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Abstract 
We present fast fourth-order finite difference scheme for 3D Helmholtz equ-
ation with Neumann boundary condition. We employ the discrete Fourier 
transform operator and divide the problem into some independent subprob-
lems. By means of the Gaussian elimination in the vertical direction, the 
problem is reduced into a small system on the top layer of the domain. The 
procedure for solving the numerical solutions is accelerated by the sparsity of 
Fourier operator under the space complexity of ( )3O M . Furthermore, the 

method makes it possible to solve the 3D Helmholtz equation with large grid 
number. The accuracy and efficiency of the method are validated by two test 
examples which have exact solutions. 
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1. Introduction 

Helmholtz equation appears from general conservation laws of physics and can 
be interpreted as wave equations. Helmholtz equation is widely applied in the 
scientific and engineering design problem. Many methods have been proposed 
for solving the Helmholtz equations, such as finite difference method [1], finite 
element method [2] [3] [4], spectral method [5] [6] and other methods [7] [8] 
[9]. However, the computational cost of the finite element method increases 
greatly for large wave number problems. Additionally, boundary element me-
thod is limited to constant-coefficients problems. Finite difference schemes pro-
vide the simplest and least expensive avenue for achieving high-order accuracy. 
Some high order algorithms are proposed in [10] [11] [12] [13]. In this paper, 
we derive a fourth-order finite difference scheme using 19 points for solving the 
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three-dimensional Helmholtz equation.  
The discretization of the fully three-dimensional Helmholtz equation contains 

a large number of unknowns and requires considerable memory space. The time 
and space complexity increase exponentially as the grid number increases. In the 
meantime, to maintain a given accuracy, the mesh must be refined as the wave 
number increases. Some parallel algorithms are presented in [14] [15]. However, 
this kind of parallel algorithms cannot settle the conflict between the grid num-
ber and the performance of the computer hardware.  

Fast Fourier transform is a powerful technique for solving the Helmholtz equ-
ation both in two and three dimensions [16] [17]. However, fast algorithm in [18] 
requires much computational cost. In light of this, we propose a fast algorithm 
for solving the three-dimensional Helmholtz equation. The fast operator applies 
inexpensive transformation to break the large discretization matrix into small 
and independent systems. Therefore, the equation in the whole region is divided 
into some small equations in the vertical direction. Meanwhile, the algorithm 
saves much memory space and requires less computational time due to the spar-
sity of the fast operator. The problem is reduced on the aperture by introducing 
a Gaussian elimination and the Neumann boundary condition in the vertical di-
rection. 

The paper is outlined as follows. In Section 2, a fourth-order finite difference 
method for the Helmholtz equation is derived. In Section 3 and Section 4, a fast 
algorithm is proposed by the Fourier transformation and Gaussian elimination. 
Two numerical experiments of the fast fourth-order algorithm are presented in 
Section 5. The paper is concluded in Section 6. 

2. Fourth-Order Finite Difference Method 

The model problem is described as follows 

( )

2 ,   in
, , ,   on \

f
b x y z

kφ φ
φ

= Ω

=

∆

∂Ω

+

Γ
                    (1) 

in the cubic domain Ω  with Neumann boundary condition 

( ), ,    on ,g x y
n
φ∂
= Γ

∂
                      (2) 

where k is the wave number and Γ  is one of the planes of domain. 
( ) ( ), , , , ,f x y z b x y z  and ( ),g x y  are known function. The Helmholtz equa-

tion is approximated by a fourth-order finite difference discretization with 
h x y z= ∆ = ∆ = ∆  and the partition ( ){ } 1, 1, 1

, , 0
, ,

M N L

i j l i j l
x y z

+ + +

=
. 

The 19-points finite difference stencil with h yields the following linear system 

( ) ( )

( ) ( )

2 2 2
2 2 2 2 2 2 2 2 2 2

, , , , , ,

2
2 2 2 2 2 2 4

, , , ,

1
12 6

12

x y z i j l x y x z y z i j l i j l

i j l x y x z y z i j l

k h h k

hf f O h

δ δ δ φ δ δ δ δ δ δ φ φ

δ δ δ δ δ δ

 
+ + + + + + + 

 

+ + + += ，
 

  (3) 

where 2 2,x yδ δ  and 2
zδ  are standard second order central difference operator 
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and , ,i j lφ  is the fourth-order finite difference solution of Equation (1). 
Moreover, we can write Equation (3) in the matrix form 

( )

( )

( )

2 2

2
2

2

1
12

6

     ,
12

M N L M N L M N L

M N L M N L M N L B

M N L M N L M N L B

k h A I I I A I I I A

h A A I I A A A I A k

hF A I I I A I I I A F F

 
+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Φ 

 

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Φ + Φ +Φ

= + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +

    (4) 

where 

( ) ( ) ( )

( )
( )

2 2 2

T
1,1,1 1,1, 1,2,1 1,2, 1, , , ,

T
1,1,1 1,1, 1,2,1 1,2, 1, , , ,

1 1 1tridiag 1, 2,1 , tridiag 1, 2,1 , tridiag 1, 2,1 ,

, , , , , ,

, , , , , , ,

, ,

,

, ,

, ,

M N L

L L N L M N L

L L N L M N L

A A A
h h h

F f f f f f f

φ φ φ φ φ φ

= − = − = −

Φ =

=

   

   

 

the symbol ⊗  represents the Kronecker product. , ,M N LI I I  and MNLI  are 
identity matrices, the subscripts denote their dimension. ,M NA A  and LA  are 

,M M N N× ×  and L L×  tridiagonal matrices respectively. BΦ  and BF  are 
the boundary parts of Φ  and F. 

3. Fast Algorithm for Three-Dimensional Helmholtz Equation 

MA  and NA  are all tridiagonal Toeplitz matrices. Fourier-sine transformation 
can be applied to these matrices for accelerating the algorithm. Multiplying dis-
crete Fourier-sine transformation matrices MS  and NS  on the both side of 

MA  and NA , we have 

( ) ( )1 1 2 2 1 2Λ diag , , , , Λ diag , , ,M M M M N N N NS A S S A Sλ λ λ µ µ µ= = = =  , 

where  

( ) ( )
( )

2
2

,

4 12 π πsin , sin ,1 , .
1 1 2 1M ii j

Mij iS i j M
M M a M

λ
+ = = − ≤ ≤ + + + 

 

NS  and , 1, 2, ,t t Nµ =   can be defined in the similar way. 
Therefore, multiplying M N LS S I⊗ ⊗  on both side of Equation (4), we have  

( )

( )

( )

2 2

1 2

2
2

1 2 2 1

2

1 2

1 Λ  Λ      
12

Λ  Λ   Λ   Λ   
6

 Λ    Λ     
2

,
1

N L M L M N L

L M L N L B

N L M L M N L B

k h I I I I I I A

h I I A I A k

hF I I I I I I A F F

 
+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Φ 

 

+ ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ Φ + Φ +Φ

= + ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ +
   

 (5) 

where 

( ) ( )
( ) ( )

, ,

, .
M N L M N L

B M N L B B M N L B

S S I F S S I

S S I F S S I F

Φ = ⊗ ⊗ Φ = ⊗ ⊗

Φ = ⊗ ⊗ Φ = ⊗ ⊗
 

The sparse structure of M N LS S I⊗ ⊗  is given in Figure 1 when  
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Figure 1. The sparse structure of M N LS S I⊗ ⊗  with 3M N K= = = . 

 
3M N K= = = , where nz  means the number of the unknowns. Hence, the 

above equation can be transformed into a block tridiagonal matrix based on the 
structure of the fast operator. Equation (5) can be simplified as  

( ) ( )

( ) , ,: , ,:

2 2 2
2

, ,:

2

, ,: , ,:

1
12 6

, 1,2, , ; 1, 2, , .
12 i j i j

i L j L L i j L j L i L i j

i j i L j L L i j B B

k h hI I A I A A k

hF I I A F F i M j N

λ µ λ µ µ λ

λ µ

  
+ + + + + + + Φ  

   

= + + + + −Φ = = 

 (6) 

In this paper, we take Γ  as the top surface of the domain and it can be ex-
tended to the general situations. Since the solutions on the other surfaces are al-
ready known, we need to extract 

topBS  which contains the parts of , , 1i j Lφ +  from 

BΦ , there follows 

( )

( ) ( )
, ,: :, ,

, ,: 1 2 2 2 , , 1

2

, ,: , ,:
1

1
,

2 i ji j
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hF I I A F F
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λ µ

+Φ + + + Φ

+ −Φ+ + +=
           (7) 

where 

( ) ( )

( )
,, :,: ,

2 2 2
2

2 2 2
T

1 2 2
(1)

2,

1 ,
12 6

11 , , 0,0, ,1
2 6

.
1i i j topj

ij i L j L L i j L j L i L L

B LB B

k h hP I I A I A A k I

k h hS p p a
h
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= + + + + + + + 
 

= Φ − = + = =Φ 

 

Next, we use the Gaussian elimination with a row partial pivoting to solve 
Equation (7). 

https://doi.org/10.4236/ajcm.2018.83018


N. Zhu, M. L. Zhao 
 

 

DOI: 10.4236/ajcm.2018.83018 226 American Journal of Computational Mathematics 
 

First of all, constructing a LU-decomposition for ijP , i.e. ij ij ijP L U= , we have 

( )

( ) ( )
, , , ,: :

, ,: 2 2 1 2 , , 1

2

, ,:
1

, ,: .
12 i j i j

ij ij i j i j L i j L

i j i L j L L j Bi B

L U p p p a

hF I I A F F

λ µ φ

λ µ

+Φ + + +

= + + Φ+ + −
          

 (8) 

Since 1
ijL−  is nonsingular, multiplying 1

ijL−  on both side of Equation (8), we 
can obtain 

( )

( ) ( )
, ,: , ,:

1
, ,: 2 2 1 2 , , 1

2
1

, ,: , ,:
1 .

12 i ji j

ij i j i j ij L i j L

ij i j i L j BL L i j B

U p p p L a

hL F I I A F F

λ µ φ

λ µ

−
+

−

Φ

=

+ + +

 
+ + + + − 

 
Φ

         (9) 

Consequently, the last equation of Equation (9) can be derived 

, , , , 1 , , 1, 2, , ; 1, 2, , ,,ij i j L ij i j L i j Lr i M j Nα φ β φ ++ = = =          (10) 

where ijα  is the last element of ijU , ijβ  is the last element of  

( )2 2 1 2i j ij Lp p ap Lλ µ+ + ⋅ , and , ,i j Lr  is the last element of  

( ) ( )
,: , ,:,

2
11

, ,: , ,:12 i j i jij i j i L j L L i j B B
hL F I I A F Fλ µ− + + + Φ+ − . Combining M N×  equations 

analogously to Equation (10), we have 

:,:, :,:, 1 1,L LD D Rα β +Φ + Φ =                     (11) 

where 

( )
( )

( )

T
11 12 1 1 2

T
11 12 1 1 2

T
1 1,1, 1,2, 1, , 2,1, 2,2, 2, , ,1, ,2, , ,

diag , , , , , , , , ,

diag , , , , , , , , ,

, , , , , , , , , , , , .

N M M MN

N M M MN

L L N L L L N L M L M L M N L

D

D

R r r r r r r r r r

α

β

α α α α α α

β β β β β β

=

=

=

  

  

   

 

4. Discretization of Neumann Boundary Condition 

The fourth-order finite difference discretization of Equation (2) can be ex-
pressed as  

( ) ( )
2

, , 2 , , 4
, , .

2 6
i j L i j L

zzz i j L

h O h
n h

φ φφ
φ+ −∂

= − +
∂

 

Using the fourth-order substitution of zzzφ  we can derive 

( )

2 2 2 2 2 2 2 2
2 2 2 2

, , 2 , ,

3

, , 1

1 1
6 6 6 6 6 6

2 , 1,2, , ; 1, 2, , ,
3

x y i j L x y i j L

ij z i j L

k h h h k h h h

hhg f i M j N

δ δ φ δ δ φ+

+

   
+ + + − + + +   

   

= + = = 

 

or the matrix form 

( ) ( ) ( ) ( )

( )

2 2 2 2
2

:,:, 2 :,:,

3

:,:, 1 .

1
6 6 6

2
3

MN M N M N L L B

z L

k h h hI A I I A

hhg f

+

+

  
+ + ⊗ + ⊗ Φ −Φ +Φ  

   

= +

  (12) 

where  
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( ) ( )

( )

2
T2

0,1, 0,2, 0, , 1,1, 1,2, 1, ,

2
T

1,0, 1, 1, 2,0, 2, 1, ,0, , 1,

, , , ,0,0, ,0, , , , ,
6

,0, , , ,0, , , , ,0, ,
6

B L L N L M L M L M N L

L N L L N L M L M N L

h b b b b b b

h b b b b b b

+ + +

+ + +

Φ =

+

   

   

 

and ( ), , , ,j j L i j Lb b x y z= . 
Multiplying M NS S⊗  on both side of Equation (12), we can obtain 

( ) ( ) ( ) ( )
2 2 2 2

2
1 2 :,:, 2 :,:, 21 Λ ,

6 6 6MN N M L L B
k h h hI I I R+

  
+ + Λ ⊗ + ⊗ Φ −Φ = −Φ  

   
 (13) 

where 

( ) ( ) ( ) ( ) ( )
3

2 2
2 :,:, 12 ,

3M N z B M N BL

hR S S hg f S S
+

 
= ⊗ + Φ = ⊗ Φ 

 
. 

Moreover, replacing l with 1L +  in Equation (3), we have 

( )

( ) ( )

( )

2 4 2 4 2 2
2 2 2 2 2 2

, , 1

2 2 2
2 2

, , 2 , ,

2
2 2 2 2 2 2 2

, , 1 , , 1

2 2 1
12 3 6 12

1
12 6

,
12

x y x y i j L

x y i j L i j L

i j L x y x z y z i j L

k h h h k hk h

k h h

hh f f

δ δ δ δ φ

δ δ φ φ

δ δ δ δ δ δ

+

+

+ +

    
+ + + + − +    

     
  

+ + + + +  
   

 
= + + + 

 

    (14) 

and the matrix form 

( ) ( )

( ) ( ) ( )

( ) ( )( )

2 4 2 4 2 2

:,:, 1

2 2 2
3

:,:, 2 :,:,

3 32

2 52
12 3 6 6

1
12 6

,

M N M N M N MN L

MN M N M N L L B

B

k h h h k hA I I A A A I

k h hI A I I A

h F F

+

+

    
+ ⊗ + ⊗ + ⊗ − − Φ    

     
  

+ + + ⊗ + ⊗ Φ +Φ +Φ  
   

= +

(15) 

where 

( )

( )

( )

2
3

:,:, 12

2

:,:,

2

:,:, 2

12
12

         
6

         
6

.

M N M N M N MN L

M N M N L

M N M N L

hF A A I A A I I F
h

h I A A I F

h I A A I F

+

+

 = ⊗ + ⊗ + ⊗ + 
 

− ⊗ + ⊗

− ⊗ + ⊗

 

Multiplying M NS S⊗  on both side of Equation (15), there follows 

( ) ( )

( ) ( )

2 4 2 4 2 2

1 2 1 2 :,:, 1

2 2 2

1 2 :,:, 2 :,:, 3

2 5Λ Λ Λ Λ 2
12 3 6 6

1 Λ Λ
12

,
6

N M MN L

MN N M L L

k h h h k hI I I

k h hI I I R

+

+

    
+ ⊗ + ⊗ + ⊗ − − Φ    

     
  

+ + + ⊗ + ⊗ Φ +Φ =  
   

 (16) 

where ( ) ( )( )3 32
3 BR h F F= + . 
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Eliminating :,:, 2L+Φ  from Equation (13) gives 
( )( )21

:,:, 1 :,:, 3 22 ,L L BC D R DB R−
+Φ + Φ = − −Φ

           
 (17) 

where 

( ) ( )

( ) ( )

( )

2 2 2 2

1 2

2 4 2 4 2 2

1 2 1 2

2 2 2

1 2

1 Λ ,
6 6 6

2 5Λ Λ Λ Λ 2 ,
12 3 6 6

1 Λ Λ .
12 6

MN N M

N M MN

MN N M

k h h hB I I I

k h h h k hC I I I

k h hD I I I

 
= + + Λ ⊗ + ⊗ 
 
   

= + ⊗ + ⊗ + ⊗ − −   
   
 

= + + ⊗ + ⊗ 
 

 

Combining Equation (11) and Equation (17) and derive a linear system 

:,:, 1 ,LA R+Φ =                         (18) 

where  
( )( )21 1 1

3 2 12 2 ., BA C DD D R R DB R DD Rα β α
− − −= − = − −Φ −  

Finally, after deriving :,:, 1L+Φ , we can obtain , ,:i jΦ  by substituting :,:, 1L+Φ  in 
Equation (7). Multiplying M N LS S I⊗ ⊗ , we can get the numerical solution of 
the 3D Helmholtz equation. 

5. Numerical Experiments 

In this section, two numerical experiments are presented to test the validity and 
efficiency of the proposed method. Both experiments are implemented on 
MATLAB. All the equations are solved by the BiCG method. Equations in the 
two examples are solved in a cube [ ] [ ] [ ]Ω 0,1 0,1 0,1= × × .  

Example 1. Consider the following problem 

( ) ( ) ( )
( ) ( ) ( )( )sin π sin π

, , 2sinh 2π sinh 2π 1
sinh 2π

x y
u x y z z z = + −      (19) 

with 

( ) ( ) ( )
( ) ( ) ( )
( ) { }

, , sin π sin π , 0,

, , 2sin π sin π , 1,

, , 0,          0,1 , 0,

u x y z x y z

u x y z x y z

u x y z y z

= =


= =
 = ∈ =

 

0f =  and the corresponding Neumann boundary condition can be calcu-
lated. 

Table 1 fully corroborates the theoretical design rate of the convergence for 
the proposed method. We can see that a good accuracy (10−7) is achieved with a 
small number of grid points (16 - 32 in each direction). In the case of space 
complexity of ( )3O M , the sparsity of Fourier operator accelerates the speed for 
solving the three-dimensional Helmholtz equation. Moreover, the comparison of 
the computational time of three times Fourier transformation and twice Fourier 
transformation are given in Table 1. Here M N LS S S⊗ ⊗  and M N LS S I⊗ ⊗  
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represent two different transform operators. As we can see from Table 1, the al-
gorithm proposed in this paper saves much computational time and makes it 
possible to solve the equation with large grid number. Meanwhile, we give the 
numerical solutions of Equation (19) in the whole domain and numerical solu-
tion on the face 1

2z =  in Figure 2 and Figure 3 respectively. 
Example 2. 

( ) ( ) ( ) ( )2 22π sin π sin π sin , in ,

0,   on \ ,

u k u x y kz

u

+ = − Ω

= ∂Ω Γ
 

with the exact solution  

( ) ( ) ( )sin π sin π sin .u x y kz=                   (20) 

We give the figures of the numerical solutions U with different wave number 
in Figure 4 and Figure 5. As shown in Figure 4 and Figure 5, the solutions of 
the Helmholtz equation are highly oscillating for large wave number. 

 
Table 1. Convergence rate and comparisons of computational time (s) for solving Exam-
ple 1 with different operators. 

M 
Solve U time (s) 

Memory (MB) Error Conv. rate 
M N LS S S⊗ ⊗  M N LS S S⊗ ⊗  

32 0.7556 0.5286 0.9472 7.4431e−07 − 

64 28.5552 3.8459 6.7842 4.82273−08 3.9480 

128 1051.3515 59.8049 51.1303 3.0654e−09 3.7223 

256 46,725.7567 1013.8436 396.1303 1.9288e−10 4.2437 

512 - 21,228.72458 3122.0200 1.1633e−11 4.0514 

 

 
Figure 2. The numerical solutions of Equation (19) with 512M = . 
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Figure 3. The numerical solutions of Equation (19) on the face 1 2z =  with 512M = . 

 

 
Figure 4. The numerical solutions of Equation (20) with 3πk =  (left) and 5πk =  (right). 
 

 
Figure 5. The numerical solutions of Equation (20) with 7πk =  (left) and 15πk =  (right). 
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6. Conclusion 

We propose a fast-high order method for solving the 3D Helmholtz equation 
with Neumann boundary condition. Fourier operator is used to generate 
block-tridiagonal structure of the discretization of the Helmholtz equation. 
Moreover, by using the Gaussian elimination in the vertical direction, the 
Helmholtz equation is reduced into a linear system in the layer of the domain. 
The validity and efficiency of the method are tested by two numerical experi-
ments.  
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