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problems. Using DTM, approximate solutions of order seven and eight
boundary value problems were developed. Approximate results are given for

some examples to illustrate the efficiency and accuracy of the method. The
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Higher order boundary value problems arise in the study of hydrodynamics and

hydro magnetic stability, astronomy, fluid dynamics, astrophysics, engineering

and applied physics. The boundary value problems of higher order have been
investigated due to their mathematical importance and the potential for applica-
tions in diversified applied sciences [1] [2] [3].

Explicit weighting coefficients are formulated to implement the Generalized
Differential Quadrature Rule (GDQR) for eighth-order differential equations. [4]
[5] used Nonic spline and Non polynomial spline technique for the numerical
solution of eighth-order linear special case boundary value problems. The
methods presented in [6] have also been proven to be second order convergent.
[7] employed finite-difference method to find the solution of eighth-order
boundary value problems. [8] [9] presented an efficient numerical algorithm us-

ing Adomian decomposition method for the solutions of special eighth-order
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boundary value problem. [10] [11] [12] proposed a relatively new analytical
technique, the variational iteration decomposition method (VIDM), for solving
the eighth-order boundary value problems. [13] [14] [15] presented the solution
of eighth order boundary value problem using octic spline. [16] presented the
solutions of eighth order boundary value problems using Adomian decomposi-
tion method.

A great deal of interest has been focused on the applications of differential
transformation method (DTM) to solve various scientific models [13]. In this
paper, we are interested in the application of differential transformation method
to solve higher order boundary value problems of order seven and eight. The
concept of differential transformation method was first introduced by Zhou in
1986, and it was applied to solve linear and non-linear initial value problems in
electric circuit analysis. The method can be used to evaluate the approximating
solution by the finite Taylor series and by the iteration procedure describes by
the transformed equations obtained from the original equation using the opera-

tions of differential transformation [11] [12].

2. The Differential Transformation Method (DTM)

A kth order differential transformation of a function y(x)= f(x) is defined

about a point x=1x, as:
d*y(x
Y(K){—dxg )} (2.1)
X=xq

where kbelongs to the set of non-negative integers, denoted as the K~-domain.

The function y(x) may be expressed in terms of the differential transforms
y(K) as:

y(@)=3; o[(x ).C°)k}Y(k) (22)

0 dk
Upon combining 2.1 and 2.2, we obtain: y(x) =" " 0% X=X, )k [%}
X=X
Which is actually the Taylor’s series for y(x) atabout =x,.
From the basic definition of the differential transformation, one can obtain

certain laws of transformational operations, some of these, are listed in the fol-

lowing:
DIf z(x)=u(x)+v(x), then Z(k)=U(k)+V (k)
2)If z(x)=au(x),then Z(k)=aU (k)
3) If z(x)=dud(xx) then, Z(k)=(k+1)U (k+1)
4) If z(x):dzdyx(zx) then, Z(k)=(k+1)(k+2)U(k+2)

5) If z(x):';fc_fj‘) then, Z(k)=(k+1)(k+2)---(k+m)U (k+m)
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6)If z(x)=u(x)v(x) then Z(k)=Y" V(I)U(k-I)

7) If " then, Z(k)=o(k here, O(k—n)={ "
z(x)=x en, Z(k)=0(k—n) where, n)= 0 ken
8) If z(x)=e™ then Z(k):i

- ’ k!
9) If z(x)=sin(wx+a) then, Z(k)z%sin(%k+aj

10) If z(x)=cos(wx+a) then, Z(k):%cos(%k+aj

3. The Higher Order Boundary Value Problem
1) even order boundary value problems
Consider the special (2m) order BVP of the form
W (x)=f (%), 0<x<b (3.1)
With boundary conditions
W(0)=ay,, j=0,1,2,,(m-1) (3.2)

y(ZM)(b):ﬂ2j’ ]20,1,2,",(71’!—1) (3.3)

2) odd order boundary value problems
Consider the special (2m + 1) order BVP of the form

y(zm”)(x):f(x,y), O<x<b (3.4)
With boundary conditions

y(2j+1)(0):Y j:O,l,Z,---,(m) (3.5)

2j+1°

y(2j+1) (b)=_ j=0,1,2,,(m) (3.6)

2j+1°

It is interesting to point out that y(x) and f(x,y) areassumed real and as

many times differentiable as required for x <[0,5]

4. Analysis of Higher Order Boundary Value Problems
by Differential Transformation

Let the differential transform of the deflection function y(x) be defined from

Equation (2.1) as:

Y(K):i[dky(x)} : (4.1)

where x, = 0. Also the deflection function may be expressed in terms of Y (K)

from Equation (2.2) as:
k
y(x>=z:0[@}y<k> (42)

Now, using the transformation operations which has been formed in sec.2,
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one can obtain by taking the differential transform of Equations (3.1) and (3.4)

respectively and some simplification, the following recurrence equations as
m=0,1,2,--

2m+k)!

Y(2m+k):2f{((2L)!}Y(.,.) (4.3)

Y(zm+k+1)=z:{%}y(w) (4.4)

2m+k+1

where Y(.,.) denotes the transformed function of linear and non linear func-
tion f(x,y). It may be noted that Equation (4.2) is independent of the

boundary conditions. The differential transforms of the boundary conditions at
x = 0 are obtained from Equations (3.2) and (3.5) in the cases even order (odd
order) boundary value problems respectively with the definition 4.1 as:

Y(zj)zzijazj, j=0,1,2,,(2m 1) (4.5)

. 1 .
Y(2J+1)=m72‘,, j=0,1,2,---,2m (4.6)

Substituting from 4.5 and 4.6 into 4.3 and 4.4 and using 4.2, yields for
j=0,1,2,---,(m—1)
o) E1| s 10

(2/)

And for ;j=0,1,2,---,m
o
y(x):Zko{m%ﬁl:IY(k)xk

Noting that ! (0)=4,, r=0,1,2,---,(m—1),and ) (0)=B,,
r=0,1,2,---,m , are constants that will be approximated at the end point x=5b.
NUMERICAL EXAMPLES

Example 1:
y8(x)+xy(x)=—(48+15x+x3)ex, O<x<l (1)

with boundary conditions

y'(0)=1, y'(1)=-e o)
¥ (0)=0, y*(1)=—4e
¥’ (0)=-3, »'(1)=-9e
whose analytical solution is y(x)=x(1-x)e"
transforming using DTM
Y (k+8)
k! 48 k 8(1—1) X 6(1—3) x
= -—— - - ol-1N)U (k-1
Gyl a2 ey 2 gy 2DV
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With boundary conditions

Y(0)=0,Y(1)=1,Y(2)=0,Y(3)= —%,

Y(4)=4,Y(5)=B,Y(6)=C,Y(7)=D

Atk=0
rio)= g s, N, S oy
1
“50
k=1
rio)=an) - weisz, G- m S e -o)
-1
~ 5%
k=2
r(0)- 25, S5 S otr-ran)
-7
o1
k=3
)= |-y 3 A -y
69
T
k=4
2= - ersg L S w S
1
~ 5702400
k=5
)= s, A A ey 51
1834
C13!
k=6
19 - ersg, S5 S5 -6
_ -258-B
14
DOI: 10.4236/ajcm.2018.83022 273 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2018.83022

R. B. Ogunrinde, O. M. Ojo

k=7

ri09) = -y, S5 S o)
363-C
18!

k=38

r(00) - o - eisg, S w1 S ety
504-D
16!

y(x) =20, Y (k)<

1 1
y(x):x—if+Ax4+Bx5+Cx6+Dx7——x8——x9
3! 840 5760
79 0 69 1 o 18344

—X X X
1007 1117 5702400 13!
258
25848 4, 363+4C i 504+D
14! 15! 16!

Using the boundary conditions given in (2), the required equation is (Table 1)

3
Y(x)=x —§x3 —0.180317402x" —0.492347647x" +0.272873875x°

009445595 1x" ——— ¢ = LT 0_ 09 i
840" 5760 101" 11!

I o 1818196826 ,; 2575076524

- X X
5702400 13! 14!
_ 363.2728476 L5 503.905544 16
15! 16!

Example2:

Consider a 7" order linear boundary value problem

Table 1. Results of Problem 1 for 2= 0.1.

X Analytical solution (h =0.1) DITM(h=0.1) Error

0.0 0.0000 0.0000 0.0000

0.1 0.099465382 0.099477308 1.1926 x 107°
0.2 0.195424441 0.19557019 1.45749 x 107
0.3 0.283470349 0.284021212 5.50863 x 107
0.4 0.358037927 0.359304348 1.266421 x 102
0.5 0.412180317 0.414365019 2.184702 x 1073
0.6 0.437308512 0.440411098 0.028230781
0.7 0.422888068 0.426705169 3.817101 x 1073
0.8 0.356086548 0.360307456 4.220908 x 107
0.9 0.22136428 0.225683179 4318899 x 1073
1.0 0 4.365206367 x107 4.365206367 x 10~
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U"(x)=xu(x)+e" (x* —2x-6), 0<x<1 (1)
Subject to the boundary conditions
U(0)=1, U(1)=0
U'(0)=0, U'(1)=—¢
U*(0)=-1, U*(1)=—2e
(0)=

U*(0)=-2
Whose analytical solution is U (x)=(1-x)e"
Transformed formular is
U (k +7 )

Co(-2) e 0(I-1) 6
(k+7) |:Zzo (l 1) (k_l)+ 1=0(k_l)!_2 l=°(k—l)!_a:|

Transformed boundary conditions are

(2)

-1
:E,U(3):

U(4)=P,U(5)=0,U(6)=R

-2

U(0)=1,U(1)=0,U(2) T

at k=1

U@>@{2m01wmz>zmu,) LHe)-g

5760
k=2
U(9) :&{Zf_oa(Z—I)U(Z—ZHZf_OEzgl__lj!) _oy? fy__];? —ﬂ
1
45360
k=3

U(lo):ﬁ[Zf_oa(l—l)U(z»—lﬁ ;_szg’_‘l;)—z 50?3(1__,;?—%}
-1
~ 403200

k=4
4 . 4 0(1-2) 4 0(1-1) 6
U(ll)=—— o(l-1)U(4-1 -2 -—
( ) (11)'|:ZI—0 ( ) ( )+ 1=0 (4_1)' =0 (4_1)' 4'
-1
3991680
k=5
5! | s s 0(1-2) s o(1-1) 6
U(12)=—— o(l-1nHUu(5-1 -2 -——
12)- | Zhaetr-nus-e 2, Doy, S
_1+30P
119250400
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k=6

003) = (o ol (s-n - T -2, ¢
14600
518918400

k=7

008)- o Sou-u - 2, 2y, S
_22+47IR

" k
U(x) =2 U (k)x
=l—lx2 —lx3 +Px*+0x° + Rx* —Lx7 —;x8
2 3 840 5760
_ 1 ¥ 1 §0 _ 1 K
45360 403200 3991680
!
. 1+30P 2y 1+ 600 x13+22+7'Rx14
119750680 518918400 14!

Using the conditions given in (2), the required equation is (Table 2)

1, 1
U(x)=1 —Exz —§x3 —0.125004443x"* —0.033324638x°

—6.948728418x107° x° —L)ﬂ —Lxg —Lx"
840 5760 45360
1 o 1 275013329 ,
- X - X - X
403200 3991680 119750400
0.99947828 |, 13.02159123 o

X
518918400 14!

Table 2. Results of Problem 2 for 2= 0.1.

X Analytical solution (h =0.1) DTM(h=0.1) Error
0.0 1 1 0

0.1 0.994653826 0.994653825 1x107
0.2 0.977122206 0.977122201 5x 107
0.3 0.944901165 0.944901147 1.8x10°®
0.4 0.895094878 0.895094776 42x10°®
0.5 0.824360635 0.824360563 7.2x 1078
0.6 0.72884752 0.728847377 1.43x 107
0.7 0.604125812 0.604125704 1.08 x 1077
0.8 0.445108185 0.445108094 9.1x10°*
0.9 0.245960311 0.245960253 5.8x 1078
1.0 0 5.621870471 x 107 5.6 x 107

DOI: 10.4236/ajcm.2018.83022 276 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2018.83022

R. B. Ogunrinde, O. M. Ojo

5. Conclusion

In this paper, the differential transformation method is used to find the solution

of higher order boundary value problems (order seven and eight). The results

show that the convergence and accuracy of the method for numerically analysed

eight order boundary value problem are in agreement with the analytical solu-

tions. The method is easy to apply and can be applied easily to similar problems

that engineering problems. Further work can be done on higher orders.
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