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Abstract 
The objective of this study is to predict groundwater levels (GWLs) under 
different impact factors using Artificial Neural Network (ANN) for a case 
study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be 
achieved by evaluating the current state of groundwater resources (GWR) ex-
ploitation, use and dynamics; setting-up, calibrating and validating the ANN; 
and then predicting GWLs at different lead times. The results show that 
GWLs in the study area have been found to reduce rapidly from 2000 to 2015, 
especially in the Middle-upper Pleistocene (qp2-3) and upper Pleistocene 
(qp3) due to the over-withdrawals from the enterprises for production pur-
poses. Concerning this problem, an Official Letter of the People’s Committee 
of Can Tho City was issued and taken into enforcement in 2012 resulting in 
the reduction of exploitation. The calibrated ANN structures have successful-
ly demonstrated that the GWLs can be predicted considering different impact 
factors. The predicted results will help to raise awareness and to draw an at-
tention of the local/central government for a clear GWR management policy 
for the Mekong delta, especially the industrial zones in the urban areas such 
as Can Tho city. 
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1. Introduction 

Groundwater resources (GWR) play an important role in the provision of do-
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mestic and production for millions of people in the Mekong Delta [1] [2]. In the 
context of contaminated surface water and fluctuating water levels downstream 
caused by the construction of hydroelectric projects and expansion of cultivated 
area in the upper Mekong, the role of GWR is becoming more and more impor-
tant since the 1990s [3]. In addition, the impact of urbanization, population 
growth, land use changes and climate change will degrade the GWR in terms of 
the quantity, quality and dynamics of GWR [4]. 

There have been many researches on GWR dynamics using hydrogeological 
or statistical models. For instance, Radu Goru et al. (2001) [5] utilized a geo-
logical geographic information system (GIS) database that offers facilities for 
groundwater-vulnerability analysis and hydrogeological modelling had been de-
signed in Belgium for the Walloon region (GMS—Groundwater Modelling Sys-
tem). Rakesh et al. (2009) [6] applied GMS for the northern part of Mendha 
sub-basin in the semi-arid region of northeastern Rajasthan, employing concep-
tual groundwater modelling approach. For this purpose, Groundwater Model-
ling Software (GMS) was used which supports the Modflow-2000 code. Lately, 
Pandey and Kazama (2012) [7] carried out research on analyzing spatial varia-
tions in hydrogeological characteristics of shallow and deep groundwater aqui-
fers in Kathmandu Valley, Nepal. 

In the Mekong River basin, So Kazama et al. (2007) [8] determined the varia-
tion of GWR caused by flooding over inundated areas located in lower part of 
the Mekong River basin using numerical modeling and field observations. The 
research concluded that flood control which reduced the area of inundation, re-
sulted in a reduction of GWR in the area. Thus, while flood control activities 
were vital to reduce negative flood impacts in the Mekong River basin, they also 
negatively impacted on GWR in the area. Babel et al. (2006) [9] studied on the 
various negative impacts on the environment and society caused by land subsi-
dence which has been a problem in Bangkok, Thailand, since the 1970s. The in-
tensive groundwater extraction for industrial and domestic purposes since the 
1950s, which led to a decline of GWLs, was the primary cause of land subsi-
dence. 

Nguyen Tieng Vang and Tran Van Ty (2017) [10] conducted research in the 
Tra Noc Industrial Zone, Can Tho city to assess the current status of exploita-
tion, GWLs changes and management of GWR. From which, the relationship 
between groundwater extraction, water level in Bassac River (CTH-039803 sta-
tion) and GWLs at monitoring stations/wells was established. The results 
showed that the extraction of groundwater in the Tra Noc Industrial Zone was 
very large; over-exploitation of GWR might be a major cause of decrease in 
GWLs leading to the decrease in GWLs of Pleistocene and Holocene aquifers of 
4 m and 1 m, respectively from 2000 to 2015. Rainfall and Bassacriver was found 
to be the major source of recharge to Holocene aquifer. In addition, manage-
ment of GWR was not effective, lack of close coordination between enterprises 
and local GWR management agencies/departments.  
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Artificial Neural Network (ANN) is the most popular tool for groundwater 
prediction. Many studies have been conducted in the area of predicting GWLs. 
Suja and Sindhu (2016) [11] used factor analysis to identify the factors that have 
maximum influence on GWLs and time series analysis to predict the influencing 
factors prior to ANN. Hung et al. (2009) [12] introduced a new approach using 
an ANN technique to improve rainfall forecast performance for a real world case 
study was set up in Bangkok, 4 years of hourly data from 75 rain gauge stations 
in the area were used to develop the ANN model. The developed ANN model 
was applied for real time rainfall forecasting and flood management in Bangkok, 
Thailand. 

The objective of this study is to predict GWLs under different impact factors 
using ANN for a case study in Tra Noc Industrial Zone, Can Tho city. This can 
be achieved by evaluating the current state of GWR exploitation, use and dy-
namics; setting-up, calibrating and validating the ANN for GWLs; and then pre-
dicting GWLs at different lead times. 

2. Study Area and Data 

Can Tho city is the youngest and largest urban area in the Mekong Delta, in-
cluding 8 industrial zones with a total area of over 2366 ha. These industrial 
zones are located along the national highways and Bassacriver which is one of 
the two branches of Mekong river after entering Vietnam. Industrial activities 
have caused serious environmental problems such as pollution of water sources, 
microbial contamination, subsidence, etc. Tra Noc Industrial Zone was estab-
lished and developed since the 1990s including Tra Noc 1 Industrial Zone (Tra 
Noc Ward, BinhThuy District) and Tra Noc 2 Industrial Zone (Phuoc Thoi 
Ward, O Mon District) with total planning area of 300 hectares (Figure 1). 
 

 
(a)                                                          (b) 

Figure 1. Location of Tra Noc Industrial Zone in Can Tho city. (a) Administrative map of Can Tho city; (b) Tra Noc Industrial 
Zone. 
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Currently, there are 16 groundwater resources (GWR) monitoring stations/wells 
in Can Tho city, of which two stations (QT08 and QT16) are located in the study 
area. At each station, there are 3 monitoring wells in 3 aquifers and at different 
depths (Middle-Upper Pleistocene (qp2-3), Upper Pleistocene (qp3) and Holo-
cene floor (qh)). From 2000 to 2015, the GWLs of Pleistocene (qp3 and qp2-3) 
in the Tra Noc Industrial Zone had declined rapidly. However, in the Holocene, 
the trend of groundwater levels (GWLs) was relatively stable. 

Data of rainfall at Can Tho station and river water levels at two stations, aver-
age withdrawal discharge of industrial use purposes and observed GWLs at 
Pleistocene aquifer (qp2-3 and qp3 layers) at different monitoring wells were 
collected. Data and their sources are presented in Table 1. 

3. Methodology 

An Artificial Neural Network (ANN) consists of input, hidden and output layers 
and each layer includes an array of processing data. ANN is characterized by its 
structure representing the pattern of connection between nodes, connection 
weights, and activation function. ANN models were developed using different 
sets of combinations of the input parameters and the best combination model 
was selected based on the performance statistics. 

Data of groundwater levels (GWLs) was first used to initialize the ANN model 
with observed GWLs at a given time to reproduce water level variations using 
input variables (rainfall, river water levels and withdrawal discharge from 
pumping). The selected ANN structures via trial and error were first calibrated 
on a training dataset to perform 1-, 2-, 3-month ahead predictions of future 
GWLs using past observed GWLs and the input variables. Simulations were then 
produced on another data set by iteratively feeding back the predicted GWLs, 
along with real data. 

3.1. ANN Model Setting-Up 

To develop ANN, the neural network toolbox from the Visual Gene Developer 
(http://www.visualgenedeveloper.net/) [13] was used. This toolbox provides the 
capability to design many different kinds of neural systems for various applica-
tions. 

3.2. Data Pre- and Post-Processing 

Data pre-processing was carried out for analyzing and transforming the input  
 
Table 1. Data and their sources. 

No. Data (monthly basis) Year Sources 

1 Observation wells 2004-2015 
Department of Natural Resources and 
Environment (DONRE) Can Tho city 

2 Withdrawal discharge 2004-2015 

3 Groundwater level 2004-2015 

4 Rainfall 2004-2015 Center for Environment and Natural 
Resources of Can Tho city 5 Water level (in Bassac river) 2004-2015 
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and output variables to minimize noise, and to highlight important relation-
ships. The raw data were normalized between zero and one (unitless). 

Pre-processing: 
( )
( )

0.9
0.05t

t

y a
y

b a
 − ′ = +

−
                   (1) 

Post-processing: 
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0.9
t

t

b a y
y a

′ − − = +                  (2) 

where yt is the observed data; a, bare minimum and maximum values of ob-
served data, respectively; ty′  is the normalized value of observed data. 

3.3. ANN Structures 

The structure of ANN is determined by trial and error. The number of nodes in 
the hidden layers and the stopping criteria were optimized in terms of obtaining 
precise and accurate output. The activation function of the hidden/output layers 
was set to a sigmoid function as this proved by trial and error to be the best in 
depicting the non-linearity of the modeled natural system, among a set of other 
options. There is no well-established direct method for selecting the number of 
hidden nodes for an ANN model for a given problem. Thus the common tri-
al-and-error approach remains the most widely used method [14]. Variables in 
the input vector to ANN models are presented in Table 2. 

There are many kinds of neural networks depending on their structures, func-
tion and training methods. A typical feedward neural network with a back 
propagation learning algorithm to train it was used. A typical neural network is 
presented below: 
 

 
 

i iN w x= ∑  ( ) 1  
1 NO f N

e−= =
+

              (3)  

where xi is the input vector, O is the output vector, wi is a weight factor between 
two nodes and f(N) is a activation function. Among the different kinds of activa-
tion functions, the sigmoid was used in this study. The back propagation learn-
ing algorithm is based on a generalized delta-rule accelerated by a momentum 
term [15]. 

To improve the performance of the network, the weight factors were adjusted 
using following equations: 

new old old
ij ij pj pi ij

p
w w O wη δ α= + ⋅ + ⋅∆∑                (4) 

where η is the learning rate; α is the momentum coefficient; Δw is the previous 
weight factor change; O is the output; δ is the gradient-descent correction term;  
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Table 2. Variables in the input vector to ANN models. 

Input variables Pleistocene (qp2-3 and qp3) 

Groundwater level (stations) W(t), W(t-1), W(t-2), W(t-3) at QT08, QT16; W(t), W(t-1) at QT09 

Rainfall (Can Tho station) R(t) 

Water level (Bassac river) WL(t) at Can Tho and Long Xuyen station 

GWR withdrawal Tra Noc Industrial Zone 

Predicted GWL stations QT08, QT16 

Lead time (month) 1, 2 and 3 

ANN structures 14-15-1 for qp2-3 and 12-15-1 for qp3 

Total input nodes: from 8 to 14; Total output node: 1; ANN structures were tested with various Hidden 
layers (from 1 to 5) and Hidden nodes (from 5 to 15) to select the best ANN structure; The optimum 
structures for qp2-3 and qp3 are 14-15-1 and 12-15-1 (with respectively to the input, hidden and 
output nodes), respectively. 
 
and p stands for pattern. The learning rate (η) and the momentum coefficient 
(α) were randomly generated from 0.01 to 1 and from 0 to 1, respectively. 

The back propagation algorithm is applied as follow: 
1) Normalize the training data and initialize all weights (normally a small 

random value between minus one to one); 
2) Compute the output of neurons in the hidden layer and in the output layer; 
3) Compute the error and update the weights; 
4) Update all weights and repeat steps 2 and 3 for all training data; 
5) Repeat steps 2 to 4 until the error converges to an acceptable level. 
The performance of the trained network was checked by determining the er-

ror between the predicted value and the observed one. 

3.4. Calibration and Validation 

Available data was divided into two distinct sets namely the training/calibration 
and validation sets. As the training set is used by neural network to learn the 
patterns present in the data, 70% of data was allocated to the calibration set 
(2004-2012), 30% to validation set (2013-2015). In this study, the networks were 
selected based on best performance on the training set, and a final check on the 
performance of the trained network was made using the validation set. 

3.5. Criteria of Evaluation 

Three different criteria were used in order to evaluate the suitable networks and 
their abilities to produce accurate predictions.  

The Root Mean Square Error (RMSE): 
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The R efficiency criterion: 
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where Xi is the observed data, X  is the mean observed data, Yi is the calculated 
data and n is the number of observations. RMSE indicates the difference be-
tween the observed and calculated (ANN) values. The lowest the RMSE, the 
more accurate the prediction is. The best fit between observed and calculated 
values is indicated by EI and R2.  

4. Results and Discussion 
4.1. Current State of GWR 

The total exploitation rate of groundwater resources (GWR) in Tra Noc Indus-
trial Zone from 2004 to 2016 is shown in Figure 2. As can be seen, from 2004 to 
2010, thanks to the policy of encouraging investment in Tra Noc Industrial Zone 
leading to the increasing exploitation of GWR. The total GWR exploitation in 
2004, 2009 and 2011 were 3568 m3/day; 18,876 m3/day and 20,210 m3/day, re-
spectively. It is clear that the total exploitation of GWR was increased up to al-
most six times for the period of 7 years. However, the enforcement of Official 
Letter No.2946/UBND-KT dated 23/6/2010 of the People’s Committee of Can 
Tho city [16] on regulating the use of GWR reduced the exploitation in 2012, 
and thus the groundwater levels (GWLs) were gradually stable. 

In addition, the enterprises in Tra Noc Industrial Zone have used combina-
tion of different water sources for production and daily usage. Only 18.18% of 
enterprises used GWR; the others used tap water and GWR accounted for 
63.64%; and the remained used combined sources (data is not shown here). 
However, the exploitation of GWR for production showed the increasing trend 
again after 2012. 
 

 
Figure 2. Total GWR exploitation rate in Tra Noc Industrial Zone (2004-2016). 
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It can be seen in Figure 3 and Figure 4 that GWLs at Pleistocene aquifer re-
duced from 2000 to 2015. During this period, almost all of the enterprises in the 
area have exploited GWR for the production, especially in the Middle-upper 
Pleistocene (qp2-3) and upper Pleistocene (qp3). From 2010 onwards, the ex-
ploitation has been reduced thanks to the enforcement of Official Letter No. 
2946/UBND-KT of the People’s Committee of Can Tho City (2010) [16]. 

In addition, these two figures demonstrate that there was possible GWR re-
charge from rain water as there was the a little lag-time of GWLs and rainfall 
amount. According to the DONRE of Can Tho city (2011) [17], the depth of 
Pleistocene aquifer was from 35 m to 149 m (MSL), thus, this aquifer may receive 
some recharge from Bassac River (river depth of 33 m-MSL at Can Tho station). 

4.2. Results of ANN Structure Selection, ANN Calibration and  
Validation 

All trainings were carried out by the neural network toolbox from the Visual 
Gene Developer. By means of trial and error for different ANN structures, the 
input layer consisted of various input nodes, and a 3-monthly time-lag was in-
cluded (time lags t, t-1, t-2, and t-3 considering t is the value of a given variable 
at the present time step), and optimum ANN structures were obtained. The 
output of the network is a prediction of the GWLs at three lead times (1-, 2-, 
3-month). The number of hidden neurons was determined through trial and er-
ror. 
 

 
Figure 3. GWLs at QT08 station vs. rainfall. 
 

 
Figure 4. GWLs at QT16 station vs. rainfall. 
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The results of ANN structure selection show that the optimum structures for 
qp2-3 and qp3 are 14-15-1 and 12-15-1 (with respectively to the input, hidden 
and output nodes), respectively. The number of nodes in the hidden layer has a 
slightly impacts on the accuracy of prediction. Therefore, these two structures 
were selected for 1-, 2-, 3-month GWLs prediction at QT08 and QT16, respec-
tively. Figure 5 shows examples of the ANN structures (14-15-3 and 12-15-3) 
and weights (in the figure, red color corresponds to high positive number and 
violet color means high negative number. Line width is proportional to absolute 
number of weight factor or threshold value). 

The comparison between observed and 1-month predicted GWLs at QT08 at 
qp2-3 and qp3 layers, respectively are presented in Figure 6 and Figure 7. 
Looking at the qualitative performance of GWLs, the shape and character of the 
predicted GWLs fits quite well with observations. Although the peak GWLs are 
under- or overestimated, this is not considered to be a serious problem, since the 
objective of this study is to assess the mean monthly GWLs, which are well fitted 
to observed GWLs at monitoring wells. 

The correlations between GWLs and other impact factors such as rainfall, wa-
ter levels in Bassacriver and GWR withdrawal for industrial uses were tested. 
The results show high negative correlations between GWLs and GWR with-
drawal for industrial uses. In contrast, there are low correlations between GWLs 
and rainfall/water levels in Bassacriver (data is not shown here). Therefore, fur-
ther study should consider the future projection of GWR pumping for different 
purposes.  

Performance statistics are summarized in Table 3 and the scatter plot of ob-
served and predicted GWL for 1-2-3 month at QT08 and QT16 at Pleistocene 
aquifer (qp2-3 and qp3) are depicted in Figure 8 and Figure 9. It is observed 
from Table 3 that the model performance is good, and the models have pre-
dicted the GWLs with reasonable accuracy in terms of all the statistical indices 
during calibration and validation periods (EI, RMSE and R2). The best fit be-
tween observed and predicted values shows high values of Efficiency Index (EI)  
 

 
Figure 5. Selected ANN structures (14-15-3 and 12-15-3) and connection weights. (ANN 
structures: 14-15-3 and 12-15-3; and weights (red color corresponds to high positive 
number and violet color means high negative number. Line width is proportional to ab-
solute number of weight factor or threshold value)). 
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(a) 

 
(b) 

Figure 6. Comparison between observed vs. predicted 1-month GWLs at QT08 (qp2-3). 
(a) Calibration (2004-2012); (b) Validation (2013-2015). 
 

 
(a) 

 
(b) 

Figure 7. Comparison between observed vs. predicted 1-month GWLs at QT08 (qp3). (a) 
Calibration (2004-2012); (b) Validation (2013-2015). 
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(a) 

 
(b) 

 
(c) 

Figure 8. Scatter plot of observed and predicted GWL for 1-2-3 month at QT08 and QT16 at Pleistocene aquifer (qp2-3). (a) Ca-
libration (QT08): 1-, 2-, 3-month lead time prediction; (b) Validation (QT08): 1-, 2-, 3-month lead time prediction; (c) Calibration 
(QT16): 1-, 2-, 3-month lead time prediction. 

 
Table 3. Performance statistics of the 1-, 2-, 3-month GWLs prediction. 

 QT08 (qp2-3) QT16 (qp3) 

Lead time 1-month 2-month 3-month 1-month 2-month 3-month 

Index Calibration (2004-2012) 

EI 0.97 0.96 0.94 0.98 0.98 0.97 

RMSE (m) 0.14 0.16 0.21 0.17 0.19 0.22 

R2 0.98 0.97 0.96 0.98 0.98 0.98 

Index Validation (2013-2015) 

EI 0.96 0.97 0.95 0.97 0.97 0.95 

RMSE (m) 0.07 0.06 0.07 0.08 0.09 0.09 

R2 0.97 0.90 0.96 0.98 0.97 0.96 

 
and the R efficiency (R2) with all EI and R2 values are greater than 90%. Regarding 
the Root Mean Square Error (RMSE), RMSE statistic, which is a measure of re-
sidual variance that shows the global goodness of fit between the predicted and 
observed GWLs, is very good as evidenced by a low RMSE values during both  
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(a) 

 
(b) 

 
(c) 

Figure 9. Scatter plot of observed and predicted GWL for 1-2-3 month at QT08 and QT16 at Pleistocene aquifer (qp3). (a) Cali-
bration (QT08): 1-, 2-, 3-month lead time prediction; (b) Calibration (QT16): 1-, 2-, 3-month lead time prediction; (c) Validation 
(QT16): 1-, 2-, 3-month lead time prediction. 

 
calibration and validation periods. As can be seen, the variation in RMSE statis-
tics lies between a minimum of 0.06 m to a maximum of 0.22 m. 

From Table 3 and Figure 8 and Figure 9, it is clear that the calibrated and va-
lidated ANN predicted the GWLs with reasonable quality, so it can be used to 
evaluate the effects of different scenarios (rainfall, river water levels and GWR 
pumpings) on GWL in the study area. It can be concluded that, in general, the 
results indicate the potential of neural computing techniques (ANN) in predict-
ing the GWLs at observation wells at 1-, 2- , 3-month lead time. 

5. Conclusions 

Greater demand of groundwater resources (GWR) for domestic and industrial 
production purposes cause the widespread exploitation of the resources. GWLs 
in the study area reduced rapidly from 2000 to 2015, especially in the Mid-
dle-upper Pleistocene (qp2-3) and upper Pleistocene (qp3) layers due to the 
over-withdrawals of GWR in almost all the enterprises in the area. As the result, 
the Official Letter No. 2946/UBND-KT of the People’s Committee of Can Tho 
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City was issued and taken into enforcement in 2012, to monitor the exploitation. 
Application of Artificial Neural Network (ANN) has successfully demon-

strated that the groundwater levels (GWLs) can be predicted by considering dif-
ferent impact factors. The predicted results will help to draw an attention of the 
local/central government to devise and formulate a clear GWR management 
policy for the Mekong delta, especially the industrial zones in the urban areas 
such as Can Tho city.  

There are high negative correlations between GWLs decline and GWR with-
drawal for industrial uses; therefore, further study should consider scenarios of 
GWR pumping for different purposes.  
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