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Abstract 
Mathematical modelling of glucose-insulin system is very important in medi-
cine as a necessary tool to understand the homeostatic control of human 
body. It can also be used to design clinical trials and in the evaluation of the 
diabetes prevention. In the last three decades so much work has been done in 
this direction. One of the most notable models is the global six compart-
ment-mathematical model with 22 ordinary differential equations due to 
John Thomas Sorensen. This paper proposes a more simplified three com-
partment-mathematical model with only 6 ordinary differential equations by 
introducing a tissue compartment comprising kidney, gut, brain and peri-
phery. For model parameter identification, we use inverse problems tech-
nique to solve a specific optimal control problem where data are obtained by 
solving the global model of John Thomas Sorensen. Numerical results show 
that the proposed model is adaptable to data and can be used to adjust di-
abetes mellitus type I or type II for diabetic patients. 
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1. Introduction 

It is common knowledge that lifestyle factors largely influence our health. These 
factors are diet, physical activity, smoking and psychological stress. The lifestyle 
changes have the influence on metabolism of some systems of human body 
including glucose-insulin system, for example disordered glucoregulation. Therefore 
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two variables that have a bearing on glucose homeostasis are affected, those are: 
pancreas beta cell response to glucose and sensitivity of body to insulin. The key 
organs that control blood glucose are pancreas and liver. The key hormones are 
insulin and glucagon. Large-scale clinical trials have demonstrated the benefits 
of tight control of glucose-insulin system, minimizing disease complications and 
improving quality of life [1]. Human body needs to maintain glucose 
concentration level in a narrow range. According to the World Health 
Organization or the International Diabetes Federation the cut-offs for fasting blood 
sugars, hypoglycemia is below 70 mg/dl and hyperglycemia is more than 126 
mg/dl. The upper normal limit is 200mg/dl. Many researches are motivated by 
the large population of diabetes patients in the world and the big health expenses 
to study the glucose-insulin endocrine metabolic regulatory system [2] [3] [4] [5] 
[6]. They are interested in what cause the dysfunctions of the system [7], how to 
detect the onset of either type of diabetes including the so called prediabetes [8] 
[9] [10] [11], and eventually provide more reasonable, more effective, more 
efficient and cost-effective treatments to diabetes. For example, diabetes mellitus 
is a metabolic disorder caused by insufficient insulin production in islet cells in 
the pancreas or by tissue resistance against secreted insulin, which leads to 
excessive glucose concentration in the blood. 

Since the 1960s, mathematical models have been developed to describe 
glucose-insulin dynamics [7]. Starting from the model proposed by Bolie in 1961 
[12] mathematical modeling of glucose-insulin interaction in normal body has 
been studied. Some of these mathematical models are interested in analysing the 
glucose disappearance and insulin sensitivity during an intravenous glucose 
tolerance test [13] and capture of plasma glucose and insulin dynamics during, 
as well as after, periods of mild-to-moderate exercise [14]. Others focus on 
overestimation of glucose effectiveness and the underestimation of insulin 
sensitivity [15], capture absorption, distribution and disposal dynamics [16]. 
More detailed compartmental models have been proposed by Cobelli et al. [17], 
Hovorka et al. [18] and Sorensen [19]. Most of these models have been used for 
diabetes mellitus modeling by adjusting the model for type I or type II diabetic 
patients. The mathematical properties of the dynamic systems of glucose and 
insulin have been analyzed by some authors [2] [10] and [20]. The use of 
ordinary and partial differential equations to model biological systems cannot 
capture the rich variety of dynamics observed in natural systems for attempting 
to better our understanding of more and more complicated phenomena. One of 
the ways of dealing with these complexities is to include delays in the 
mathematical models. In 2012, a mathematical model has been developed to 
capture the integral impact of physical activity to glucose and insulin [21]. The 
existing global mathematical model due to John Thomas Sorensen [19] is 
complicated in term of computational complexity as it has many equations and 
parameters. The objective of this paper is therefore to propose a simplified 
mathematical model which is adaptable to observed data and can be used to 
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adjust diabetes mellitus. Furthermore, we propose three compartment-mathematical 
model with only six odes by introducing a tissue compartment instead of a six 
compartment-mathematical model with 22 ordinary differential equations from 
[19]. The mathematical modeling follows a mathematical design where model 
equations are obtained by considering Adolf Fick's law [22] and Boyle-Mariotte's 
law [23]. For validation of the designed model, we use data obtained by solving 
the global mathematical model from [19]. 

The rest of the paper is organised as follows. In Section 2, we set mathematical 
model equations. The Section 3 deals with qualitative study. Estimation of model 
parameters is presented in Section 4 while Section 5 focuses on concluding 
remarks. 

2. Model Equations 

The Sorensen model [19] deals with the behavior of different organs in a healthy 
human body by explicitly defining an individual compartment for each organ. 
The model also takes into account the individual effects of glucagon hormones 
and insulin on glucose metabolic rate in the different human body organ 
compartments. There are different methods that can be used to find mathematical 
model of glucose-insulin by physiologic compartmentalization. From the 
mathematical mode developed by Sorensen [19], we take into account the work 
described in [24] and [25]. The current work modified the Sorensen model to 
consider the tissue compartment as set of brain, kidney, gut and periphery. This 
means that the blood from those elements passes through the tissue 
compartment to flow into the heart and lungs compartment. Figure 1 shows the 
exchange between physiologic compartments. 

 

 
Figure 1. Diagram of mathematical model with three main physiologic compartments: Heart, liver and tissues. Arrows 
connecting the physiologic compartments represent the direction of blood flow. In general, subscripts distinguish 
physiologic compartments. 
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The metabolic sources and sinks in the glucose-insulin mathematical model 
are from the physiologic processes that happen at a constant rate. The 
mathematical nomenclature is defined in Table 1 and corresponds to the 
symbols used in the glucose insulin mathematical as shown in Figure 1. Since 
pancreatic insulin is released into the portal system which perfuses the liver, and 
since separate compartments have not been included in the model for vessel 
blood volumes, pancreatic insulin release appears as a source term in the liver 
insulin compartment. 

Taking into account the exchanges illustrated in Figure 1, mass balances for 
the glucose insulin model result in a set of 6 simultaneous ordinary differential 
equations which are nonlinear as a result of the metabolic source and sink rates. 

( ) ( ) ( )( ) ( )
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

= − −
        

(1) 

 
Table 1. Nomenclature of mathematical model. 

Variable Description 

V Volume (L) 

G Glucose concentration (mg/dL) 

I Insulin concentration (mU/dL) 

Q Vascular blood flow (dL/min) 

Subscript Description 

H Heart and Lungs 

L Liver 

T Tissues 

A Hepatic Artery 

PIR Peripheral insulin release 

Superscript Description 

G Glucose 

I Insulin 

Constant to be estimated Description 

R Metabolic source 

 or sink rate (mg/min or mU/min) 

γ Vascular blood flow rate (dL/min) 

α Parameter 

β Parameter 
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3. Model Qualitative Study 

Let ( ), , , , ,e e e e e e e
H H L L T TX G I G I G I ′=  be the steady state vector where X' denotes the 

transpose of X. In order to analyse the steady state, we need to solve the 
following system: 
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(2) 

Note that the first three equations and the last three equations of (2) form the 
glucose model and insulin model respectively. From the glucose model we get 

e
HG  and e

LG  as functions of e
TG  

1and ,
G G

e e e G G eT T
H T L L A TG G G

P L P
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Q Q Q
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and the glucose model becomes 
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In the same way, from the insulin model we get e
HI  and e

LI  as functions of 
e
TI  

1and ,
I I

e e e I e IT T
H T L A T PIR LI I I

P L P

R RI I I Q I R R
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= + = + + −  

            
(4) 

and the insulin model can be rewritten as follows 
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Let ( )e
G

G X
X
∂

=
∂

  and ( )e
I

I X
X
∂

=
∂

  be Jacobian matrices of glucose 

model and insulin model respectively where all derivatives are evaluated at the 
equilibrium point eX . After some algebraic calculations we get 
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( ) ( )1 1
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(5) 

The behaviour of the mathematical model (1) near the steady state can be 
analysed by the nature of the real parts of the eigenvalues of matrices G  and 

I . The proof of the theorem below will use the following proposition due to 
Routh-Hurwitz [26]. 

Proposition 1. Let 1 2,a a  and 3a  be positive real numbers. The roots of the 
polynomial 

3 2
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Proof. 
The system (1) is asymptotically stable if and only if G  and I  are 

stability matrix; that is, every eigenvalue of G  and I  has a negative real 
part. The characteristic equation associated to G  is ( ) 0GP λ =  given by 
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Using Proposition 1, we need to verify the following requirements: all the 
coefficients of (12) are positive and the product of coefficients of second and 
third terms of (12) is strictly greater than its fourth term. 

Indeed, since all vascular blood flow rates are positive, then the relation 
0G G G

H L PQ Q Q+ + >  is obvious. The next requirement is 
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which after some calculations is equivalent to 
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The last requirement 
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yields after calculations (8). 
The requirements (9), (10) and (11) are obtained in a similar way by 

considering the insulin model. 
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4. Model Parameter Identification 

The nonlinear system (1) can be represented in the following compact form 

( ) ( )( ), ,X t f X t µ=

                     
(15) 

where µ  is the vector of parameters to be estimated. That is 

( ), , , , , , , .G G I G G I
T H T L T TR R R Rµ γ α β γ ′=  

The mathematical model requires parameter identification which can be 
carried out by setting the following optimal control problem. We determine the 
control µ  such that the cost functional 

( ) ( )( ) ( )( )2 2

0
d ,ft obs obs

G H H I H HJ q G t G q I t I tµ = − + −∫          
(16) 

is minimized under the restriction of the model Equation (15). The positive 
scalar coefficients Gq  and Iq  determine how much weight is associated to 
each term in the integrand. Superscript “obs” refers to the observed state to 
which the system is transferred by the control. In order to obtain the observed 
data, we solve the global model of [19]. The variation of glucose and insulin in 
heart are plotted in Figure 2. 

For computational purposes we discretize the system (15) using N linear 
B-splines. Let us consider 

{ }, 1, , ,N N
j j Nψ= = 

                    
(17) 

a linear B-splines basis functions on the uniform grid 

, 0, , ,N k
kTt k N
N

 Ω = = = 
 



                  
(18) 

such that 

( ) ,N
i k iktψ δ=  

where ikδ  is Kronecker symbol. Let us introduce the vector space NW  whose  
 

 
Figure 2. Observed data: Glucose (a) and Insulin (b). 
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the basis is N . It follows that dim NW N=  and 1, 1, ,n nW W n N+⊂ =  . We 
assume that functions appearing in the system (15) are continuous on [ ]0,T . 
Let us denote ( )0 0,W C T=  and consider the interpolation operator 

: ,N NW WΠ →  

satisfying Wφ∀ ∈  

( ) ( ) ,   1, , .N
k kt t k Nφ φΠ = =   

Therefore, in this setting we are looking for the solution N NX W∈  of the 
following discrete problem 

( ) ( )( ) ( ) 0, , such that 0 ,N N N N NX t f X t X Xµ= =

          
(19) 

where the control is 

( ) ( )8, , , , , ,, , , , , , , .N G N N G N N I N G N G N I N N
T H T L T TR R R R Wµ γ α β γ= ∈  

The corresponding discrete optimal control problem (16) is to minimize 
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− + − =∑
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with respect to (19). In compact form the problem (20) can be rewritten as 
follows 
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N
N N

k k
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J hY RY
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µ
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= ∑
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X X

µ =


=
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(22) 

where , 1, ,kY k N=   is the following matrix 

( )( ) ( )( )( ), ,N obs N obs
H k H H k HG t G I t I ′− −  

and R is the matrix defined by 

0
.

0
G

I

q
R

q
 

=  
 

 

The numerical computations have been carried out using a collection of 
MaTlaB routines [27] specifically the built-in function fmincon. Table 2 shows 
the estimated parameters of mathematical model (1). Using those parameters we 
get numerical solutions shown in Figure 3. 

5. Concluding Remarks 

Physiological and dynamical conditions for glucose and insulin impose the need 
for relatively simple models that should be able to describe as accurately as 
possible the mechanical behavior of glucose-insulin system. In this work we have 
proposed a three compartmental mathematical model that describes the variation 
of glucose and insulin for human being. The modelling technique is used to 
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Table 2. Estimated model parameters. 

Parameter Value 

G
Tγ  5.1575 

α  0.0354 

β  1.0422 
I

Tγ  2.1056 

G
HR  9.9966 
G
LR  1042.1509 
I
LR  7.6076 

G
TR  40.8085 
I

TR  1.0013 

 

 
Figure 3. Variation of glucose concentration (a) and insulin concentration (b). The 
dashed line denotes observed data while solid line is solution of our mathematical model. 

 
provide interesting answers to the question of determining the global 
mathematical model with lower number of equations for glucose-insulin system. 
Numerical results show that the proposed model is adaptable to data. In fact 
Figure 3 shows that adjustment for glucose and insulin trends match observed 
data. The proposed mathematical model can also be used to adjust diabetes 
mellitus type I or type II for diabetic patients. 
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