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Abstract 
 
In this paper, we investigate recent developments in option pricing based on Black-Scholes processes, pure 
jump processes, jump diffusion process, and stochastic volatility processes. Results on Black-Scholes model 
with GARCH volatility (Gong, Thavaneswaran and Singh [1]) and Black-Scholes model with stochastic 
volatility (Gong, Thavaneswaran and Singh [2]) are studied. Also, recent results on option pricing for jump 
diffusion processes, partial differential equation (PDE) method together with FFT (fast Fourier transform) 
approximations of Pillay and O’ Hara [3] and a recently proposed method based on moments of truncated 
lognormal distribution (Thavaneswaran and Singh [4]) are also discussed in some detail. 
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1. Introduction 
 

Option pricing is one of the major areas in modern fi- 
nancial theory and practice. Since Black, Scholes, and 
Merton introduced their path-breaking work on option 
pricing, there has been explosive growth in derivatives 
trading activities in the worldwide financial markets. The 
main contribution of the seminal work of Black and 
Scholes [5,6] and Merton [7] was the introduction of a 
preference-free option pricing formula that does not in- 
volve an investor’s risk preferences and subjective views. 
Due to its compact form and computational simplicity, 
the Black-Scholes formula enjoys great popularity in the 
finance industries and is based on the strong assumption 
that the volatility of the stock returns is constant. How- 
ever, implied volatility of the stock prices suggests sto- 
chastic volatility models are more appropriate to model 
the stock price. The most popular approach is to use the 
Heston model (Heston [8,9]), which assumes that the 
underlying asset follows the Black-Scholes model but the 
volatility is stochastic and follows the Cox Ingersoll Ross 
process (Cox, Ingersoll and Ross [10]). The empirical 
results of Bakshi, Cao and Chen [11] suggest that taking 
stochastic volatility into account is important in option 
pricing. Motivated by the theoretical considerations, Scott 
[12], Hull and White [13,14], Ritchken and Trevor [15], 
and Wiggins [16] generalized the Black-Scholes model 
to allow stochastic volatility. 

Heston and Nandi [17] first provided a solid theoretical 

foundation based on the concept of locally risk-neutral 
valuation relationship for option valuation under nonlin-
ear GARCH models using characteristic functions. Heston 
and Nandi [17], Elliot, Siu and Chan [18], Christoffersen, 
Heston and Jacobs [19], and Mercuri [20] among others 
derived closed form option pricing formula under various 
GARCH models. Recently, Badescu and Kulpeger [21], 
Barone-Adesi et al. [22,23], and Gong, Thavaneswaran 
and Singh [1] including others have studied option pric-
ing under GARCH volatility. Thavaneswaran, Peiris and 
Singh [24] and Thavaneswaran, Singh and Appadoo [25] 
studied option pricing using the moment properties of the 
truncated lognormal distribution. Gong, Thavaneswaran 
and Singh [1,2] studied Black-Scholes models with 
GARCH volatility and with stochastic volatility as in Taylor 
[26]. They carried out extensive empirical analysis of the 
European call option valuation for S & P 100 index and 
showed that the proposed method outperformed other 
compelling stochastic volatility pricing models. In Tha- 
vaneswaran and Singh [4], option pricing for jump diffu- 
sion process with stochastic volatility was studied by view- 
ing option pricing as a truncated moment of a lognormal 
distribution. Pillay and O’ Hara [3] studied the FFT based 
option pricing under a mean reverting process with sto- 
chastic volatility and jumps by using the PDE approach. 

In this paper, we first derive the Black Scholes partial 
differential equation for stochastic volatility models and 
then obtain closed-form solutions for the resulting PDEs. 
The rest of this paper is organized as follows. In Section 
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2, we study option pricing for pure jump processes, jump 
diffusion models, stochastic volatility models, and jump 
diffusion models with stochastic volatility. Moreover, closed 
form solutions are obtained by solving the two-dimensional 
partial differential equations for stock price in some ex- 
amples. Section 3 closes the paper with conclusions. 
 
2. Option Pricing and Partial Differential  

Equations 
 
Consider the stock and bond model as in Steele [27] 

        d , d ( , )d  X t t X t t t X t W t  

and  
      d , t r t X t t td ,  

where all of the model coefficients  

  ,t X t , , and  are given by 

explicit functions of the current time and current stock 
price. First, we will use the coefficient matching method 
to show that arbitrage price at time t of a European op-

tion with terminal time T and payout 

  ,t X t    ,r t X t

  ,h t X t  is 

given by   ,f t X t  where  ,f t x  is the solution of 

the partial differential equation (PDE) 

         

   

21
, , , , ,

2
, ,

t x xxf t x r t x xf t x t x f t x

r t x f t x

 


 (2.1) 

with terminal condition 

   , .f T x h x  

If we let  denote the number of units of stock 
that we hold in the replicating portfolio at time t and let 

 denote the corresponding number of units of the 
bond, then the total value of the portfolio at time t is 

 a t

 b t

       ( ) .V t a t X t b t t   

The condition where the portfolio replicates the con-
tingent claim at time T is simply 

   V T h X T 

d

.                      

From the self-financing condition 

         d d d V t a t X t b t t               (2.2) 

and the models for the stock and bond, we have 

              
      

d , ,

, d .

 



 



V t a t t X t b t r t X t t t

a t t X t W t
(2.3) 

Then from our assumption that     ,h t X t
 ,
V t for 

any twice differentiable function f t x and the Itô for-
mula, we have (2.4). 

When we equate the drift and diffusion coefficients 
from Equation (2.3) and Equation (2.4), we find a simple 
expression for the size of the stock portion of our repli-
cating portfolio: 

    ,,xt ta f X t  

and find 

            

        

     

2

, , ,

1
, , ,

2

, , .

x

t xx

x

t X t f t X t b t r t X t t

f t X t f t X t t X t

f t X t t X t

 







 



 

The      , ,xt X t f t X t  terms cancel, and  b t  
is given by 

 

             21 1
, , ,

2, t xx

b t

f t X t f t X t t X t
r t X t t






  
 

.
 

Because  V t  is equal to both   , f t X t  and  
       a t X t t b t  , the values for a t  and    b t  

give us a PDE for   ,f t X t : 

          

        2

1
, ,

,

1
, , ,

2

x

t xx

f t X t f t X t X t
r t X t

f t X t f t X t t X t

 

   
 

.

Now, when we replace  X t  by x, we arrive at the 

general Black-Scholes PDE (2.1) and its terminal bound-
ary condition (2.2). 

We can solve the Black-Scholes PDE to get the time-t 
call price. The link between the stochastic solution to 
PDE and the martingale approcach is given by the fol- 
lowing Feynman-Kac Theorem. 

Theorem 2.1 A function  , f t x defined by 

         d
, ,

T
t V X

f t x e h X T X t x
     

  

where          d , d , d  X t t X t t t X t W t  satis-

fies partial differential equation 

 

               

                      

2

2

1
d , d , , d , d

2

1
, , , , , d , , d

2

t xx x

t xx x x

V t f t X t t f t X t t X t t f t X t X t

.f t X t f t X t t X t f t X t t X t t f t X t t X t W t



  

  

     
 

 (2.4) 
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         

   

21
, , , , ,

2
, ,

t x xxf t x t x f t x t x f t x

V t x f t x

  


 

with the terminal condition    , .f T x h x  
oles PDE Consider the Black-Sch

       2 21
, , ,

2t x xx , ,f t x rxf t x x f t x rf t x    

with the terminal condition: (a)    ,f T x Kx
 

 : 0,h  
; (b) 

; (c)    ,T x h x for some function
 ,

f
f T x x ; (d)    , logf T x x . 

holes equation has a stochastiThe above the Black-Sc c 
solution of the form 

        , e r T t ,f t x X t x    

where, under eutral risk measu

f X T 


 the n re 
       d d d , 

, 

X t rX t t X t W t  

and  X t  is a geometric Brownian motion of the form 

         2 2exp .X T X t r T t W T t      

For specific terminal conditions, the closed form time- 

se (a  
les formula 

t price can be obtained by finding the stochastic solutions. 
In Ca ), the time- t price is given by the Black-Scho-

 
      

      

   

22log 2

( )
1 2

,

e e d
2

d e d ,

x r T t T t z z

r T t

f t x

2

e

1
e

r T t
Q

r T t

X T K X t x

K z

x K

       



 

  
  

   



where  

 


 

     




 

    2

1 2

log
d ,d

2
.

x K r T t
T t

T t






  
 1d 


 

In Case (b), the time-t price can be represented as 



 
          

    

2 2
e e

e e .

T t W T tr T t
Q

x

2 2r T t T tZr T t

,f t

f X X x

f x

t t
             

     





In Case (c), for some real v, 

        

 

 
          

      

   

2

2

2

1 2

(

,

e e

e .

r T t T t W T t
Q

W T t

r T t

f t x

2 2
e e

r T tr T t

X t X t x

x

x

    



 

     



   

 


 




 

In Case (d), 

        




 
          

       

2 2

2

,

e log e

e og 2l .

T t W T tr T t
Q

r T t

f t x

X t tX

tx

x

T

  

 

    

 

       

   

  

 
2.1. Option Pricing for Pure Jump Processes  

(PDE Approach) 
 
In order to price European options based on jump processes 

 we need to know the evolution of both (Vecer [28]),
 YX t  and  XY t  

X
he ev

jump

in order to determine both martin- 
asures  and . It is possible to preserve the 
ry of t olution of the prices with the excep-

 preserves the direction: when

gale me
symmet
tion that the 

Y

  YX t  
jumps up,  XY t  jump n, and vise versa. Ts dow he jump 

 N t  
ualized

ated w

bel e pair  and Y; it cannot be indi
 t n rast to the geom

it Y.  case of Poiss

on
o 

h t

gs to th
one asset i

he asset 

of
 cont

In the

vi- 
etric Brow- 

olution, 

d
nian motion model, where the noise factor XW  is asso- 
ciated with the asset X, and the noise factor YW  is asso- 
ci on ev
it is the intensity   of the Poisson process that is asso- 
ciated with the particular asset. Under the X  measure, 

 N t  has int X tensity   and the process   XN t t  is 
a martingale, w under  Y  measure, hile the  N t  has in- 
tensity Y t  and the process   YN t t  is a martingale. 

The price process  YX t  driven by a SDE of the form 

        e 1 ,Y
Y YdX X t d N t     

has a solution as a geometric Poisson process 

       

t t

 0 exp e 1 .  Y YX X N tt   (2.5) 

The inverse price process  XY t  satisfy the SDE of 
the form 

 tY

       d e d e ,   X XY Y t tN tt

and has a geometric Poisson p ess representation 



roc

1  X  

        0 e 1 .X
X XY Y Nt t t       (2.6) exp

Y  and X  The values of are linked by the rela-
tionship eX Y  , where   is the size of the jump of 

 log YX t . Let V be a contract that pays off   Y
Yf X T  

 the conunits of an asset Y at time e price of
with respect to the reference Y is given by 

T. Th tract V 

    .Y YV ft  Y t YX T    

The conditional expectation on the right hand side of 
the above equation with respect to Y is a  martingale, Y
and its value depends only on the price of  YX t . Thus 
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we can write 

      , .Yu t x f X T X t x     

Similarly we can also com ute the price of this con- 
respect to a reference asset X as 

      ,X X
X t XV ft Y T   

Y Y Y
t Y

p
tract with 

where Xf  is a payoff function in terms of the asset X. 
And the price function is defined as 

    
 ,Xu t x  

, ( .X X Y
t X Xu t x f Y T Y t x     

Then the following theorem (Vecer [28]) g e form 
of the PDEs fo

) 

ives th
r  and 

Theorem 2.2 ice sed on e geo- 
metric Poisson pr

 ,Xu t x
 (a) The pr

 ,Yu t x . 
function ba  th

ocess (2.5),  

    , ( )X X X
t X Xu t x f Y T Y t x    

satisfies 


 
  

,X
tu t x

u      

with the terminal condition 

nction ba the geom ric Poisson pro- 
ce

,e , e 1 , 0X X X X
t xt x u t x xu t x      

 

   , .X Xu T x f x  

(b) The price fu sed on et
ss (2.6),       ,Y Y Y

t Y Yu t x f X T X t x     satisfies 

    , ,e ,Y Y Y Yu t x u t x u t      e 1 ,Y
t t xx xu t x    0

erminal condition 

Proof of this theorem is given in [28] (pp. 249-250). 
For a geometric Poisson model (Vecer [28]) for two 

where the price follows 

,

with the t

   , .Y Yu T x f x  

no-arbitrage assets X and Y, 

       d e 1 d     Y
Y Y X t X t N t  t

an
in terms of a 

asset Y is 

d by letting  N t m k  , the price of a contract that 
pays off V I reference   T TTN k 

n by 
Y  

give

      
       

    
 

.
!k m




Y k mT t Ye T t 
  

Y Y

Y Y
t t

V t V T N T k

N T k N T N t k m

      

    



   

Moreover, the price of using the reference asset X 
is given by 

Y t Y t  



 XV t  

    
    

    
e

.

Y k mT t Y

X Y Xt
T t

V V Yt
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2.2. Option Pricing for Jump Diffusion Processes 
 
Recently Pillay and O’ Hara [3] have studied the FFT 
sed option pricing under a mean reverting process with 
stochastic volatility and jumps by finding a closed form 
of expression for a conditional characteristic function of 
the log asset process and then apply the FFT method to 

e. 

ba- 

compute the option pric
Let  ,  ,  

row
enerated b

a risk neutral 

be a probability space on which are de- 
fined two B nian motion processes. Let be the fil- 
tration g y these Brownian mo se th  

is probability under which the asset 

t  
tions. Suppo at

  
price process  S t  and volatility process  v t  are gov- 
rned by the following dynamics: e

            

          

   

1

2

1 2

d ln d d ,

d d d ,

d d d ,







  

  



S k S S t v W

v b a

t t t t t t

t t t t t

t

v

W t

v t W

W t

 

where  t  is a deterministic function that represents the 
equilibrium mean level of the asset against time, k is the 
mean reverting intensity of the asset,  a t  is a determi- 
nistic function that describes the equilibrium mean level 
of the volatility process against time and b is the mean 
reversion speed of the volatility process. Th nstant e co   
is the volatility coefficient of the volatility process, and 

 1W t  and  2W t  are correlated with correlation coef-
ficient  . 

On the probability space , a Poisson process  , , 
 N t  

in
is further defined for with a constant 

tensity parameter 
all 0 t T  , 

0  . The process  N t  is assumed 
pendeto be inde nt of both  1W t  and  2W t . Furthermore, 

a sequence of random variables iJe  for  1 i N t   is 
defined to represent the jump sizes of the Poisson proc-
ess. Each of the iJe ’s are log-normally, identically and 
independently distributed over time, where  2~ ,iJ N    
and 0  . Then by defining the following process 

   lnX t tS  and applying the Itô-Doebin formula to 
the two-factor mean reverting process with stochastic 
volatility and s we have jump

         

    

1

           

d
2

e 1 ,J

t
t t t

v
X k t v W

k k

X t t


 

    
 

 

 

(2.7) 

     



d d

d

t
m

X

N





 2d ( )d d ,  t t tv b v t v W t    (2.8) a

   1 2d d d .t tW W t           (2.9) 

The conditional characteristic function of the  X t  
process (2.7) is defined as 
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   E et u    .iuX

t

T   

The method of Wong and Lo [29] has applied to com- 
pute the characteristic function of the process (2.7). 

Duffie, Pan and Singleton [30] introduced a generalized 
Feynman-Kac theorem for affine jump diffusion proc- 
esses. By defining the following function: 





        exp , , , iux; , , ,f B t T C t T x Du v tx T vt      

where   ,  ,C t T

       

   

; , , E e | ,

e E e e | , ,

   

  


iuX

iuXr rT

T

T T

t t

t t

f u t x v X x v v

   X x v v

 

(2.10) 
contingent claim that pays 

 at time T, where r is a constant interest rate, 
which can be viewed as a 

rT iuxe 

 X t  is the mean reverting asset price process with 
jumps defined by (2.7) and  v t  is the volatility process 
specified by (2.8), the generalized Feynman-Kac theorem 
implies that  ; , ,f u t x v  solves the following partial in- 
tegro-differential equation (PIDE): 

 

     

21

2 2

; , , ; , , d 0,

t x xx



1

2v

xv

v m
vvf k x f vf b a v f v

k k

vf f u t x J v f u t x v q J J



 




         
 

    

variab

f
 

(2.11) 
where  q J  is the distribution function of the random 

le J and 0   is the constant intensity parameter 
 Poisson process  N t . 

The coefficients, 
of the

 k v m k x     and  2k v t , 
of the mean reverting asset price process (2.7) and the 

coefficients,  b a v t  and  
 

 tv  of the volatility  

process (2.8) are all affine in nature. It follows that the 
function  ; , ,f u t x v  

solution of (
is of exponential affine form, and 

hence the 2.11) has the form 

,B t T  and D t  are deterministic  ,T 
functions of t. From (2.10), it is clear that 

   ; , , exp iux ,T x v   

which is the terminal condition of PIDE (

f u

2.11). This im
plies that 

-

     , , , 0.T T T T0, 0,B T C D T      (2.12) 

Solving the PIDE (2.11) with the terminal conditions 
(2.12), the conditional characteristic function of the mean 
reverting process (2.7) with stochastic volatility (2.8) is 

        exp , , , iux   B t T C t T x D t T v  t u

    , , ,  and ,B t T C t T D t Twhere  are given i

2.3. Option Pricing for Stochastic Volatility Models 
 

 twice-differentiable continu

n (2.13). 
The detail proof of the results is given in Pillay and O’ 

Hara [3]. 
 

Given a ous function 

  ; , ,f t x v
t T

, the price process  X t  and the volatility 

rocess 

 

   v t follow the following stochastic volatility P
processes 

      



1d d d  X t Wt x x t

X

 ,
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  ln ,t S t

   d d dt tW W twhere 1 2  . Then the PDE of f  can 
be obtained by using Itô formula, see (2.14). 

Setting the drift term to zero we have 
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One can calculate the asset price by inverting its con- 

ditional characteristic function . The con- 

ditional characteristic function 

  |
i

t
S T

 

of the  X t  process is de- 

fined as 

   E e .i X T
t t

u        

Furthermore, if one defining the following function 

     ; , , E e ( ) , ,i X Tf t x v X t x v t v      

then solution of (2.15) is the characteristic function. To 
solve for the characteristic function explicitly, consider 
an exponential affine form 

        ; , , expf t x v B C x D v i x        (2.16) 

where T t    and      0 0 0B C D        0 . 
Take derivatives of (2.16) with respect to x, v and  , we 
get 
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Substituting (2.17) into (2.15), it yields 
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Equation (2.18) leads to a system of ODEs. We can 
get the characteristic function by solving this ODE system. 

As an example, for the Stochastic Volatility 
studied by Christoffersen, Heston and Jacobs [1
fined by 

model 
9] de-
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and the system of ODEs becomes 
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 0 ,C                  (2.20) 
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It is clear from (2.20) and  0 0C     that   0C   . 
Hence, (2.19) and (2.21) turn out to be 

       

   

2 2 21 1
,

2 2

.

D ui cD i D D

B Ri aD





        

  

    

 

 

One can solve these two ODEs under the conditions 
 0 0B   and  0 0D   to obtain 
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FFT method can be 
 the conditional characteristic function. 

Option Pricin
with Stochastic Volatility 

 
Thavaneswaran and Singh [4] considered the price proc-
ess 

The used to obtain the call price 
from
 
2.4. g for Jump Diffusion Model  

 S t  following a conditional jump diffusion model 
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2v r m t    , 1Ym e     W t  , and 

is a standard Brownian mo is a sta
process, and the number of j

tion,  t  
umps  N t  on

tionary 
  0,t  fol-

lows a Poisson process with rate  . Equivalently the 
model can be written as 

Copyright © 2011 SciRes.                                                                                 JMF 



 69H. GONG  ET  AL.

     
 

   
 

 
   

1

log ,

log log ( ) ,
1 1

N t

i
i

S t
vt t W t Y

S

S t S t
y t t Z t

S t S t







  

 
     




 

where ’s are identically distributed independent nor- 
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iY
al random variables having mean   and variance 2 . 
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Proof of the theorem follows from Gong, Thavanes- 

wara nd Singh [4]. 
een d onstrated for 

Black-Scholes model with GARCH volatility and Black- 
Scholes model with stochastic volatility in Gong, Tha- 
vaneswaran and Singh [1,2]. More details of related re- 

 Cao and Guo 
[31,32]. 
 
3. Conclusions 
 
Recently Gong, Thavaneswaran and Singh [1,2] have de- 
monstrated the superiority of the truncated lognormal dis- 
tribution method for option pricing by carrying out ex- 
tensive empirical analysis of the European call option 
valuation for S & P 100 index and showing that the pro- 
posed method outperforms other compelling stochastic 
volatility pricing models. In this paper, option pricing is 
discussed for Black-Scholes models, stochastic volatility 
models, pure jump process models and jump diffusion 
process models. Option pricing using PDE method to- 
gether with FFT and the method based on a truncated 
lognormal distribution for Black-Scholes process and jump 
diffusion process are also discussed in some detail. 
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