneer is facing a 
problem of allocating prices to properties, so as to maximize its income, which is 
relative to the sum of all offers submitted by participants and accepted by the 
auctioneer. This problem is called Winner Determination Problem (WDP). A 
prominent variation of CAs, is Multi-Unit Combinatorial Auctions (MUCA). It 
differs from CAs or more precisely Single-Unit CAs in the number of copies of 
the same type of goods. However, in the Single-Unit CAs, the only one unit per 
good is available. [26] conducted their research on the MUCA, they formulated 
the WDP of this variant as a 0/1 MKP. The profit 𝑝𝑝𝑖𝑖  used in the MDKP corres-
ponds to the price of i-th bid. ju  represents the available amount of unit j, 
while the resource consumption ijr  is regarded as the number of units j re-
quested in i-th bid. The decision variable ix  equals to 1 if the i-th bid is ac-
cepted by the auctioneer, and it equals to 0, otherwise. So, the formulation can 
be stated as follows: 
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Despite the close relationship between 0/1 MKP and WDP, the literature ad-
dresses both problems independently. [27] was the first to establish this rela-
tionship. Recently, [28] introduced a direct comparison between the WDP of the 
different types of auctions and their corresponding family of knapsack, proving 
the effectiveness of the developed algorithms for 0/1 MKP to solve the WDP. 
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3.2. Allocation Resources with Stochastic Demands  

The well-known problem of allocating frequency that consists of assigning the 
electromagnetic spectrum to frequency bands becomes more and more complex 
due to the popularity and complexity of the most recent networked applications. 
They are supported by a variety of end system services in the cloud and different 
kind of networks. Resources in distributed computer systems include those in 
endpoint devices such as CPU, memory and disk, as well as those in networked 
system such as switches and routers. To serve multiple users running networked 
applications simultaneously, we need to satisfy their requests without violating 
the resource capacity. In other words, we consider the computing system as a 
unit that has limited resources and admits only one subset of users/tasks at the 
same time. We assign weight and profit to each user. Thus, the aim is to reply to 
maximum requests of users or tasks without exceeding the resource limitations. 
[29] treat the allocation resources when the demands may change over time and 
only when their statistics or distributions are known a priori. They have mod-
eled this allocation problem as a stochastic 0/1 MKP, where the resources cor-
respond to the dimensions of knapsack, while the users correspond to items to 
be stored in the knapsack. Each user j requests ijA  of resources i, where ijA  is 
a random matrix based on a certain distribution or having some known statis-
tics, we assume that: ijA  et ikA  are independent whether j k≠ , if they have 
correlated demands, we consider them as one task and merge their demands. 
The profits used in the 0/1 MKP correspond to the satisfied demands jc  of 
each user j, the capacity ib  of each resource i represents the subset of users that 
can be admitted at the same time by the i-th resource. Let p denotes the overflow 
probability that indicates the maximum frequency in which admitted users/tasks 
may violate the capacity constraints. The binary decision variable jx  equals to 
1 whether the demands of the user j are satisfied, and it equals to 0, otherwise. 
So, the problem is formulated as follows: 

{ }

(32)

. ; ; (33)

0,1 ; ; (34)

j j
j

ij j i
j

i

Max c x

s t Pr A x b p i

x j



   > ≤ ∀ 

 
 ∈ ∀

∑
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This problem can be solved by probabilistic methods using scenario approxi-
mation or simple average approximation (SAA) [30]. For some distributions 
such as Bernoulli, the calculation of the probability ( )ij j ijPr A x b>∑  is very 
difficult, which makes the problem strongly NP-hard.  

3.3. Frequency Allocation in Cognitive Radio Networks 

The well-known problem of allocating frequency that consists of assigning the 
electromagnetic spectrum to frequency bands becomes more and more complex 
due to the tremendously increasing demand of spectrum for new wireless devic-
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es and applications. Consequently, this situation leads to an inefficiency in spec-
trum utilization. Hence comes the idea of changing the static spectrum alloca-
tion manner to dynamic manner so as to exploit more the unused spectrum. In 
order to address this issue, cognitive radio (CR) has been proposed as a prospec-
tive approach for achieving dynamic spectrum access [31].  

The concept of CR is as follows: A so-called secondary user may at any time 
get access using the free frequency bands, i.e. not occupied by users having an 
open use type license (named primary users). In fact, the secondary user must 
use the frequency band once the demand of primary user is satisfied, or when 
the signal gets too weak. Generally, The CR uses the spectrum dynamically, 
which leads to the efficient use of radio frequencies without generating gaps in 
the spectrum. 

Many authors have taken advantage of the optimization techniques to solve 
the spectrum allocation. For example, [32] formulated the allocation spectrum as 
a 0/1 MMKP. They consider CR having n cognitive users and a Centralized 
Coordinator Node (CCN) which collects the instantaneous reports from each 
cognitive user and decides the availability of the spectrum accordingly. They 
admit that there is a common channel for the communications between cogni-
tive users and the CCN. Each cognitive user is a pair of transmitter and receiver. 
The CCN collects the transmission requests from all cognitive users and allo-
cates the available spectrum optimally. Before formulating the problem mathe-
matically, we introduce some notations: 

m: The number of primary users j. 
n: The number of cognitive users i. 

jB : The primary bandwidth associated to the primary user j. 

jK : The interference temperature at the primary band j. 

id : The bandwidth request from the i-th cognitive user to CCN for the current 
transmission. 

,i jI : The level of interference generated by an accepted bandwidth request 
from the i-th cognitive user, to be assigned in primary band j.  

( )
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Equation (35) indicates that the goal of this problem is to meet as many as 
possible with the cognitive user’s requests, by considering that all cognitive users 
are equitable.  

Equation (36) ensures that the overall bandwidth request from i cognitive us-
ers should respect the capacity of each primary band j. 

Equation (37) indicates that the accumulated interference of i cognitive users 
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at j-th primary band is restricted by its interference temperature.  
Equation (38) indicates that the bandwidth request from the i-th cognitive user 

is accepted by assigning a frequency segment in one and only one primary band j. 
Equation (39) means that ijx  is a decision variable, which equals to 1 if the 

bandwidth request from the i-th cognitive user is accepted by assigning a fre-
quency segment in the j-th primary bandwidth. Otherwise, ijx  equals to 0. 

Last but not least, we notice that the problem can be bi-criteria whether we 
consider the least satisfied requests in the past, giving them the priority to be ac-
cepted by CCN. 

3.4. MP-SoC Runtime Management Problem 

The ever-increasing performance demands of modern embedded applications 
become more complex and have several constraints such as memory manage-
ment, and time constraints. A popular and possible solution is the use of Multi-
processor Computer System or MPSoC (MultiProcessor System On Chip). It al-
lows the parallelism of tasks like uploading files and writing text at the same time, 
and it leads to high-powered computation regarding a uni-processor system.  

The MPSoC runs simultaneously with some specifications to complete, for in-
stance runtime, consumed energy, and available platform resources, etc. The li-
terature has focused on runtime management, especially in heterogeneous 
MPSoC. To manage the runtime decision making and to avoid conservative 
worst-case assumptions, two-phases can be used. First, we consider a design 
time exploration per application as a set of possible operating points in a multi-
dimensional search space. Founding the optimal solution means mapping the 
optimal application on the platform. The dimensions of the search space are: 
Costs (e.g. energy consumption), application constraints (e.g. performance) and 
platform resources (e.g. communication bandwidth). So, during the first phase 
called design time, we do a full exploration of the operating points. At this stage we 
don’t know which applications will run simultaneously. Contrary to the second 
stage, called runtime, the platform resource usage as well as the application user 
requirements are known. Therefore, we can take the critical decisions in this stage.  

The MPSoC runtime management can be modeled as 0/1 MCMKP [33]. The 
main goal is to minimize the total energy consumption of the platform by taking 
into account the available platform resources and respecting all application 
deadlines. The active applications are regarded as the items to be packed in the 
multidimensional knapsack. The value of items corresponds to the consumed 
energy per application, while the size of items is represented by the amount of 
the platform resources required to run an application. Thus, the knapsack cor-
responds to the platform of resources, and dimensions of knapsack correspond 
to the type of available platform resources. Before formulating the problem, we 
need the following notations:  
− s applications are active, hence s sets of operating points are available. Each 

set i contains iN  points.  
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− m platform resource types are present: For instance, memory space, number 
of processors, and communication bandwidth.  

− For each platform resource type k, 0 k m≤ ≤ , the available amount is kR .  
− Each point j in the set i characterized by a combination of its energy con-

sumption ije , its execution time ijt , and the used amount ijkr  of the plat-
form resource type k for 0 k m≤ ≤ .  

Firstly, the problem has been formulated as a minimization problem, since the 
goal is to minimize the energy consumption of the platform: 

0 0
.

iNs

ij ij
i j

Min x e
= =
∑∑                          (40) 

where the binary variable ijx  denotes whether the point j in the set i is selected 
( 1ijx = ) or not ( 0ijx = ). 

Then the authors have transformed the minimization problem to maximiza-
tion problem by using two main steps: Firstly, they remove from each set i the 
points whose execution time exceeds the application deadlines. Secondly, they 
consider each set as an ordered set relatively to the energy consumption axis, 
that is, j j′≤  ⇒ ij ije e ′≥ . Then, they replace ije  by the value 0ij i ijv e e= −  in 
the “Equation (40)”. Here 0ie  means the maximum energy consumption in the 
active application i (or set i). So, ijv  is a non-negative value, 0ijv ≥ , for

0, , ij N=  . Note that the minimization problem has transformed to a different 
form (see [34]). 

Finally, the MP-Soc runtime management can be modeled as a maximization 
problem as following: 
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Equation (42) indicates that the total used resources may not exceed the 
available platform resources. 

Equation (43) ensures that only one point must be selected from each active set i. 

3.5. Capital Budgeting Problem 

The capital budgeting problem consists of selecting projects such as investing in 
R&D or opening a new branch, which are worth pursuing. This problem is a 
major topic of research and interest in project management. This purely finan-
cial problem was among the first applications of the 0/1 MKP in the literature 
[9]. There is a whole body of literature which makes the link between 0/1 MKP 
and capital budgeting in order to benefit from their robust approaches. [35] 
modeled the problem as a 0/1 FMKP, by considering the profit brought by each 
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project as uncertain and aiming at two key objectives: To minimize the invest-
ment cost, and to maximize the project performance. Thus, the selection prob-
lem can be translated as follows: The items are represented by the projects to be 
selected; they are defined by the number of required resources for projects im-
plementation as well as the profit which is brought to the organization. Both 
features are regarded respectively as size and profit of items. That is, the knap-
sack dimensions correspond to the type of available resources (e.g. raw materi-
al), and the capacity of each dimension is determined by the amount of available 
resources of each type. We add an additional constraint relating to the overall 
capacity of knapsack, which is the budget devoted to the project portfolio. Before 
modeling this problem, we introduce some indices and parameters: 

j: Number of projects, 1, 2, ,j n= 
. 

i: Type of human resources, 1,2, ,i m=  . 
k: Machine kind, 1,2, ,k s=  . 
o: Type of raw material, 1, 2, ,o z=  . 

iH : Available human resource of type i. 

ijh : Requirements of human resource i in project j. 

kM : Available machine—hour of type k. 

kjm : Requirements of machine—hour of type k in project j 

oR : Maximum available raw material of type o. 

ojr : Requirements of raw material o in project j. 

jB : Maximum available budget for project j. 

iC : Cost of human resourceper hour i. 

kC : Cost of machine type per hour k. 

oC : Unit cost of raw material o. 

jp : Total net profit of projects j. 

1 1 1 1

1

1

1

1 1 1
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Equation (45) means that the current problem has more than one objective, it 
aims to maximize profit of selected projects and minimize their cost in terms of 
human resources, machines and materials.  

Equation (46) indicates that the required human resources for project work, 
should not exceed the available human resources.  
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Equations (47), (48) have the same description of “Equation (46)” but they are 
applied for machine-hour and raw materials, respectively. 

Equations (49), (50) ensure that the total cost of a selected project j is less than 
its budget and its profit, respectively. 

Equation (51) insures that at least one project should be selected. 
Equation (52) indicates that jx  is a binary variable, which denotes whether 

the project j is selected ( 1jx = ) or not ( 0jx = ). 

3.6. Real Estate Property Maintenance Problem 

The real estate property maintenance problem (REPMP) deals with the problem 
of the maintenance of real estate property buildings’ components using a limited 
budget in a limited period to achieve multiple and often conflicting objectives 
like ensuring the quality of service, client satisfaction and regulatory compliance, 
and so on. Indeed, maintenance is a key activity for real estate property man-
agement. It ensures that building functions are preserved. We can distinguish 
two types of maintenance: Common maintenance that is dedicated to small op-
erations usually performed according to predefined procedures such as what to 
do when the elevator is out of service. The second type is planned maintenance 
that is concerned with heavier operations such as facade renovating, change of 
heating system or boiler replacement. It is generally subject to specific mul-
ti-year action plans. So, the plan of actions is defined as a set of maintenance ac-
tions scheduled over several years. The goal of such action plan is to maintain 
buildings in a good working condition. The REPMP is a constrained complex 
decision problem. One of the main constraints must not exceed the predeter-
mined budget that is always still insufficient to maintain all buildings in a good 
condition. The real estate property managers (or decision makers), must find an 
optimal plan to carry out in a given multiannual time limit in order to achieve 
the different goals of buildings maintenance. The complexity comes also from 
the large wide of actions and the need to plan the implementation of these ac-
tions over several years. Considering the complexity of REPMP, it has been 
modeled as a 0/1 MOMKP by [36]. The different years of the plan correspond to 
the dimension of knapsack, the actions correspond to the items, the cost to the 
weight of items, and the capacity to the allocated budget to maintain buildings. 
Before formulating the problem mathematically, we assume that: 
− A real estate property is composed of a set of buildings and each building 

comprises a number of components (electricity, plumbing, etc.), 
− An action can impact one or several components, and for each component, 

several actions can be proposed, and an action can be specific to one building 
or identical for several or all buildings. 

− A score is assigned on each criterion for every component of the real estate 
property. A scale of four elements is used, from 1 for the worst situation to 4 
for the best situation. In other words, low score corresponds to a situation in 
which a component has a major failure in a given criterion. 
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− Decision makers define for each type of component its required score to en-
sure its smooth-running condition. 

− The objectives are to minimize the difference between the required score and 
the assessed score, knowing that this difference is considered null when the 
assessed score is greater or equal to the required score: 

( )2

1 1
0; , 1, ,

pm
l k

k jl
j l

Min Max r s k p
= =

− ∀ =∑∑                (53) 

where p is the total number of components of the real estate property, m is the 
duration in years of the maintenance of real estate property, l

kr  is the required 
score of the component l regarding the objective k and ,

k
j ls  is the score of the 

component l executed on j-th year regarding the objective k. 
By modeling REPMP with 0/1 MOMKP, the minimization problem becomes a 

maximization problem that consists of the selection of the actions maximizing 
the global yearly profit throughout the duration of the real estate property 
maintenance while respecting the budget limitation constraints. Let the integer 
variable ijx , denotes whether the action i is executed in the j-th year of the 
maintenance plan ( 1ijx = ) or not ( 0ijx = ). So, the problem can be formulated 
as follows: 
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Equation (54) indicates that the goals are maximizing the profit k
ijc  of an ac-

tion i executed in the j-th year regarding the objective k. The profit k
ijc  corres-

ponds to the capacity of the action to reduce the difference between the required 
score and the actual score of a component.  

Equation (55) means that the total cost ijw  of the actions i to execute every 
year j must not exceed the allocated yearly budget jW . 

Equation (56) ensures that each action i, during the maintenance plan, takes 
place only once.  

4. Heuristic Approaches  

Heuristics are good techniques for solving the 0/1 MKP. In fact, two types of 
heuristics may be distinguished: Greedy heuristics and heuristics based on relax-
ation. The first class consists of methods based on resolution through steps. The 
second class consists of approximate procedures based on Linear Programming 
(LP). The goal in this approach is to produce good solutions in a reasonable 
amount of time by calculating some parameters (e.g. Lagrangian multipliers, 
surrogate multipliers).  
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4.1. Greedy Heuristics 

Several researchers propose greedy heuristics to solve the 0/1 MKP. [37] uses 
primal greedy heuristics that sort firstly the items in descending order according 
to their profits. Starting from null solution, he adds elements into a current solu-
tion as long as the solution remains feasible. Also, [26] use a simple greedy heu-
ristic for solving 0/1 MKP. For improving solution quality, they apply 
Weight-coded Evolutionary Algorithms (see [38]). [39] introduce a new heuris-
tic called “dual greedy heuristic”. They set all the decision variables to ones and 
convert them to zeros to have a feasible solution. [40] use partial enumeration to 
solve the 0/1 MKP. They consider only some variables instead of enumerating all 
the variables. [41] introduce a new greedy heuristic where, at each step, instead 
of evaluating only one variable at a time they are evaluating a group of variables. 
The decision variables must be ordered according to an ordering strategy, this 
method is called “sliding enumeration” and gets good results using a good order. 
[42] develop a greedy heuristic for the general MKP problem. Their heuristic is 
adapted for the 0/1 MKP. On small sized 0/1 MKP problems, it reaches very 
good results in a very short time with problems with 50 - 100 variables and 10 - 
200 constraints. However, when the number of variables or constraints increas-
es, it loses its dominance. In general, the more the number of constraints is in-
creasing, the worse heuristics get. But this method remains better than other 
compared heuristics when the number of constraints is increasing. In addition, 
[43] use genetic programming (GP) as a hyper-heuristic methodology to gener-
ate greedy heuristics to solve 0/1 MKP. Indeed, this hyper-heuristic operates on 
a search space of heuristics instead of a search space of solutions. It selects and 
applies a low-level heuristic at each stage of a search. The reached results over a 
set of standard benchmarks show that GP can be used successfully to generate 
greedy heuristics. [44] convert a Differential Evolution Algorithm (DEA) by us-
ing modified sigmoid function that belongs to binarization techniques [45] (i.e. 
the methods that develop the binary version of a continuous heuristic algo-
rithm). They also combine the obtained DEA with hybrid mutation strategy to 
solve the 0/1 MKP. Moreover, a greedy strategy is adopted to repair infeasible 
solutions and select better trail individuals. The outcomes reveal that hybrid 
DEA is very effective in comparison with other existing methods. 

4.2. Relaxation-Based Heuristics 
4.2.1. Continuous Relaxation  
[46] improved Soyster’s heuristic [47] that solves a series of small sub-problems 
generated by exploiting information obtained through a series of LP relaxations. 
By reducing the number of sub problems and adding constraints to these 
sub-problems, this improved heuristic yields efficient results for 0/1 MKP. [48] 
proposed new iterative relaxation-based heuristics for solving 0/1 MCMKP, 
which generates two sequence of lower and upper bounds. At each iteration, a 
relaxation is solved to produces an upper bound of the problem and to construct 
a reduced problem that can be used to obtain a lower bound. The problem is 
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enriched with pseudo-cuts that eliminate the solutions already visited during the 
search. Experimentally, this approach reaches rapidly to good lower bounds and 
visit best solutions in reasonable runtime, by comparing it to CPLEX solver and 
column generation-based algorithm. Besides, there are other more efficient re-
laxations: Lagrangian, surrogate and composite relaxations. 

4.2.2. Lagrangian Relaxation  
In the Lagrangian relaxation, we divide constraints into two categories: Easy and 
difficult constraints. The idea is to integrate the difficult constraints in the objec-
tive function of the problem with a certain penalty to generate an easier prob-
lem. [49] introduced a new method based on Lagrangian relaxation. Knowing 
that not easy to find the optimal Lagrange multipliers, they used a Memetic Al-
gorithm (i.e. GA combined with Local Search method) to find them. This ap-
proach was evaluated on 270 instances with 5, 10, and 30 constraints, with dif-
ferent numbers of objects and different tightness ratios. The results showed that 
the proposed method outperforms other constructive heuristics and the local 
improvement heuristics. [50] proposed a new heuristic algorithm that deter-
mines Lagrange multipliers for every constraint in order to reduce the problem 
to single dimension, then the obtained solutions are improved with iterative 
procedures. This hybrid algorithm was tested on small size instances of 
OR-Library Problems [51] and provided high-quality feasible solutions. [52] 
used the concept of Lagrangian capacity. Making a comparison with other La-
grangian methods, shows that the proposed method performs, especially on 
large scale data of literature. Moreover, [53] proposed a problem reduction heu-
ristic for solving MKP. In fact, problem reduction involves removing some va-
riables from the problem formulation or at least fixing those variables to some 
pre-determined values. So, the authors formulate the original problem by using 
Lagrangian method with dual variables from LP-relaxed problem as Lagrangian 
multipliers. Then, they exploit the information from this formulation to estimate 
the core problem so that the non-core variables are fixed to 0 or 1. Based on a 
benchmark of test problems from the MKP literature, the proposed method 
performs well in terms of solution quality when comparing with greedy heuris-
tics and problem reduction approaches.  

4.2.3. Surrogate Relaxation  
The surrogate constraint method translates a multidimensional problem into 
one dimensional problem using a suitable set of surrogate multipliers: 

1 1 1
.

N d d

j ji i j j
i j j

w x Cµ µ
= = =

   
≤   

   
∑ ∑ ∑                    (58) 

where { }1, , dµ µ µ=   is the set of surrogate multipliers.  
[54] proposed a new method for computing suitable surrogate constraints, 

that allows the user to adjust the quality of the obtained multipliers by means of 
a parameter ε. This method proves the effectiveness in comparing with other 
methods based on LP and that proposed by Chu and Beasley in [14]. Two heu-
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ristics based on surrogate constraint are introduced by [55]. In the first one, the 
relaxed problem is solved via an improved dynamic-programming algorithm. As 
for the second one, the previous approach is combined with a Branch & Cut 
procedure. Both approaches yielded better results than other heuristics, with a 
smaller gap between the best solution and optimal one. [56] was interested in 0/1 
FMKP, he defuzzified the problem using triangular norm (t-norm) and 
t-conorm fuzzy relations. Then he developed the surrogate relaxation for this 
obtained problem. This methodology is applied to resolve multi-attribute project 
portfolio selection. [57] proposed a new heuristic for solving 0/1 MCMKP, it is-
based on oscillation strategy that explores both sides of the feasibility border, by 
using surrogate constraint information as choice rules.  

4.2.4. Composite Relaxation  
Composite relaxation was introduced by Greenberg and Pierskalla [58]. It com-
bines the two previous relaxations that are considered as special cases of this last 
relaxation. To our knowledge, there is no article that covers the current relaxa-
tion in the last decade. However, in their article [59] published in 1994, the au-
thors proved the limit improvement that the composite relaxation (as well as 
Lagrangian and surrogate relaxations) could bring to 0/1 MKP in comparison 
with continuous relaxation. [42] discussed the theoretical properties of the MKP, 
particularly; those relevant to surrogate and composite duality.  

5. Metaheuristic Approaches  

Several metaheuristics, mostly based on analogies with natural phenomena, were 
developed and became quite popular for their effectiveness and efficiency to re-
solve the 0/1 MKP and its variants. We distinguish two categories of metaheuris-
tics: Single-based metaheuristics that consist of modifying and improving a sin-
gle candidate solution, and population-based metaheuristics that maintain and 
improve multiple candidate solutions.  

5.1. Single-Based Metaheuristics 
5.1.1. Tabu Search  
[60] used the Tabu Search (TS) method for solving 0/1 MCMKP. First, a greedy 
heuristic is applied for generating a feasible neighbor. The search continues for a 
fixed number of iterations and TS structures are used to improve the search 
process. To test this new heuristic, 13 Khan’s test problem instances are used 
[61]. The computational results indicate that the new TS resolves all problems, 
outperforms some heuristics and overalls others. [62] examined the 0/1 MKP 
with Generalized Upper Bound constraints (referred as the GUBMKP) using a 
new TS that adds an adaptive memory structure. Their approach was tested by 
using the three Li’s test cases [63] and led to good outcomes, especially, when it’s 
combined with Local Search (LS) method, it leads to even better results. Like-
wise, [64] are interested in GUBMKP, they developed a new TS that considers 
not only the change of objective function value but also the change of feasibility. 
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Comparing this approach with others, the results showed that it leads to a good 
compromise between intensification and diversification. [65] proposed a new 
hybrid tree search algorithm for solving 0/1 MKP that effectively combines TS 
with a dynamic and adaptive neighborhood search procedure. This heuristic was 
tested on wide set of benchmark problems and proved its competitiveness com-
pared to other state-of-the-art heuristic methods. [66] used a variation of TS, 
called the Critical Event Tabu Search (CETS), for solving the General integer 
MKP (GMKP). A surrogate programming is embedded in CETS as choice rules 
to obtain high quality solutions. 

5.1.2. Variable Neighborhood Search  
The Variable Neighborhood Search (VNS) is clearly useful for approximate so-
lution of many combinatorial and global optimization problems. But it seems to 
be slow to solve very large instances. [67] proposed a new heuristic for solving 
0/1 MKP, based on the VNS principle. The set of neighborhoods is generated by 
exploiting information obtained from a series of relaxations. In each iteration, 
they add new constraints to the problem in order to produce a sequence of lower 
and upper bounds around the optimal value, with the goal to reduce the gap 
between them. The experiments yielded promising results, especially on large 
scale MKP instances, and the outcomes are compared with the state-of-the-art 
solving methods of 0/1 MKP. [68] proposed a hybrid approach, combining the 
strengths of VNS and TS. This method is used for solving the web service selec-
tion problem which is modeled as 0/1 MCMKP. The results compared with TS 
and VNS algorithms separately on the same test instances indicated that this 
heuristic can successfully be used for finding good solutions for relatively large 
size instances. [69] used a recent version of VNS: Relaxation Guided Variable 
Neighborhood Search (RGVNS), that follows the standard VNS scheme but uses 
a new VND algorithm [70]. In their article, they applied the RGVNS and other 
metaheuristics to approximate cores for 0/1 MKP, as well as in the original 
problem in order to evaluate the benefits of using a core-based approach. Also 
[71] used RGVNS and employed the LP techniques. They tested this approach 
on standard benchmark instances of 0/1 MKP. The computational experiments 
showed the advantage of the new RGVNS compared to VNS without guidance. 

5.1.3. Simulated Annealing  
[72] propose a new simulated annealing (SA) that incorporates fitness landscape 
parameters. Their basic idea is to ignore the association between the search space 
and fitness space as well as to focus only on the comparison between the current 
solution and the optimal solution. The proposed SA is tested on MKP instances 
and yields good quality solutions in optimal runtimes when comparing with 
other variants of SA. On the other hand, [73] present a hybrid simulated an-
nealing method. Firstly, a constructive method based on fitness strategy is used 
to generate solutions, and another greedy heuristic to search better solutions. 
Then, SA is applied to improve the quality of solutions. This method is ad-
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dressed to deal with rectangle knapsack problem with two-dimensions in which 
the objects to be packed in the knapsack has all a homogenous form (rectangles). 
The outcome results on 221 test instances show that the presented method per-
forms better than some previous existing algorithms. Very recently, [74] incor-
porate the SA and a hybrid heuristic repair strategy in the Pollination Flower 
Algorithm (PFA) (see [75]) in order to maintain a balance between exploration 
and exploitation. The proposed algorithm was tested on MKP benchmark data. 
The results show that it is superior than the Quantum Genetic Algorithm [76], 
the Binary Particle Swarm Optimization Algorithm and the Binary Cuckoo 
Search Algorithm (see next sub-sections) in terms of accuracy and robustness.  

5.2. Population-Based Metaheuristics 
5.2.1. Genetic Algorithms  
[77] are interested in gendered genetic algorithm, in which the gender of chro-
mosomes is considered in the selection operation and only two chromosomes 
with opposite sex take place in crossover operation. The authors developed in 
their article some techniques for the sexual selection: The female chromosome is 
selected by the tournament selection while the male chromosome is selected 
based on the hamming distance from the selected female chromosome, fitness 
value or active genes. The results of computational experiment were compared 
with some well-known selection mechanisms for solving 0/1 MKP. Similarly, 
[78] aimed at the sexual genetic algorithm with fuzzy data. The authors pro-
posed some techniques for controlling genetic parameters. Indeed, they pro-
posed new sexual selection, crossover, mutation, and probabilities selection 
techniques by using fuzzy logic controller. Experimentally, the results were 
compared with other genetic operators, heuristics, and local search algorithms 
used for solving 0/1 MKP. In [15], the genetic algorithm incorporates greedy 
heuristics in the repair operator. They combined Chu’s information of pseu-
do-utility ratios [14] and the Raidl’s information of the optimal solution about 
LP of 0/1 MKP [79], in order to sorting variables decreasingly. Comparing to 
Chu’s GA, computational experiments lead to better solutions over 270 standard 
test problem instances. Moreover, [80] integrate attribute reduction in Rough 
Set (RS) [81] into crossover operator. The authors apply RS to formulate a set of 
items. In this case, some redundant items can be generated. So, attribute reduc-
tion process can be applied to eliminate them while preserving the feasibility. 
The authors proposed two kinds of GAs based on attribute reduction in RS. The 
experiments tested on MKP benchmark data demonstrate that the methodology 
adopted is a good alternative to improve the performance of GA. In their im-
proved GA, [82] have applied the pattern substitution that replaces the worst 
genes with excellent ones. Then, they sorted the obtained chromosomes with an 
improved greedy algorithm. Finally, they used the classical GA to find optimal 
solutions. This hybrid method yields better results than classical GA. GA com-
bined with greedy algorithm produces robust solutions especially on large sized 
instances compared with a greedy algorithm only. [83] Introduced a novel algo-
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rithm based on a greedy process, a Particle Swarm Optimization (PSO), and 
some genetic operators. In fact, they used a greedy solution in PSO initial popu-
lation to make it better. Then, they added crossover and mutation operator to 
strengthen the diversification strategy. The hybrid algorithm is used to solve 
small sized instances of 0/1 MKP, and further comparison is needed on large 
scale instances.  

Recently, [84] proposed two Memetic Algorithms (MAs) for solving 0/1 MKP. 
The first one is combined with a stochastic local search, while the second one is 
used with SA. Both proposed versions are tested on benchmark data. The expe-
riments showed that they reached competitive results in comparison with 
well-known hybrid GA based approaches. Nevertheless, [85] analyzed the use-
fulness of different versions of the Linkage Tree Genetic Algorithm (LTGA) by 
using Chu’s GA [14] as reference. For evaluating the performance of LTGA ver-
sions, the authors made a comparison using the 270 MKP instances provided by 
[14]. The results showed that Chu’s GA outperforms all LTGA versions. [86] 
incorporated separately two methods based on rough sets in crossover operator 
of GA. The experiment results are compared with classical GAs, they show that 
both approaches can successfully be used for finding good solutions when the 
number of items is medium, but they lose their efficiency when the number of 
items increases.  

Very recently, [87] introduced a new hybrid GA, named Guided GA (GGA) 
that uses information extracted with an efficiency-based method in order to 
generate the initial population as well as to evaluate the offspring by their fitness 
function. The GGA is applied to 0/1 MKP and provides competitive solutions in 
comparison with other optimization methods. In the same way, [88] present a 
new guided GA, called knowledge-based GA. In fact, the authors apply the 
primal greedy with the core concept decomposition to extract a useful informa-
tion about the subset of important items. This information is used to drive the 
GA search process while generating the initial population and especially for 
measuring the fitness function. Computational experiments and comparisons 
reveal that the proposed GA gives competitive solutions. [89] have proposed a 
new crossover operator that is based on two-stage recombination scheme and 
generates only one offspring from two parents. In the first stage, the generated 
offspring inherits the similar genes that have the same position and the same 
value in both parents. In the second stage, the offspring chromosome is com-
pleted by non-similar genes having the same place but different values. The au-
thors have suggested a specific version of their recombination operator for the 
0/1 MOMKP. The computational experiments show that this new crossover op-
erator yields promising results in comparison with three traditional crossovers 
using two well-known multi-objective evolutionary algorithms. Moreover, [90] 
propose a new repair operator in which the items are added in the increasing 
order of their values in the relaxed version of the problem. They also use the 
LP-relaxed solution for generating the new population. Thus, the obtained GA is 
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combined with a new Neural approach based on the principles of Neural Net-
works, called Neurogenetic approach. Testing these approaches on MKP in-
stances, the Hybrid method provides better solutions in comparison with the 
new GA and the Neural approach separately. [91] adapt an approach inspired 
from multiple-population GAs (or island model GAs) on Cultural Algorithms 
(CAs) that allows the migration of the best individuals among sub-populations 
(or islands) and main population through the belief space structures. The expe-
riments have shown that the CA with island model is able to find solutions, for 
MKP instances, either better or equal to the ones reached by two kinds of algo-
rithms based on Distributed GAs [92]: Distributed canonical GA (DGA) and 
DGA Self-Reproduction with Mutation (DGA-SRM). Furthermore, [93] pro-
posed a clustered GA that uses a roulette wheel selection with fuzzy technique as 
a selection strategy and adopt a special crossover operator which uses hierar-
chical clustering method to form two clusters of selected individuals. Based on 
30 test problems from the MKP literature, the proposed GA performs better 
than classical GA.  

5.2.2. Ant Colony Optimization  
First applications of Ant Colony Optimization (ACO) have been concerned with 
solving ordering problems, like traveling salesman problem, etc. [94] introduced 
a new extended ACO to handle 0/1 MKP. The ACO worked very well on several 
instances and outperformed standard Evolutionary Algorithm on large-scale in-
stances of the problem. [95] proposed an ACO-based algorithm for solving 0/1 
MCMKP. The authors combined the traditional version of ACO with Unique 
Random Local Search (URLS). A comparison with state-of-the-art heuristic al-
gorithms in solving 0/1 MCMKP, shows that the proposed method outperforms 
others and works successfully on harder instances. Similarly, [96] are interested 
in 0/1 MCMKP, they developed a hybrid method that combines ACO with La-
grangian relaxation. The obtained solution from Lagrangian relaxation in 0/1 
MCMKP is used as heuristic factor in ACO. Moreover, they improved the ACO 
repair operator. The proposed methods are tested on 43 benchmark instances 
and compared with four existing algorithms. The experiments provided compet-
itive solutions. Likewise, [97] combined ACO with Lagrangian relaxation, a 
comparison analysis with ACO and the Lagrangian heuristics separately, shows 
that the proposed algorithm performs better. [98] introduced a new ACO algo-
rithm based on the Max Min Ant System (MMAS). They also proposed a me-
thod to choose the lower trail limit. Then, they combined this method with a lo-
cal search procedure. They applied their algorithms to the 0/1 MKP. The results 
show that the proposed algorithms can resolve efficiently the 0/1 MKP. 

Besides, [99] proposed a Binary Ant System (BAS) to deal with the 0/1 MKP. 
This algorithm is different from other ACO-based algorithms applied to 0/1 
MKP. Indeed, the BAS uses a pheromone laying method specially designed for 
the binary solution structure, and it allows the infeasible solutions to take place 
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in the solution construction procedure. The computational results demonstrate 
the effectiveness of BAS among other ACO-based approaches for the test prob-
lems selected from OR-library. Nevertheless, [100] combined the BAS with 
Nested Partition (NP) and LP. The new algorithm uses the NP algorithm as 
global search strategies; uses the BAS to quickly generate good solutions and in-
corporates information obtained from solving a LP relaxation of 0/1 MKP. This 
hybrid method outperforms the state-of-the-art solution techniques in terms of 
quality and computational time. [101] used parallel ACO for solving 0/1 MKP by 
applying MapReduce parallel programming. The authors also changed some pa-
rameters like probability calculation of the runtime, crossover and mutation in 
order to reduce the ACO complexity. The proposed method is used to solve 
harder 0/1 MKP instances in cloud computing. Consequently, the results showed 
that the parallelism of ACO improves its defects of long search time. In the same 
direction, [102] are interested in parallel ACO, they proposed a parallel imple-
mentation under the GPGPU paradigm (General Purpose Graphics Processing 
Units) using CUDA (for more information we invite the reader to refer to 
[103]). The results obtained show that parallel ACO is an efficient approach to 
solve 0/1 MKP, especially for large instances, compared to the other three algo-
rithms, namely; hybrid dynamic programming method with lower bounds 
computation (HDP + LBC), kernel search algorithm (KS) and NP. Besides, [104] 
have proposed a new ACO based on some binary quality indicators for guiding 
the search of artificial ants. Testing their algorithm on MOKP instances, the 
outcome results show that it is better when comparing with ACO and other 
evolutionary algorithms. [105] are interested in MCMKP, they present two vari-
ations of the ACO algorithm combined with a random local search algorithm for 
guiding ants to a better area of the search space. The two proposed algorithms 
improve the solutions generated by ACO and speed up the convergence to 
near-optimal solutions. The MCMKP’s benchmark data from OR-Library are 
used for testing both algorithms. 

5.2.3. Particular Swarm Optimization  
[106] and [107] introduced a set-based PSO to solve discrete problems, namely; 
set-based optimization problems like 0/1 MKP. The authors developed a new 
presentation scheme of the classical PSO by updating the terms of position and 
velocity. The two proposed set-based PSO algorithms are tested on 0/1 MKP. 
The experimental results reveal that both algorithms are promising compared to 
other PSO-based approaches. [108] developed a new hybrid binary PSO, by 
combining some features of PSO and crossover operation of GA. This proposed 
algorithm is used to resolve 0/1 MKP. The obtained results show a good and 
promising solution quality comparing with another version of PSO and a new 
Cuckoo Search algorithm (CS). [109] propose a generic formulation of the 
set-based PSO that can be applied to any set-based optimization problem. As 
parameters tuning, they use the ones of [110]. In order to evaluate the used pa-
rameters tuning as well as the performance of the generic set-based PSO, the 
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authors use the 0/1 MKP as a test problem. The results reveal that the used pa-
rameters can be tuned effectively, and the proposed algorithm performs well 
when comparing with binary PSO and set-based PSO. [111] proposed two novel 
PSO algorithms to solve 0/1 MKP; the binary PSO with time-varying accelera-
tion coefficients, and the chaotic binary PSO with time-varying acceleration 
coefficients. The two proposed algorithms are tested using 116 benchmark 
problems from OR-Library. The results show that both algorithms outperform 
two other existing PSO-algorithms. Similarly, [112] proposed binary PSO based 
on the surrogate information with proportional acceleration coefficients for 
solving 0/1 MKP. The new PSO was tested on 135 benchmark problems from the 
OR-Library to prove its effectiveness. [113] applied a quantum binary approach 
that belongs to binarization techniques to PSO. The obtained algorithm is com-
bined with local search method to solve 0/1 MKP, as well as a heuristic based on 
repair operator that uses problem-specific knowledge. The outcomes of testing 
the hybrid method on a wide set of benchmark problems prove its competitive-
ness on other state-of-the-art heuristic methods. [114] introduced a self-adaptive 
check and repair operator (SACRO) combined with PSO for solving 0/1 MKP. 
The SACRO use more than one pseudo-utility ratio which changes as the PSO 
algorithm runs. The SACRO-based algorithm demonstrates its effectiveness in 
comparison with other PSO-based algorithms. In the same way, [115] proposes a 
PSO-based algorithm that uses a new SACRO based on three ratios: Surrogate 
relaxation ratio, profit/weight utility, and profit density. The obtained algorithm 
is combined with the hill-climbing local search scheme to escape from local op-
timal solutions. The proposed PSO-based algorithm is tested using OR-library 
problems. In comparison with the SACRO-based PSO [114], the three-ratio 
SACRO-based PSO with local search scheme seems to be more competitive and 
more robust. In the same way, [116] introduce a new self-adaptive repair opera-
tor concept with three pseudo-utility ratios that is later incorporated in PSO al-
gorithm. The authors also use a local search scheme to improve the quality of 
generated solutions. The proposed PSO algorithm is compared with state-of-the-art 
PSO methods using 168 different widely used MKP benchmark data. However, 
[117] used the single GPU to accelerate the PSO in terms of computational time 
for solving 0/1 MKP. The experiments are tested on real test cases proposed by 
([14], [118]) and yielded highly competitive results. Otherwise, [119] introduced 
a new initialization phase as well as the improvement procedure. In order to 
adapt PSO to 0/1 MKP, a new coding scheme is introduced. [120] developed a 
new approach that incorporates various features inspired from TS in recent dis-
crete PSO versions called Essential PSO queen (EPSOq), in order to obtain 
another improved discrete PSO version. This approach leads to encouraging re-
sults, especially for large-scale strongly correlated 0/1 MKP instances. 

5.3. Other Metaheuristic Approaches 

[121] proposed a new artificial bee colony (ABC) algorithm for solving the 0/1 
MKP. They have integrated ABC algorithm with problem specific heuristics of 
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0/1 MKP as well as LS. The results demonstrated that their ABC algorithm get 
nearest optimal solutions and converge rapidly in comparison with other 
swarm-based approaches. [122] introduced a new communication mechanism 
among bees, based on the updating and diffusion of pheromone produced by 
bees. The results obtained by this one produced better solutions in shorter time 
than the ABC algorithm without the communication mechanism. In the same 
way, [123] proposed a hybrid algorithm for solving MKP that integrates two 
models: A new ABC algorithm and a GA tournament selection. The first model 
consists of an ABC in which honey bees are directed with a multi-agent system. 
The agents collect solutions of individual bees before than a coordinator agent 
selects the best solution from all collected solutions. Corresponding to the com-
putational experiments, the proposed algorithm proves that it can produce bet-
ter solutions than GA, PSO and Glowworm Swarm Optimization (GSO). Other 
authors have taken advantage of algorithms designed for continuous optimiza-
tion problems, after having converted to binary algorithms by applying binariza-
tion techniques. We cite [124] that have proposed discrete binary bat algorithm 
(BBA) for solving 0/1 MKP. It is based on the echolocation behavior of micro-
bats. The obtained results are very promising compared to other bio-inspired 
algorithms. [125] proposed an artificial glowworm swarm optimization (GSO) 
algorithm to solve 0/1 MKP, combined with two strategies to select items. The 
results of the proposed algorithm are satisfying. [126] and [127] introduced a 
binary version of artificial fish swarm algorithm (AFSA or FSA) to efficiently 
solve the 0/1 MKP. In the same way, [128] proposed a simplified binary version 
of AFSA, called (S-bAFSA), that uses a random heuristic to obtain a feasible so-
lution and incorporates a local search method to improve quality of solutions. 
Other strategies are also incorporated in fish behaviors. A comparison of 
S-bAFSA with other methods available in the literature has been carried out with 
MKP benchmark data. The authors conclude that the presented method is rather 
competitive for solving MKP large-scale instances. 

[129] present an improved Migrating Birds Optimization (IMBO) to solve 
MKP. They combine meaningful initial solutions with randomly generated solu-
tions to create a diversity in the swarm. Considering the structure of MKP, they 
introduce two new crossover operators based on a sharing scheme. The compu-
tational results and comparisons with other algorithms indicate that the IMBO is 
an alternative to solve the MKP, especially for large-scale problems. [130] pro-
posed a binary artificial algae algorithm (AAA) for solving 0/1 MKP. This algo-
rithm is combined with discrete process to achieve good discrete process results, 
and a repair operator based on pseudo-utility ratio, as well as local search me-
thod. In order to verify the robustness of the algorithm, the authors have com-
pared its results with other population-based algorithms: Three versions of 
PSO-based algorithms, an improved GA, and two versions of FSA. The obtained 
results proved the superiority of the proposed algorithm. [131] developed an 
improved Firefly Algorithm (FA) for solving 0/1 MKP, as well as the dynamic 
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version of MKP (dynMKP) where the items arrive with respect to a certain 
probability distribution or other sources of dynamism. Standard FA, GA and EA 
have been chosen as comparative methods. According to the findings of the ex-
periments, authors concluded that the improved FA achieves superior results on 
both MKP and dynMKP. In the same way, [132] proposed a Quantum-Inspired 
FA with PSO (QIFAPSO) based on concepts of quantum computing to solve 
discrete optimization problems. In their algorithm, they use discrete representa-
tion for fireflies and propose a variant of Hamming distance to compute the at-
tractiveness between them, as well as other strategies for exploring the search 
space. The QIFAPSO has been tested on different MKP instances to evaluate its 
performance. The empirical results reveal that the proposed algorithm turns out 
to be better than other variants of Quantum Inspired algorithms, particularly 
when the number of constraints increases. Very recently, [133] introduced an 
Improved Fruit Fly Optimization Algorithm IFFOA, by using a parallel search to 
balance exploitation and exploration of search space. The obtained algorithm 
was combined with Modified Harmony Search algorithm MHS. In MHS, a novel 
scheme and random selection rule as well as vertical crossover are developed by 
considering specific characters of 0/1 MKP and FOA. So, The IFFOA demon-
strates effectiveness in comparing with other state-of-the-art algorithms. Fur-
thermore, [134] proposed a modified Pollation Flower Optimization (PFO) with 
GA crossover operator to get out the premature convergence and to increase the 
diversity of population. Sigmoid function is used to adapt PFO in binary search 
space. A penalty function is added to fitness function in order to assess the in-
feasible solutions. That is, a two-stage repair operator is applied to deal with in-
feasible solutions. The proposed algorithm has been compared with other simi-
lar algorithms recently stated in literature. The results show that the new PFO 
yields, in shorter runtime, better solutions than the comparative methods.  

In addition to these bio-inspired metaheuristics, there are other kinds of pop-
ulation-based metaheuristics. In this context, we cite the work developed by 
[135] who proposed a binary coded version of Harmony Search (HS) metaheu-
ristic for solving large-scale instances of the 0/1 MKP. This proposed HS incor-
porates an ingenious pitch adjustment scheme without parameter specification 
and a new repair operator that uses MKP-specific knowledge. More than that, 
they used the probability distribution instead of exact value of each decision va-
riable. Other single-solution based metaheuristics are proposed for solving 0/1 
MKP. That is, [136] developed a novel binary Differential Search Algorithm 
(DSA) incorporating two different solution strategies. The first strategy consists 
to find discrete solutions by integrating a Brownian motion-like random search 
with an integer rounding operation. The second strategy consists to maintain the 
feasibility of the obtained discrete solutions. The outcome results prove the ca-
pability of the proposed DSA to solve large-scale instances of the 0/1 MKP. In-
deed, [137] proposed a binary Differential Evolution Algorithm (DEA) by using 
the sigmoid function that belongs to well-known binarization techniques, and 
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combine the binary obtained version with VNS to solve 0/1 MKP. Instead of 
employing check and repair operators, the authors employ some sophisticated 
constraint handling methods to enrich the population diversity by taking ad-
vantages of infeasible solutions within a predetermined threshold. The Compu-
tational results of testing the proposed DEA show its efficiency in solving 
benchmark instances from the OR-Library. Thereby, [138] propose a new binary 
DEA in which dichotomous mechanisms is fused into crossover and mutation 
operations. The dichotomous mechanism is inspired from dichotomous think-
ing of psychology which means the tendency of only seeing extremes, also 
known as “black and white thinking”. The Dichotomous Binary DEA (DBDEA) 
is tested on KP and MKP instances and proves its effectiveness and efficiency 
when comparing with two PSO variants and three DEA variants.  

Other authors were inspired by human learning mechanisms, like [139] that 
introduced novel metaheuristic algorithm called Human Learning Optimization 
(HLO). In fact, the new algorithm uses the individual learning operator, social 
learning operator, random exploration learning operator and re-learning opera-
tor, in order to generate new solutions. According to experimental results, The 
HLO outperforms ABC [121], ACO [99], PSO ([106] [114]), as well as NP + BAS 
+ LP [100], and others. However, as the algorithm is new, the authors recom-
mend further research to improve it. [140] are interested in Swarm Electromag-
netism-like Mechanism (SEM) based on charges of electrons. They thus pro-
posed a modified Electromagnetism-like Mechanism for working in discrete 
spaces. For this reason, the GA is used by changing the vector calculations with 
GA operators. The proposed algorithm is tested on 0/1 MKP, and the experi-
ments results show that it can find best solutions in a little computing time in 
comparison with stochastic population-based algorithms. [141] applied a mod-
ified Scatter Search (SS) for solving 0/1 MKP. In fact, they use a relaxed-based 
generator to obtain an elite population. According to the outcome results, this 
new generator clearly guides the SS algorithm to visit elite solutions more 
quickly. Also, the authors proposed to enhance the SS algorithm by integrating a 
search memory information. The empirical results show that the proposed SS 
outperforms other based-population algorithms including GAs. [142] adapt the 
Greedy Randomized Adaptive Search Procedure (GRASP) [143] to MOMKP by 
using a new strategy that allows to systematically explore different search direc-
tions. The search direction is characterized by the weights associated to each ob-
jective. By comparing the new GRASP with other well-known algorithms in 
multi-objective combinatorial optimization (MOCO), the results show that the 
proposed algorithm is robust in terms of solution quality and runtimes. Also, 
[18] have been interested in MOCO problems. They propose a method based on 
the notion of core that uses the two-Phase Pareto Local Search (2PPLS) [144]. In 
fact, the 2PPLS requires two elements to be adapted in MOCO problems: An ini-
tial population and a neighborhood. Thus, the authors use greedy heuristics to 
create initial population and Very-Large Scale Neighborhood (VLSN) [145]. The 
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proposed method is tested on bi-objective instances of MOMKP, and the results 
prove its effectiveness when comparing with other existing methods of literature, 
in particular MEMOTS [146]. Contrary, when it’s tested on three-objective me-
thods, the authors concluded that 2PPLS consumes a long runtime. So, the 
MEMOTS turns out to be more efficient when the number of objectives grows.  

Moreover, [147] proposed a new SS for solving GUBMKP. They firstly applied 
GRASP to diversify initial solutions, and then use an algorithm based on the 
structure of generalized upper bound constraints for selecting the diversified so-
lutions. The results reveal that the obtained SS are competitive with existing so-
lution approaches of GUBMKP. Additionally, [148] developed the Teaching 
Learning Based-Optimization (TLBO) metaheuristic, based on the relationship 
between teachers and learners, by introducing a strategy called Teacher Training 
(TT) before the teaching phase of TLBO. The TT-TLBO is applied on 0/1 
MCMKP. The obtained results show that the proposed algorithm outperforms 
the best published solution approaches for the 0/1 MCMKP. Nevertheless, [149] 
newly proposed the Estimation of Distribution Algorithm (EDA) to solve 0/1 
MKP. It uses the mechanism of probability model based on specific-knowledge 
problem in order to speed up the CPU time. Then the proposed EDA are com-
bined with LS to enhance the intensification strategy. Very recently, [150] intro-
duce a new variant of Evolutionary Algorithm (EA) called Revised Weight-Coded 
Evolutionary Algorithm (RWCEA). In the context of MKP, the weight-coding 
consists to represent a candidate solution by a vector of real-valued weights. This 
type of solution-representation requires a decoding heuristic, but it allows 
avoiding the necessity of handling infeasible solutions that are frequently gener-
ated when using classical EA operators. The RWCEA is tested on MKP’s 
benchmark and yields better or equal results than other state-of-the-art EAs.  

On the other hand, other authors have proposed metaheuristics based on the 
paradigm of neuronal networks. We cite [151] who showed how domain-specific 
knowledge can be incorporated within the neural-network framework for solv-
ing this NP-Hard problem. Specifically, they developed a new approach named 
Augmented Neural Networks (AugNN) for solving 0/1 MKP. It combines the 
heuristic approach with the learning strategy. However, [152] combined this last 
neural method with GRASP for 0/1 MKP. The hybrid method is implemented in 
a parallel way using GPGPU with CUDA. The outcomes reveal that the GRASP 
with a basic operation of AugNN method add variability to the search process 
and improve the quality of solutions. Thereby, [153] develop an algorithm based 
on GRASP and Iterated Local Search (ILS) for MOMKP. The computational ex-
periments show that the proposed algorithm outperforms, in shorter consuming 
time, three algorithms of literature, namely; MOTGA [154], MOGLS [155] and 
SPEA2 [156]. Furthermore, there are some articles that introduced the applica-
tion of a promising metaheuristic approaches called Metaheuristics for Rando-
mized Priority Search (Meta-RaPS) [157] to deal with 0/1 MKP. In fact, the Me-
ta-RaPS is a strategy that uses both construction and improvement heuristics to 
generate high quality solutions. In [158], a modified version of Path Relinking is 
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incorporated in the improvement phase of Meta-RaPS. The proposed algorithm 
is tested using the 0/1 MKP and provides good results especially for large scale 
instances in less time compared to other state-of-the-art algorithms. That is, 
[159] propose the integration of two other methods into Meta-Raps: EDA and a 
machine learning algorithm known as Q-Learning. The two proposed algo-
rithms are tested on MKP Benchmark data. The experiments reveal that Me-
ta-Raps with EDA performs well when comparing with Q-Learning, and both 
algorithms perform better than other existing methods in MKP literature.  

Lately, [160] adopted a multi-agent system for solving MCMKP. The initial 
problem is decomposed on several sub-problems associated with a coordinator 
agent and each sub-problem is assigned to an agent with a part of available re-
sources. Each agent is responsible to resolve only one sub-problem. The merging 
of all feasible solutions giving by each agent provides feasible solution of initial 
MCMKP. Comparing with existing literature approaches for MCMKP, the em-
pirical experiments show the effectiveness of the agent-based approach. [161] are 
also interested in MCMKP. So, they proposed a new fuzzy version of MCMKP in 
which each item may belongs to several groups according to a predefined fuzzy 
membership value. They modeled the proposed problem as a bi-objective prob-
lem by using the epsilon-constraint method [162]. Furthermore, they proposed 
an improved Partial-Bound Enumeration method (PBE) in which they insert a 
multi-start property to search the feasible bounded solutions in a parallel way. 
To compare both proposed methods, three simulated test problems are generat-
ed by using a uniform probability density function for small, moderate and large 
instances. Consequently, the authors conclude that the multi-start PBE method 
is less time consuming for reaching solutions that are equals, in terms of diver-
sity and accuracy, to the ones obtained by the epsilon-constraint method. [163] 
introduced a two-step iterative procedure, called Iterative Pseudo Gap Enumera-
tion approach (IPGE), to solve MKP. In the first step, a family of pseudo 
cuts/constraints is derived from the reduced cost constraints [164] according to 
a “pseudo-gap” values. Then, in the second step, the original problem with these 
pseudo cuts is solved by calling an ILP solver (CPLEX). The experiments show 
that the IPGE outperforms the so-called “reduce and solve” approach on 18 cas-
es of 37 MKP benchmark data. On the other hand, [165] propose an adapted al-
gorithm to solve Layout design problem modeled as a 0/1 MKP. The method 
uses Charge System Search Algorithm (CSS) classified as a multi-agent approach 
[166]. The proposed algorithm is compared with ACO algorithm and the results 
show that the obtained solutions are closely similar to those reached by ACO.  

6. Some Indicative Statistics 

The consulted papers are collected from international scientific journals as well 
as international conference proceedings during the last decade (2007 to 2017). It 
is important to note that only papers devoted to 0/1 MKP have been retained. To 
manage the search process, we have used keywords like: “0/1 Multidimensional 
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Knapsack Problem”, “Heuristics” and “Metaheuristics”. Google Scholar and 
Google have been used as search engines. We have paid attention to take articles 
emanating from different databases like Science Direct, Springer, Scopus, DOAJ 
and ProQuest. As a result, 102 papers from various publishers are examined at-
tempting to be as exhaustive as possible. The list includes works from these edi-
tors: Elsevier, Springer, Taylor & Francis, Wiley, Inderscience, INFORMS, IEEE 
Press, Emerald, Hindawi and Scientific Research. Some other databases like 
IEEE Xplore Digital Library and ACM Digital Library are especially used while 
searching indexed conference papers. However, we apologize for any unintended 
omission of other relevant articles. 

Selecting papers of 0/1 MKP solving methods are depicted in Figure 1 and 
Figure 2. So, Figure 1 is devoted to papers addressing heuristics. In Figure 2, we 
consider papers addressing metaheuristics and those that combine metaheuris-
tics with other solving techniques. In Figure 3, all solving methods are present 
in one graph for making a comparison between both categories: Heuristics and 
metaheuristics.  
 

 
Figure 1. Distribution of 0/1 MKP heuristics. 

 

 
Figure 2. Distribution of 0/1 MKP metaheuristics. 
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Figure 3. Quantitative comparison between heuristics and metaheuristics for 0/1 MKP. 
 

Considering the Figure 1, we can see clearly that the most common occur-
rence was greedy heuristics with eight references, comprising 36 % of all papers 
addressing heuristics (see Table 1), followed by heuristics based on surrogate 
relaxation with five references (23% of heuristic references). Likewise, heuristics 
based on Lagrangian relaxation present 27% of heuristic references. Then heu-
ristics based on continuous relaxation with three references (14% of heuristic 
references). To the best of our knowledge, there is no reference concerning heu-
ristics based on composite relaxation.  

In Figure 2 we have to mention that the most widely used metaheuristics are 
those based on population of solutions. We have GA with 19 references, com-
prising 18% of all references addressing metaheuristics to solve 0/1 MKP. Then, 
PSO represents 12% of metaheuristic references. It is followed by ACO which 
was used in 10 references (9% of metaheuristic references). In 15 references in-
cluding articles addressing TS, VNS and SA (7% + 4% + 4% of metaheuristic 
references) were studied. 49 papers use other methods to deal with 0/1 MKP, 
comprising 46% of metaheuristic references. The most common were LS with 
eight references, followed by GRASP with three references, as well as ABC, FSA, 
Weight-coded EA, SS, and Meta-Raps with two references.  

The following conclusions can be drawn from the Figure 3: The heuristics are 
studied in 22 papers, comprising almost 20% of all references given in the Table 
1, contrary to the metaheuristics that remained the most common methods for 
solving 0/1 MKP, studied in 89 references (80% of the list). This is due to the fact 
that the 0/1 MKP is considered as a test problem in literature. So, if a metaheu-
ristic has been developed for the 0/1 MKP, and it proved a high-quality solution 
by using a little CPU time, it will be promising for other different problems by 
applying minor modifications.  

Table 1 summarizes our literature review for resolution methods of 0/1 MKP. 
Papers addressing different algorithms of 0/1 MKP are listed. Two types of me-
thods are exhibited in the first level: Heuristics and metaheuristics. Therefore, 
the sublevels of the heuristics level are greedy heuristics (GH), and Relaxa-
tion-based heuristics with sublevels, that are heuristics based on continuous or 
Lagrangian or surrogate relaxations. The metaheuristics level is divided into 
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Table 1. State-of-the-art heuristic and metaheuristic methods for solving 0/1 MKP. 

 
References 

Heuristics & Metaheuristics 

Heuristics Metaheuristics 

Greedy 
Heuristics 

Relaxed-based Heuristics Single-based Metaheuristics Population-based Metaheuristics 

CR LR SR TS VNS SA GA ACO PSO Other Metaheuristics 

2007 J. Pfeiffer & F. Rothlauf x 
         

Weight-Coded EA 

2007 A. Volgenant & I. Y. Zwiers x 
          

2007 Y. Akcay et al. 
           

2007 M. J. Alves & M. M. Almeida 
       

x 
   

2008 S. Hanafi & C. Wilbaut 
          

SS 

2008 J. Puchinger et al. 
     

x 
     

2008 M. Kong et al. 
        

x 
  

2008 V. C. Li 
    

x 
      

2008 J. L. Montaña & C. L. Alonso 
   

x 
       

2009 B. Aghezzaf & M. Naimi 
       

x 
   

2009 V. Boyer et al. 
   

x 
      

DP + B & C 

2009 S. Hanafi et al. 
     

x 
     

2009 M. H. Akin x 
          

2009 S. Hanafi & C. Wilbaut 
 

x 
         

2010 H. H. Yang et al. 
       

x 
   

2010 S. Iqbal et al. 
        

x 
 

Unique Random LS 

2010 L. Ke et al. 
        

x 
 

LS 

2010 S. Al-Shihabi & S. Ólafsson 
        

x 
 

NP + LP 

2010 S. Sundar et al. 
          

ABC 

2010 W. N. Chen et al. 
         

x 
 

2010 T. Lust & J. Teghem 
          

Pareto LS 

2010 S. Iqbal et al. 
        

x 
  

2011 
J. Langeveld &  

A. P. Engelbrecht          
x 

 

2011 Q. Gong et al. 
          

GSO 

2012 M. J. Varnamkhasti & L. S. Lee 
       

x 
   

2012 M. J. Varnamkhasti & L. S. Lee 
       

x 
   

2012 C. Atılgan & U. Nuriyev 
  

x 
        

2012 R. R. Hill et al. 
  

x 
        

2012 Y. Yoon & Y. H. Kim 
  

x 
        

2012 V. C. Li et al. 
    

x 
      

2012 M. Khemakhem et al. 
    

x 
      

2012 N. Turajlić & I. Dragović 
    

x x 
     

2012 Z. Ren et al. 
  

x 
     

x 
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Continued 

2012 
J. Langeveld &  

A. P. Engelbrecht          
x 

 

2012 A. Gherboudj et al. 
       

x 
 

x 
 

2012 M. A. K. Azad et al. 
          

FSA 

2012 M. R. Bonyadi & X. Li 
          

SEM 

2012 V. C. Li et al. 
          

SS + GRASP 

2012 J. Deane & A. Agarwal 
          

Aug NN 

2012 E. Bas 
   

x 
       

2012 I. Crévits et al. 
 

x 
         

2012 L. Wang et al. 
          

EDA + LS 

2012 D. J. A. Da Silva et al. 
       

x 
  

CA 

2012 S. Leung et al. 
      

x 
    

2013 Y. Yoon & Y. H. Kim 
  

x 
    

x 
  

LS 

2013 S. Htiouech et al. 
   

x 
       

2013 C. S. Hiremath & R. R. Hill x 
   

x 
      

2013 R. Ktari & H. Chabchoub 
    

x 
    

x 
 

2013 R. T. Liu & X. J. Lv 
        

x 
  

2013 J. Ji et al. 
          

ABC 

2013 S. Abusini & A. Andari x 
      

x 
 

x 
 

2013 J. Deane & A. Agarwal 
       

x 
  

Neural method 

2013 
D. S. Vianna &  

M. D. F. D. Vianna           
LS 

2013 H. Yang et al. 
       

x 
   

2013 K. Khalili-Damghani et al. 
          

PBE + Epsilon  
constraint method 

2014 M. Chih 
         

x 
 

2014 
A. Baykasoğlu &  
F. B. Ozsoydan           

FA 

2014 D. S. Vianna et al. 
          

GRASP 

2014 J. H. Drake et al. x 
         

GP 

2014 J. P. Martins et al. 
       

x 
   

2014 M. A. K. Azad et al. 
          

FSA 

2014 H. Fingler et al. 
        

x 
  

2014 S. Sabba & S. Chikhi 
          

BAA 

2014 G. Lai et al. x 
      

x 
   

2014 X. Liu et al. x 
      

x 
   

2014 D. Zan & J. Jaros 
         

x 
 

2014 M. Chih et al. 
         

x 
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Continued 

2015 A. Rezoug et al. 
      

x x 
  

LS 

2015 M. Chih 
         

x SACRO 

2015 X. Zhang et al. 
          

HS 

2015 M. F. Tasgetiren et al. 
     

x 
    

DEA 

2015 W. Nakbi et al. 
  

x 
     

x 
  

2015 K. Kakryal & K. Jammu 
      

x 
    

2015 L. Wang et al. 
          

HLO 

2015 M. A. K. Azad et al. 
          

FSA 

2015 I. B. Mansour & I Alaya 
        

x 
  

2015 Z. Kenneth et al. 
          

TT-TLBO 

2016 Q. Yuan & Z. X. Yang 
          

Weight-Coded EA 

2016 
B. De Almeida Dantas  

& E. N. Cáceres           
Aug NN + GRASP 

2016 A. Arin & G. Rabadi 
          

Path Relinking +  
Meta-Raps 

2016 B. Haddar et al. 
         

x 
 

2016 X. Zhang et al. 
          

AAA 

2016 J. Liu et al. 
          

DFA 

2016 C. J. Lin et al. 
   

x 
     

x 
 

2016 D. Libao et al. 
 

x 
         

2016 D. Zouache et al. 
          

FA 

2016 H. Peng et al. 
          

DEA 

2017 B. Alidaee et al. 
    

x 
      

2017 T. Meng & Q. K. Pan 
          

FFOA 

2017 Z. Fang et al. 
      

x 
   

FPA 

2017 A. V. Bole & R. Kumar 
          

ABC 

2017 A. Rezoug et al. 
       

x 
   

2017 A. Rezoug et al. 
       

x 
   

2017 I. K. Gupta et al. 
       

x 
   

2017 T. Meng et al. 
          

MBO 

2017 M. Abdel-Basset et al. 
          

FPA 

2017 A. Arin & G. Rabadi 
          

EDA + Q-Learning  
+ Meta-Raps 

2017 S. Htiouech & A. Alzaidi 
          

System  
Multi-Agent (SMA) 

2017 M. Chih 
         

x 
SACRO + Hill 
Climbing + LS 

2017 C. Gao et al. 
          

Enumeration method 

2017 P. Sharafi et al. 
          

CSS 

https://doi.org/10.4236/ajor.2018.85023


S. Laabadi et al. 
 

 

DOI: 10.4236/ajor.2018.85023 427 American Journal of Operations Research 
 

two categories: Single-based algorithms and Population-based heuristics. The first 
sublevel includes TS, VNS and SA algorithms, while the second contains GA, 
ACO, PSO and other algorithms including hybrid methods. For an early litera-
ture before 2007, the reader is referred to [42]. 

7. Conclusions  

Creating survey is an efficient and effective way of consolidating knowledge. It 
enables storage, sorting and statistical analysis. This article aims to build a rele-
vant survey of the most useful variants of 0/1 MKP. It attempts to highlight some 
real-world applications encountered in the literature. Furthermore, it outlines a 
state-of-the-art of the most common heuristic methods, for solving 0/1 MKP. 
However, we cannot claim this survey to be exhaustive. The analysis carried out 
is based on a large number of literature references. From this analysis, we can see 
that articles related to 0/1 MKP continue to be published in a large number of 
research journals having a different scope. That is, on the one hand, our problem 
is considered as an open research issue and consequently as a test problem for a 
major metaheuristic. On the other hand, it can model a large wide of real-world 
problems and it can be considered also as a sub-problem of many other real-world 
problems.  

We have noticed that the 0/1 MKP has several extensions in order to adapt it 
straightforwardly in different real problems. In our paper, we have cited six va-
riants; four are extended versions of deterministic 0/1 MKP, and two belong to 
non-deterministic 0/1 MKP extensions. A number of challenging practical ap-
plications can be modeled as a variant of the 0/1 MKP. We have discussed the 
capital budgeting problem, the combinatorial auctions, allocation resources with 
stochastic demands, frequency allocation in cognitive radio networks, MP-SoC 
runtime management problem, and real estate property maintenance problem. 
These problems can benefit from the 0/1 MKP solving methods.  

In terms of methods used to solve the 0/1 MKP variants, constructive heuris-
tics based on specific-knowledge problem appear to be among the most popular 
approaches. But we notice that metaheuristics are more and more reported in 
recent articles since they track a trade-off between the solution quality and the 
CPU time, especially for large-size 0/1 MKP instances. The single based-population 
algorithms are clearly useful to find a good solution for the 0/1 MKP. However, 
they encounter some difficulties to solve very large instances. For this reason, 
they are seldom published. The based-population algorithms have attracted 
much attention from many researchers, in particular GA, PSO and ACO. The 
methods are also hybridized, either to provide high-quality solution (e.g. meta-
heuristics embedding greedy heuristics or combined with other metaheuristics) 
or to speed-up the computing time (e.g. combination of metaheuristics with pa-
rallelization strategies). However, we still need a deeper investigation in the hy-
brid metaheuristics field in order to have clear ideas about suitable and efficient 
hybridization techniques in the context of 0/1 MKP. Readers interested in this 
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promising topic can refer to [167] for a general and detailed dissertation in the 
context of combinatorial optimization. Very recently, most of authors try to 
adapt continuous metaheuristics to work in binary search spaces methods by 
using binarization techniques.  

We believe this paper has helped to unify the rapidly expanding body of 
knowledge on the 0/1 MKP. We hope also that this work will encourage other 
researchers to pursue the study of this fascinating field of research.  
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