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Abstract 
 
Need for developing efficient non-destructive damage detection procedures for civil engineering structures is 
growing rapidly. This paper presents a methodology for detection and quantification of structural damage 
using modal information obtained from transfer matrix technique. Vibration characteristics of beam-like 
structure have been determined using the computer program developed based on the formulations presented 
in the paper. It has been noted from reported literature that detection and quantification of damage using 
mode shape information is difficult and further, extraction of mode shape information has practical 
difficulties and limitations. Hence, a methodology for detection and quantification of damage in structure 
using tranfer matrix technique based on the changes in the natural frequencies has been developed. With an 
assumption of damage at a particular segment of the beam-like structure, an iterative procedure has been 
formulated to converge the calculated and measured frequencies by adjusting flexural rigidity of elements 
and then, the intersections are used for detection and quantification of damage. Eventhough the developed 
methodology is iterative, computational effort is reduced considerably by using transfer matrix technique. It 
is observed that the methodology is capable of predicting the location and magnitude of damage quite 
accurately. 
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1. Introduction  
 
The need for development of an efficient procedure for 
non-destructive structural damage detection is increasing 
in order to assess the integrity and serviceability of ex-
isting structures. This has led to continued research to 
develop methods that could identify changes in vibration 
characteristics of a structure. These methods are based on 
the fact that modal parameters (notably frequencies and 
mode shapes, and modal damping) are functions of the 
physical properties of the structure (mass, damping, and 
stiffness). Any change in the physical properties, such as 
reduction in stiffness resulting from cracking or loosen-
ing of a connection, will cause detectable change in the 
modal properties. Various methods have been employed 
by researchers all over the world for damage detection of 
structural systems, in frequency domain. 

Perhaps, the first research article on damage detection us- 

ing vibration measurements was by Lifshitz and Rotem 
[1] where the change in the dynamic moduli was related 
to the frequency shift and proposed as indicator of dam-
age in particle-filled elastomers. Cawley and Adams [2] 
are the first researchers to give a formulation for damage 
detection based on change in frequency of an undamaged 
and damaged state of a structure. The systematic use of 
mode shape information was proposed in [3] for localiz-
ing of structural damage without the use of a prior finite 
element model (FEM) by using the modal assurance cri-
teria (MAC) to determine the level of correlation be-
tween modes from the test of an undamaged space shut-
tle orbiter body flap. Yuen [4] examined changes in the 
mode shape and mode-shape-slope parameters to simu-
late the reduction of stiffness in each structural element 
and compared predicted changes with the measured 
changes to determine the damage location. Ismail et al. 
[5] demonstrated that the frequency drop caused by an 
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opening and closing crack is less than that caused by an 
open crack. This property is a potentially large source of 
error that is considered by few of the researchers using 
frequency changes. A simple and easy method for one- 
dimensional structures by representing crack using a 
spring that connects the two half components was pre-
sented by [6]. The natural frequencies were expressed as 
functions of the crack depth and location. Hearn and 
Testa [7] developed a damage detection method using 
frequency shift of a structure due to damage. The fre-
quency sensitivity method combined with inter-
nal-state-variable theory to detect damage in composites 
was used in [8]. They presented a damage indicator 
which is capable of detecting damage due to 1) exten-
sional stiffness changes caused by matrix micro-cracking 
and 2) changes in bending stiffness caused by transverse 
cracks in the 90-degree plies. An experimental study on 
the sensitivity of the measured modal parameters of a 
shell structure was conducted in [9] to damage in the 
form of a notch. A method for the detection of the exis-
tence and location of structural damage using the identi-
fied eigen solution together with properties of the eigen-
value problem was proposed in [10].  

Slater and Shelley [11] presented a method based on 
frequency-shift measurements to detect damage in a 
smart structure by using the theory of modal filters to 
track the frequency changes over time. Narkis [12] de-
duced a closed-form solution  for the crack position, as 
function of the frequency shift of two modes of the same 
mechanical model and located the crack from measuring 
either bending or axial frequencies of two modes only. A 
transfer matrix technique was used in [13] to detect 
damage for beam like structures. Ratcliffe [14] devel-
oped a technique for identifying the location of structural 
damage in a beam using modified Laplacian Operator on 
mode shape data. A sensitivity- and statistical- based 
method to localize structural damage by direct use of 
incomplete mode shapes was presented in [15]. and [16]. 
A numerical study of damage detection using the rela-
tionship between damage characteristics and the changes 
in the dynamic properties was presented by [17]. It was 
found that the rotation of mode shape is a sensitive indi-
cator of damage localisation. Another damage localisa-
tion method based on changes in uniform load surface 
(ULS) curvature was developed by Wu and Law [18]. A 
procedure using gap smoothing method was proposed in 
[19] wherein local features in vibration curvature shapes 
were extracted using a localized curve fit (i.e., smooth-
ing). Alvandi and Cremona [20] reviewed usual vibra-
tion-based damage identification techniques for struc-
tural damage evaluation. With the help of a simply sup-
ported beam with different damage levels, the reliability 
of these techniques was investigated by using only few 
mode shapes and/or modal frequencies of the structure 
that can be easily obtained by dynamic tests and con-

cluded that broadly the detection judgement depends on 
a threshold level of damage.  
 
1.1. Detection of Damage Using Mode Shape  

Information 
 

From the review of literature, it is found that the vibra-
tion data such as frequency and mode shape are very 
important parameters for detecting the damage in struc-
tures and a number of research works was carried out on 
detection of damage using frequency or mode shape. But, 
there is no confirmation on superiority of any method 
over the others. Though, changes in mode shape are 
much more sensitive to local damage compared to 
changes in frequency, use of mode shape information is 
restricted because 1) lower modes (usually measured 
from vibration tests of large structure) may not signifi-
cantly reflect the local damage, 2) extracted mode shapes 
are prone to environmental noise and 3) number of sen-
sors and the choice of sensor location may have a crucial 
effect on accuracy of damage detection. So, a detailed 
investigation has been carried out by the authors to as-
sess the influence of location and degree of damage on 
mode shape. It is found that 1) displacement mode 
shapes are sensitive to damage and the mode shape 
changes with damage, 2) though higher modes are more 
predominant in showing the shift in mode shape dis-
placements due to damage in the structure, lower modes 
may not significantly reflect the damage, 3) shift in mode 
shape largely depends on the location of damage and the 
mode considered. Higher mode will magnify the shift in 
mode shape, if the damage location does not fall near the 
zero-displacement points, 4) any shift in mode shape of a 
damaged structure with respect to the mode shape of 
undamaged structure may lead to an interpretation of 
damage in that location, and in most of the cases, it may 
go wrong.  Further, for higher modes, if the damage is 
located at a location where zero displacement occurs in 
that particular mode, shift in mode shape will be re-
flected in place other than the place where damage has 
really taken place, 5) Shift in mode shape is predominant 
in higher modes than in the lower modes. It may show a 
number of locations with shift in mode shape with re-
spect to undamaged mode shape which may lead to mis-
interpretation of location of damage. So, it can be stated 
that mode shape information alone can not provide cor-
rect information on detection of damage in the structure 
unless it is treated otherwise, and 6) it is very difficult to 
quantify damage accurately from mode shape information 
alone. Further studies can be seen elsewhere [21,22].  

Though significant damage might cause very small 
changes in natural frequency (particularly for large 
structures), natural frequencies are easy to be measured 
and are less influenced by environmental noise. The 
choice of using the natural frequency as a basic vibration 
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characteristic for damage detection is the most attractive 
one due to the fact that the natural frequencies of a 
structure can be measured at one single location in the 
structure, thus rendering a means for a rapid and global 
technique. Further, it is observed that studies related to 
the extension of transfer matrix method for detection of 
damage are very few. Hence, in this study, a methodol-
ogy for detection of damage in structures using transfer 
matrix technique has been proposed based on change in 
natural frequency. The extent of research work carried 
out towards quantification of damage is considerably less 
compared to studies on localisation of damage. In view 
of this, a methodology has been developed in this study 
for detection and quantification of damage using transfer 
matrix method based on modal frequencies obtained 
from a damaged structure. Transfer matrix method [23] 
is used in this study because of its versatility and ease 
with which it can be applied to a structure of either uni-
form or non-uniform cross section and under a variety of 
boundary conditions such as simple support, cantilever 
support, and even for beam on elastic foundation. More-
over, for a methodology based on an iterative algorithm, 
as proposed in this study, transfer matrix method is very 
useful and easy to handle compared to FE formulation. 
Theoretical developments of the methodology for detec-
tion and quantification of damage are presented first, 
followed by detailed numerical studies to demonstrate 
the efficacy of the proposed method.  
 
2. Transfer Matrix Method for Obtaining 

Modal Parameters  
 

For computing plane flexural vibrations of a straight 
beam using transfer matrix method, the beam section is 
modelled by discrete uniform structural elements inter-
connected at the nodal points. Using the conventional 
assumption of a mass-less beam, the inertia effects of the 
beam element are dynamically represented by two 
lumped masses at both ends of the element (as shown in 
Figure 1).  

Each individual beam is considered to be of individual 
homogenous material property and geometry which can 
be represented by area moment of inertia and Young’s 
modulus of that particular element. Two displacements, 
viz., vertical deflection () and rotation () and the cor- 

 

 

Figure 1. Beam with concentrated masses. 
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Figure 2. Sign convention for state array variables of beam 
element. 

Z

responding forces viz., shear force (V) and bending mo-
ment (M) are considered for describing the state array 
variables at each section and the sign convention of the 
state array variables is shown in Figure 2. 

The equilibrium between sections i and i-1 of an ele-
ment will be maintained by 

1 0L R
i iV V                 (1) 

1 0L R L
i i i iM M V l           (2) 

where the superscript L and R stands for left and right 
side of a section respectively.  

Two more equations that are required for solving the 
problem can be obtained from compatibility conditions 
and the final equations can be expressed as  
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and can be expressed in matrix form as, 
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So, from Equation (7), the field matrix (Fi) connecting 

 with can be expressed as  L
iZ R

iZ 1

1
L R
i i iZ Z  F              (8) 

The point matrix (Pi) connecting  with  is 

found by using continuity of deflection, slope and mo-
ment across the concentrated mass mi,  

R
iZ L

iZ
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Figure 3. Free-body diagram of mass mi. 

R L
i i  ; R L

i i   and R L
i iM M           (9) 

The vibrating mass, however, introduces the inertial 
force which causes discontinuity in shear. The free-body 
diagram shown in Figure 3 yields a relation from simple 
equilibrium considerations as: 

2R L
i i iV V m i               (10) 

(in formulation, a particular sign convention has been 
followed) 
Equations (9) and (10) can be expressed in matrix form 
as: 
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By combining both field and point matrices, relation 
between the state vectors of adjacent ends (i and i-1) can 
be obtained as  

1
R R
i i i iZ Z  P F                  (13) 

 
2.1. Transfer Matrix for Frequency  

Determinant 
 
The transfer matrix method can be applied to solve more 
complicated problems by considering a beam that is 
made up of piecewise uniform mass-less elements, with 
masses concentrated at discrete points. If a structural 
element is made up of n segments (between the ends 0 to 
n), relationship between the state vectors at the extreme 
ends (0 and n) of the beam can be obtained as 

n n-1 1 4 4 3 3 2 2 1 1 0F P F P F P F P F P Fn nZ Z ...........  

0nZ Z U                      (14) 

Equation (14) can be written in full, as 
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where the coefficients to  are functions of cir- nu11
nu44

cular frequency  . Boundary conditions can be applied 
to the equations formulated from Equation (15) to arrive 
at the frequency determinant. For example, a beam (con-
sists of n segments) with simply supported ends can be-
solved as follows: 
The boundary conditions at simply supported ends are 

n  =  0 ,   =  0 ,  nM 0  =  0 ,  a n d   =  0 ; 
0M

By substituting these boundary conditions in Equation 
(15), the following relation can be obtained 

12 0 14 0 0n nu u V                   (16a) 

And, 

32 0 34 0 0n nu u V              (16b) 

where  is element of ith row and jth column of the 

transfer matrix which can be obtained by using Equation 
(15) and superscript k denotes the number of segments. 
The normal modes can be found for the system using the 
following procedure. 

k
iju

For a nontrivial solution of Equations (16a) and (16b), 
the determinant of the coefficients must be zero, that is  

12 14

32 34

n n

n n

u u

u u
=0               (17) 

The same procedure can be followed for other bound-

ary conditions also. Since, the elements  are func-

tions of the circular frequency
iju

 , this determinant serves 
to compute the natural circular frequencies. In view of 
the fact that a beam which possesses n segments will 
have n-1 discrete masses, the expansion of the frequency 

determinant leads to an equation of n-1 degree in .  2
 

2.2. Numerical Procedure for Solution of  
Frequency Equation 

 
In the preceding section, the matrix multiplications have 

been made by treating  as a free parameter. After 
applying the boundary conditions the resulting frequency 

equations are solved for . For complicated systems, 
the algebraic solution would become complicated and 
furthermore, it would be very cumbersome to extract the 
roots. In such cases, it is advantageous to replace alge-
braic solution with numerical computation. For system 
with 'n' segments with simply supported ends, the fre-
quency determinant (as described in Equation 17) would 
become 

2

2






      (15) 
12 14

22 24

n n

n n

u u

u u
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If the matrix multiplication is carried out algebraically, 
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then the coefficients , ,  and  and con-

sequently the frequency condition would be complicated 

functions of . The procedure adopted in practice, 

however, is to choose certain values for  and com-
pute the corresponding values of the frequency determi-
nant 

nu12
nu14

nu22
nu24

2

2

)( . The value of the determinant  is then 

plotted against


 , the zero values of  occur at the 

natural circular frequencies of the system. This proce-
dure has been adopted in the study for tracking of fre-
quencies.  



 
3. Determination of Frequency of a  

Structure Using Transfer Matrix Method 
 

In this study, a computer program called FREQ has been 
developed based on the formulation presented in the 
preceding sections and the flow-chart of the program for 
obtaining frequencies of a structure, is shown in Figure 4. 
The formulations and the computer program have been 
validated by comparing the results of this study with 
those obtained using Finite Element Analysis (FEA). 
Table 1 gives the comparison of frequencies obtained by 
using transfer matrix method and FEA. From this table, it 
can be seen that the results of this study are in good 
agreement with those obtained using satndard FEA 
package. For the validation study, a beam with 90 
elements have been considered with Young's modulus 
(E)= 25106 kN/m2, moment of inertia (I)= 0.001333 m4 
and cross sectional area (A) = 0.1 m2. 

As discussed in the preceding section, the determinant 
for the whole beam after incorporating the boundary 
conditions is computed for an assumed (initial) natural 
frequency. Then, an iterative procedure has been carried 
out by incrementing natural frequency to get the deter-
minant of the transfer matrix. The frequency for which 
the determinant value is nearly zero, has been assigned 
as the natural frequency of the beam. The variation of the 
determinant of the transfer matrix for different modes of 
the beam is shown in Figure 5. For clarity, the determi-
nant value () has been scaled down suitably after 
reaching a particular frequency. For example, for first, 
second and third natural frequencies, the determinant () 
of the transfer matrix is scaled down to 1/10th, 1/100th  

 
Table 1. Comparison of frequency obtained using transfer 
matrix method and FEA. 

Modes Frequency () in Hz 
First mode 5.648 (5.670) 
Second mode 22.564 (22.557) 
Third mode 50.478 (50.306) 
Fourth mode 88.108 (88.352) 

Note: Results obtained from FEA are presented in     
          brackets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Flow-chart of computer program (FREQ). 
 

and 1/500th respectively. The frequencies corresponding 
to zero values of the determinant () represent the natu-
ral frequencies () of the beam for different modes (as 
shown in Figure 5). 

The central philosophy of detection of damage of 
beam like structure using transfer matrix formulation 
presented here, is to determine the reduction in flexural 
rigidity of one or more elements of the beam which 
would signify the existence of damage in the structure. In 
this context, question may arise that how far the frequen-
cies of a structure are influenced by the damage in a par-
ticular element(s), in other words, what is the change in 
the determinant of transfer matrix with the change in 
flexural rigidity in one or more elements of the beam. In 
view of this, a study has been carried out to evaluate the 
frequency determinant by changing the magnitude and 
locations of the damaged element(s) to evaluate the in-
fluence of location and magnitude of damage on fre-
quency of a structure. It is noticed that the frequencies 
corresponding to higher modes are influenced predomi-
nantly by change in flexural rigidity of one or more ele-
ments of the beam. For clarity, the changes in determi-
nant values for the first two frequencies are shown in 
Figure 6. It is observed from the figure that by reducing  
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Figure 5. Variation of determinant of transfer matrix for 
different modes. 
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-1000

0

1000

2000

3000

4000

5000

6000

7000

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Frequencies

D
et

er
m

in
an

t 
va

lu
e

EI=100 EI=200 EI=300 EI=400
EI=500 EI=600 EI=700 EI=800
EI=900 EI=1000 EI=2000 EI=3000
EI=4000 EI=5000 EI=6000 EI=7000
EI=8000 EI=9000 EI=10000

2  
(b) For second fundamental frequency. 

Figure 6. Variation of determinant with degree of damage 
(EI in kNm2). 
 
flexural rigidity of a particular element of the beam con-
sidered in this study, frequency of the second mode var-
ies over a wider range than that of the first mode. This 
signifies that the shift in frequency of second mode due 
to damage is more predominant than that in the first 
mode frequency. It is also noted from the study that this 
phenomenon is valid for next higher modes.  
 
4. Results and Discussions 
 
Though the transfer matrix technique can easily be ap-
plied to any type of structure with appropriate boundary 
conditions, a beam like structure with simply supported 
ends is considered in this study to demonstrate the effi-
cacy of the methodology and its accuracy. The material  

 
Node number 

 
 
 
 
 
 

Figure 7. A typical beam like structure with elements and 
node numbers.  

 
and sectional properties of the beam considered in this 
study are same as that mentioned for validation study. It 
is true that a finer division of a structure would lead to a 
more precise result, but for demonstrating the methodol-
ogy proposed in this study, a beam like structure with 10 
elements (as shown in Figure 7) has been considered for 
better representation, faster computation and clarity. An-
other reason behind considering less number of elements 
in this study is that for single-spread damage case, 
coarser mesh can occupy maximum amount of damage 
in minimum number of elements which would reduce the 
computation time without sacrificing the efficiency.  
 
4.1. Solution Procedure for Detection of Damage 

Using Change in Frequencies. 
 
The methodology proposed in this study, uses natural 
frequency information obtained from the transfer matrix 
formulations, for detection, quantification and localiza-
tion of damage. A beam with known location and mag-
nitude of damage has been analysed for extracting the 
natural frequencies. The existence of orthogonal damage 
in a beam structure can be simulated numerically via a 
change in flexural rigidity (EI) in a particular beam ele-
ment. Such changes or reduction in flexural rigidity 
would result in change or decrease in the natural fre-
quencies of the system. Through the measurement of the 
system natural frequencies of the structure, the location 
and magnitude of the damage can be determined. As-
suming that flexural rigidity of all the segments of the 
system are known, the dynamics of the system can be 
obtained by the numerical model described in the pre-
ceding section.  

When damage has occurred in a certain beam segment, 
it can be detected through the changes in the system 
natural frequencies. For the system containing damage, 
the iterative procedure starts with an assumption that the 
damage is located at the first beam element. The corre-
sponding flexural rigidity of the element is adjusted until 
the first natural frequency of the system is matched with 
the measured one. The process is then continued with the 
second segment of the structure and the first natural fre-
quency of the system is again matched by adjusting the 
flexural rigidity of the second element. The process is 
repeated for all the segments of the structure. The same 
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technique is followed for other modes which can be 
measured through vibration testing. The location and 
magnitude of the damage of the structure can be identi-
fied by the intersection of various rigidity-versus- dam-
aged beam element location curves. The intersection of 
the curves obtained for different modes represent damage 
locations and magnitudes (flexural rigidity) which 
caused the changes in the system natural frequencies.  
Flow-chart of the computer program developed in this 
study based on the formulation described above for de-
tection and quantification of structural damage is shown 
in Figure 8.  

 
4.2. Case Study 
 
For a numerical simulation, a beam is considered where 
the geometric and material properties are same as that 
mentioned for validation study. It is significant to men-
tion that, in this study, 1) single damage does not repre-
sent only one damage (one crack) in the entire structure 
which is not practical in real structure too. As the formu-
lation states, an element in the structure can be chosen to 
take a considerable length of the structure. The proposed 
methodology would show the location and magnitude of 
damage in an element considering all the damages oc-
curred in that particular element which can be used for 
further discretisation, if required,  to arrive at more par-
ticular locations. 2) It is also noticed that the most of the 
reported methodologies for damage detection perform 
well when degree of damage is very severe. But, in real 
practice, when large damages are already included in the 
structure, a sophisticated methodology for damage detec-
tion is not required, rather it can be located either by 
visual observation or simple inspection techniques. So, in 
this study, low levels of damages are considered to illus-
trate the methodology and to check its acceptability. 3) 
For all the case studies presented here, frequencies cor-
responding to only first four modes are considered be-
cause more number of modes may not be available from 
the field experiments. It is always a challenging problem 
to detect and quantify damage from less number of 
modes. Further, consideration of more number of modes 
is computationally expensive too.  

Three levels of damage in two different locations have 
been studied separately, i.e, a beam with 10%, 20% and 
30% damage in an element near support (3rd element as 
shown in Figure 7) and near centre (5th element as shown 
in Figure 7) respectively. These studies have been con-
sidered to examine the performance of the proposed 
methodology because it is known that the change in fre-
quency with damage (reduction in flexural rigidity) of a 
structure greatly depends on the degree and location of 
damage.  

Using the proposed methodology and computer pro- 

gram developed based on the flow-chart shown in Figure 
8, iterative study has been carried out for satisfying the 
frequencies corresponding to different modes of a dam-
aged beam. Final flexural rigidities of each element 
along the length of the beam are obtained from the com-
puter program and plotted for the cases mentioned above.  
It is observed that the true location and magnitude of the 
damage are identified by the intersection of the various 
rigidity versus element location curves. Cases with 
damage of 10% (remaining flexural rigidity of 29993 
kNm2) in 3rd and 5th element are shown in Figure 9 and 
Figure 10 respectively.  It is observed from Figures 9 
and 10 that intersections of curves for different modes 
correctly indicate the damage locations (in 3rd and 5th 
element) with a remaining flexural rigidity of 30000 
kNm2.  

 
Start 

 
 Input- geometric and details for dynamic analysis
 
 Input- measured frequency and mode shapes of beam
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Flow chart for detection and localisation of struc-
tural damage. 

 

Flexural rigidity of ith element (EIi)=100 kNm2 
with the other segments as undamaged sections

Calculate frequency of jth mode (ji) from ‘FREQ’ for 
the beam with assumed rigidity (EIi) for ith element 

For no. of modes 
available (j) = 1 to m 

For no. of element 
(i) = 1 to n 

Increase rigidity
(i=i+1)

If ji  measured 
frequency 

no 

yes 

yes If element i  n 

no 

If modes j  m no

yes 

(j=j+1)

Plot the rigidity versus element diagram for all the 
modes available from experiment 

Intersection of results for different modes represent the prob-
able location of the structural damage and corresponding 

rigidity value (EI) denotes the magnitude of damage

End 
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Figure 9. Flexural rigidity versus element diagram for 10% 
damage in 3rd element. 
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Figure 10. Flexural rigidity versus element diagram for 
10% damage in 5th element. 
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Figure 11. Flexural rigidity versus element diagram for 
20% damage in 3rd element. 

Similarly, Cases with damage of 20% (remaining flex- 
ural rigidity of 26660 kNm2) and 30% (remaining flex- 
ural rigidity of 23328 kNm2) in 3rd and 5th element are 
shown in Figures 11-12 and Figure 13-14 respectively 
which indicate damage in the correct elements with a 
magnitude of 26500 kNm2 (as shown in Figure 11 and 
Figure 12) and 23500 kNm2 (as shown in Figure 13 and 
Figure 14), respectively. 

It is important to note that the evaluated magnitudes of 
damage are quite close to the actual values. 

In these studies discussed above, known degrees and 
locations of damages have been considered for validating 
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Figure 12. Flexural rigidity versus element diagram for 
20% damage in 5th element. 
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Figure 13. Flexural rigidity versus element diagram for 
30% damage in 3rd element. 
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Figure 14. Flexural rigidity versus element diagram for 
30% damage in 5th element. 
 
the methodology for detection and localisation of dam-
age. It is found that the procedure is able to identify the 
location and magnitude of damage. Hence, this proce-
dure can be adopted for detection and quantification of 
damage of structures using measured frequencies of first 
few modes. In this study, the problems are selected in 
such a way that both strengths and limitations of the 
proposed methodology can be examined. From the re-
sults shown in Figures 9-14, a few observations can be 
made as: 1) frequency based methodology proposed in 
this study can be used for localisation as well as quanti-
fication of damage, 2) since, the proposed methodology 
is based on only frequency information, structures with 
symmetrical boundary condition would always show two 
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possible locations of damage, and, 3) it is desirable to 
obtain the lowest measured frequency of a damaged 
structure with maximum possible accuracy to get an im-
proved and more accurate estimation.  

During the study, it is further observed that the pro-
posed methodology is able to provide information about 
the state of damage and its location in a damaged struc-
ture, but the accuracy and reliability of the results (both 
localisation and quantification) also depends on correct-
ness of information on the undamaged state. So, the 
proposed methodology would perform satisfactorily with 
a condition of availability of information (flexural rigid-
ity) in its undamaged state. Hence, the study is further 
being extended to formulate a procedure which can be 
used for identification of damage when information 
about the undamaged state of a structure is not available, 
and it is being explored to check the efficacy and the 
suitable solutions (if any) for the proposed methodology 
with various levels of noise in modal data.  
 
5. Concluding Remarks 

 
The present paper addresses the methodology for 
detection, localisation and quantification of damage 
based on the formulations made using transfer matrix 
technique. First, the formulations and the computer 
program have been developed for obtaining the vibration 
characteristics of beam-like structures. The computer 
program has been validated by comparing the results of 
this study with those obtained using Finite Element 
Analysis (FEA) package. The results of this study are in 
good agreement with those obtained using standard FEA 
package. From the existing studies, it is noted that dis-
placement mode shapes are sensitive to damage and 
higher modes show predominant shift in mode shape 
displacements due to damage in the structure. But, shift 
in mode shape largely depends on the location of damage 
and the mode considered and it is difficult to quantify 
damage from mode shape information. Hence, a meth-
odology for detection, localisation and quantification of 
damage in structures has been proposed based on change 
in natural frequency obtained from transfer matrix tech-
nique. The existence of orthogonal damage in a beam 
structure can be simulated numerically through change in 
flexural rigidity (EI) in a particular beam element. For 
the system containing damage, an iterative procedure has 
been adopted by adjusting the flexural rigidity of the 
element such that computed frequency matches with the 
measured values. The location and magnitude of the 
damage of the structure can be identified by the intersec-
tion of the various rigidity-versus-element location 
curves. Studies have been presented by considering 
single spread-damage cases with different degrees and 
locations of damage to validate the accuracy, reliability 
and to identify the possible limitation of the proposed 

methodology. It is found that the proposed methodology 
can localise and quantify damage in a structure with con-
siderable accuracy.  
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