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Abstract 
 
The properties of a wave equation for a six-component wave function of a photon are re-analyzed. It is 
shown that the wave equation presents all the properties required by quantum mechanics, except for the ones 
that are linked with the definition of the position operator. The situation is contrasted with the three- 
component formulation based on the Riemann-Silberstein wave function. The inconsistency of the latter with 
the principles of quantum mechanics is shown to arise from the usual interpretation of the wave function. 
Finally, the Lorentz invariance of the six-component wave equation is demonstrated explicitly for Lorentz 
boosts and space inversion. 
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1. Introduction 
 
The wave function of a photon is a topic that has for long 
been ignored since the physicists have been primarily 
interested in emission and absorption processes, for 
which solid theories, such as the Glauber theory, exist. 
But in the last two decades, an increased interest has 
been focused on the description of a single photon by a 
wave function. Two difficulties have shown up. The first 
one deals with the problem of the proper wave equation. 
The second one is linked with the definition of the posi- 
tion operator. Largely irrespective of the proper wave 
equation, it seems difficult to define a position operator 
as usual, which, at the same time, satisfies the commuta- 
tion relations with the total angular momentum dictated 
by Poincaré symmetry. It should however be mentioned 
that acceptable wave functions have been shown to de- 
scribe a photon with good localization properties.  

In this paper, we focus on the first question mentioned 
above, namely the wave equation. It has been realized 
during the last years, that the wave equation should be 
similar, or at least consistent, with the Maxwell equa- 
tions. But the proper form of the wave equation is still 
controversial. Furthermore, for some choices, the wave 
function does not fulfill basic principles of quantum me- 
chanics. Here, we study a particular wave equation and 
show it to be consistent with the requirements of quan- 
tum mechanics and to present good symmetry properties. 
It nevertheless presents the same problems as regarding 

the definition of the position operator. 
 
2. The Wave Equation 
 
2.1. Introduction 
 
The systematic search for a relativistic wave equation for 
the photon has been undertaken by several authors and in 
particular in References [1-7], to restrict oneself to the 
recent years. Without entering into details, the wave 
equation should be linear in the time derivative and as- 
sume the canonical form  

i
H

t

 
 

 
               (1) 

where the Hamiltonian H is linear in the momentum p  
and is such that plane wave solutions are consistent with 
the relativistic dispersion relation. More precisely, H 
should be a square root of the operator p2c2 in the space 
of the components, like the Dirac Hamiltonian is a square 
root of the operator p2c2 + m2c4 in the space of the Dirac 
spinors. On the other hand, the number of components of 
  is not fixed a priori. It is reasonable to admit that it 
should be chosen as low as possible, for the sake of 
simplicity.  

As a guide to determine the minimum number of com- 
ponents, it is instructive to look at other simple exam- 
ples. For massive boson particles with spin zero,   has 
two components and H can be taken as 
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This is the well-known two-component formulation of 
the Klein-Gordon equation [8], linear in the time deri- 
vative. The m = 0 limit is not very much instructive, 
since it is singular. On the other hand, this equation 
suggests that an equation for a spin one boson should 
have more than two components. For a massive spin 1/2 
particle,   has four components and H has the Dirac 
form 

2.DH c mc  α p                 (3) 

Although it applies to fermions, this equation strongly 
suggests that the Hamiltonian H of Equation (1) should 
be taken as a linear and homogeneous form in the mo- 
mentum p. In the m = 0 limit, the Dirac equation reduces 
to the Weyl equation, which shows that the appropriate 
number of components for massless spin 1/2 particles is 
two. So, again, the minimum number of components for 
the photon wave function seems to be three. This choice 
have been made by several authors. The form of H is 
then practically uniquely determined and the equation is: 

ψ i
ic

t


  

 
p ψ                (4) 

The Hamiltonian H = ic p  is hermitian because the 
operator  is anti-hermitian. This can be 
seen from the following property: 

i   p 

   k
k kk

i
= = p

x


 

 k kψ H ψ H ψ 







    (5) 

where the matrices Hk are given explicitly by 

1 2 3

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

=

     
           
         

H H H

 (6) 

See Appendix A for details. In the following, we will 
use the short-hand notation 

i i
i

= p H p H              (7) 

the presence of  indicating automatically 3 × 3 ma- 
trices in the space of the components.  

H

The wave Equation (4) is compatible with the criteria 
enunciated above, namely that the square of H is equal to 
p2c2. This however requires some restriction on the wave 
functions. Indeed, the square of the Hamiltonian matrix 
is given, with the help Equation (64) of Appendix A, by 

   
2

2 2 2 21i i
i

ic ic p H p c c
     
 
 p H p p    (8) 

where 1  is the 3 × 3 unit matrix and where the second 
term is the direct product of p  by itself. This operator 
reduces to the p2c2 operator, if the wave functions are 
restricted to divergenceless functions, satisfying 

=0ψ  or, equivalently,  =ψ 0.p
Equation (4) corresponds to the Maxwell equations, as 

motivated and discussed below. However, this is only 
true for a special and criticizable choice of the wave 
function, as explained later. 
 
2.2. An Equation with Good Quantum  

Mechanical Features 
 
The proposed equation involves a six component wave 
function that we will write as 

1

2

,
 

  
 




                  (9) 

1 , 2  both having three components and being 
divergenceless. The wave equation is given by: 

1 1

2 2

0

0

ci

ct

     
          

p H

p H 
 
 

,      (10) 

where all elements of the matrix on the right-hand side 
are 3 × 3 matrices. The non-vanishing 3 × 3 matrices are 
anti-hermitian, but the big 6 × 6 matrix, which is nothing 
but the Hamiltonian, is hermitian. It is hermitian in the 
space of the components and in the space of the nor- 
malizable functions 1  and 2 , due to the presence of 
the momentum operator. Equation (10) has also been 
proposed by Wang et al. [9,10], Bialynicki-Birula [3] 
and others1. Here we study in some detail the quantum 
and symmetry properties of this wave equation.  



 
2.3. Quantum Properties 
 
We are going to show that Equation (10) has good quan- 
tum mechanical properties, except for the ones that are 
linked with the position operator. 

1) Hilbert space. Like for Equation (4), it is necessary 
to restrict the functions 1  and 2  to be divergence- 
less in order to ensure H2 = p2c2. This is easily verified 
using Equation (8). The total configurational Hilbert 
space is thus the direct product of two similar Hilbert 
spaces built on normalizable divergenceless functions in 
configurational space. These are perfect Hilbert spaces. 
A possible (limiting) basis is provided by familiar plane 
waves with transverse polarization.  



1E. Majorana seems to have proposed this choice for the first time 
[11].
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2) Probability density and current. It is easy to check, 
by the usual method, that one can define a probability 
density 

2

1 2    2
              (11) 

and a probability current 

 *
1 2 2 c  j               (12) 

which satisfy the continuity equation. Details are given 
in Appendix B. 

3) Phase of the wave function. If   given by Equa- 
tion (9) is a solution of Equation (10), then 

iψ' = ψe                   (13) 

where   is a real constant, is also a solution. This re- 
sults from the linearity of the equation. Transformation 
(13) leaves the density and current of probability invari- 
ant, as it should. It is of interest to notice that the wave 
equation (10) is real, in the sense that, besides the func- 
tions 1  and 2 , it involves real operators and real 
coefficients. Indeed, owing to Equation (5), it can be 
written as 

 

1 2

2 1

1

1

=
c t

=
c t







 


  

  
             (14) 

The other remarkable property, which is shared by the 
Weyl equation, is that  has disappeared.  

4) Plane wave solutions and energy eigenvalues. Let 
us consider solutions of Equation (10) of the type 

i . ωtik.xψ = ae = ae k r  ,          (15) 

where  is a six-component column vector,  1

2

a =
 
 
 

a

a

with both 1  and 2a  orthogonal to . Inserting form 
(15) into Equation (10), one gets the eigenvalue problem 
expressed by 

a k

  0.
c

a
c




  
  

k H

k H
       (16) 

The eigenvalues are   = 0, kc, −kc, with k = k , 
each doubly degenerate. A set of eigenvectors can be 
constructed as follows. Let us define 

0
L = =

k
 k

k ,             (17) 

1ε  any real unit vector orthogonal to  k
0

1 10,    1= ε k ε ε1 

1

L

2 ,

2










2

           (18) 

and 

0
2 = ε k ε .                (19) 

The eigenvectors can taken as: 

0 : , ,L

L L

a a
   

        
 

ε ε

ε ε
        (20) 

1

2 1

: ,ω= kc a a
   

       
 

ε ε

ε ε
       (21) 

1

2 1

: ,ω= kc a a
   

        
 

ε ε

ε ε
.        (22) 

This is easily verified using Equation (10). The eigen- 
vectors for ω = 0 are just formal solutions of Equation 
(16). If one requires these eigenvectors to be orthogonal 
to , there is simply no eigenvector. This result corre- 
sponds to the fact that the photon cannot have a longitu- 
dinal polarization. The positive eigenvalues correspond 
to two independent transverse polarizations. It is easy to 
check that the various solutions are orthogonal to each 
other. The negative eigenvalues correspond to propaga- 
tion in the opposite direction. In general, negative eigen- 
values are associated with antiparticles. The fact that 
negative eigenvalues solutions simply duplicate the posi- 
tive ones correspond to the fact the photon is identical to 
its antiparticle or, equivalently, has no antiparticle.  

k

Alternatively, one can consider circular polarization. 
A set of eigenvectors is then provided, for the ω = ±kc 
eigenvalues, by 

: ,

: ,

ω= kc a = a
i i

ω= kc a = a
i i

 

 



 

  
  

  
  

   
  

 

 

ε ε

ε ε

ε ε

ε ε

      (23) 

with 

1
  ε ε ε                (24) 

The orthogonality between different solutions i  and 

j  is to be understood in the sense of the following sca- 
lar product 

a
a

  *.i j i j ija ,a = a a = δ . 
5) Spin and helicity operators. The spin operator can 

be taken as 

0
.

0

i
=

i

 

 


H
S

H               (25) 

We remind that the Hk’s are antihermitian operators. 
Actually, the operators iHk form the adjoint representa- 
tion of the SU(2) algebra (see Equation (71)) and are 
thus the natural representation for spin one (3 compo- 
nents). Like for the Dirac equation, the operator  does 
not commute with the Hamiltonian in Equation (10), but 

S

= +J L S  does, as it can be easily verified ( = L r p ). 

Copyright © 2011 SciRes.                                                                                 OJM 



J. CUGNON 44
 

 

Actually, 

          (26) 

with  


              (27) 

The operator S2, which is equal to 2 , owing to 
Eq

rator  



one has  

 ,H =L  ,H ic   S α

0
.

0

 
  


H

H


 2

uation (69), obviously commutes with the Hamil- 
tonian.  

The ope

0

0

i
=

i

 
   


p H

p S
p H

            (28) 

commutes with the Hamiltonian, as well as with the 
momentum operator p . Therefore the eigenvectors of H 
can be taken as eige ectors of nv p  and of the helicity 
operator 

.h =



p S

p p
                (29) 

Actually, this is case for the eigenvectors of H built on 
th

.4. The Velocity “Operator” 

et us consider the velocity “operator” defined by the 

e vectors of Equation (23). They are eigenvectors of 
the helicity operator with eigenvalues h = 1, −1, 1, −1, 
respectively. Here again, the negative eigenvalue solu- 
tions duplicate the positive ones. 
 
2
 
L
relation 

 d
, .

d

i
= H

t 
r r             (30) 

For the Hamiltonian defined in the wave Equation (10), 
one has  

0d
,

0d
= c

t




H
r α

H
        (31) 

where   is given by Equation (27), which tells that   
 ofis the v city operator in units of c. The eigenvalues  

the operators iα , i = 1,2,3, are equal to 0 (with no di- 
vergenceless e nfunctions) and ±1. The eigenfunctions 
are the same as in Equations (21, 22) (or as in Equation 
(23) for the ±1 energy eigenvalues, as can be checked 
directly, despite the fact that 

elo

ige

  and H do not commute. 
This strange property is also lated to the fact that the 

iα  operators do not commute and therefore one cannot 
ild an eigenstate of 1α  which is an eigenstate of 2α  

at the same time. In oth  words, a precise measurem  
of the x-component of the velocity is incompatible with a 
precise measurement of the y-component. A similar di- 

fficulty exists for the Dirac equation. Incidentally, we 
mention that, like for the Dirac equation, Equation (31) is 
equivalent to 

 re

bu
er ent

3d
d ,

d
=

t r j r                 (32) 

where j  is the probability current defined by Equation 

on-existence of 
th

e

.5. Interpretation of the Wave Function 

 is often argued that if the photon can be viewed as “an 

 relationship first for the wave Equa- 
tio

(12). We will not elaborate any further on this point, 
which is beyond the scope of this note.  

These difficulties are linked with the n
e position operator for the photon. There is a large lit- 

erature on this point (see [3] for a review). Heuristically, 
the non-existence of the position operator derives simply 
from the fact that the multiplication by r  of a diver- 
genceless function does not yield a diverg nceless func- 
tion. Therefore the position operator has no eigenvalue. 
 
2
 
It
elementary excitation of the quantized electromagnetic 
field” and as a particle at the same time, its wave func- 
tion should be related to the (average) electric and mag- 
netic fields that it carries, i.e. with physical electro- 
magnetic fields.  

We discuss this
n (4). We will closely follow here the arguments of 

Reference [12]. The three-component Equation (4) may 
be written 

ic
t


  


                (33) 

Assuming  

= +iψ E B                  (34) 

where E unctions2, one gets after  and B  are real f
tio epsubstitu n and s aration of real and imaginary parts,  

1
,

1
,

c t

c t


 




  


E
B

B
E




             (35) 

which are nothing but the Maxwell equations for free 
transverse fields. According to the authors of Reference 
[12], the Maxwell equations provide a “correct relativis- 
tic, quantum theory of the light quantum”. It is thus 
tempting to interpret, as did the authors of this work, E  
and B  as the electric and magnetic fields. This int  
preta n raises a certain number of problems. First, 
Equations (35) derive from the wave Equation (33) only 

er-
tio

2This object, where E and B are the electric and magnetic fields, is 
known under the name of the Riemann-Silberstein wave function. Let 
us remind however, that this object has been introduced by these 
authors [13,14], long before the advent of quantum mechanics. 
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if the fields E  and B  are taken real. This is incom- 
patible with th  princi e of the invariance of the wave 
function under a global phase shift, if the electromag- 
netic fields 

e pl

E  and B  have a physical reality, because 
they are changed by this phase shift. Second, the two 
circular polarization plane waves solutions require two 
different identifications of the components of their wave 
function ψ  (one with E  and one with B  as the real 
part of ψ  Finally, the w ve function ψ i ). a E B  does 
not have e right properties under spac  if the 
real components are considered as physical electroma- 
gnetic fields. Indeed, electric fields change sign, whereas 
magnetic fields do not, and the Hamiltonian in Equation 
(4) commutes with the parity operator.  

These difficulties do not appear in ou

 th e i rsion,

r f ulatio

nve

orm n. If 
the 3-vectors 1  and 2  are identified with the elec- 
tric and magnetic fields spectively, the Equation (14) 
above are also identical to the Maxwell equations for free 
transverse fields. There is however an important differ- 
ence in the two approaches. The functions 1  and 2

, re

  
need not to be real. If they need to be related  physi  
fields, it is sufficient to consider the latter as the real (or 
imaginary) part of 1  and 2 , as it is customary in the 
harmonic represent n of ssical electromagnetism. 
Applying a global phase shift to the wave function (9) 
merely corresponds to introducing a constant phase shift 
in the physical fields (at least for plane waves) and the 
physical reality attached to these fields is preserved. 
Furthermore, the plane wave solutions exhibit automati- 
cally the two helicities in our formulation, without the 
identification of the components with electric and mag- 
netic fields. Finally, our wave function (9) has the right 
properties under space inversion, as described in Section 
4. 

T

 

lts of

 of t

to

 resu  this

y he electro

cal

at

tio

io

s

n th

cla

hes ideration e main  note 
an

en at the dualit - 
m

e cons  are th
d show that if the wave function is to be related with 

physical electric and magnetic fields, the Raymer and 
Schmidt formulation (Equations (33,34)) does not seem 
to be consistent with quantum mechanics, contrarily to 
our formulation. 

Let us also m
agnetic equations, namely that the equations are in- 

variant under the substitution E B , B E  is ful- 
filled by both our wave eq an aymer- 
Schmidt one. The mere inspection of Equation (10) shows 
that they are invariant under the substitution 1 2

uation d e R th

  , 

2    . As for the wave Equation (33), the s 
m Equation (35), but is obtained by consi- 

dering ψ  and iψ  as solutions, if the real and imagi- 
nary pa  of th  wave functions are identified with 
physical electric and magnetic fields, respectively. 

Finally, let us discuss a little bit the normalizati

duality i
evident fro

rts ese

on of 
the wave function, since it interferes with the identifica- 

tion of the wave function with electromagnetic fields. Let 
us start with the probability density, which is given by 
Equation (11) in our formalism, provided the wave func- 
tion is properly normalized as 

 2    2 3
1 2 d 1.=r           (36) 

The direct identification of  to  1 E  (and of 2  
to B ) is not possible since these quanti s do not ha  
the me dimension. If 1

tie ve
 sa   and 2  are to be related 

with physical electromagn ic field at least the identi- 
fication mentioned above should be corrected by a con- 
stant factor. Indeed, the energy of the photon in state ψ  
(Equation (9)) can be identified to the energy of t  
corresponding electromagnetic field. One should then 
require: 

et s, 

he

 2 2 3
1 2 d ,

8π

c
= H r           (37) 

where the rhs is the quantum average of the Hamiltonian. 
This is a conserved quantity for a free photon. It can also 
be written as 

.H = i ψ ψ
t





             (38) 

Therefore it may be more appropriate to make the 
identification 

1 2 .
8π 8π

c c
,

H H
 

E B
        (39) 

The same considerations apply to the Raymer and 
Sc

arguments against the interpreta- 
tio

hmidt formulation. 
There are however 
n of the components of the wave function as con- 

nected to the physical electric and magnetic fields at- 
tached to the photon. First of all, any physical quantity 
attached to the (free) photon should be associated to a 
Hermitian operator. But the only operators available in 
the quantum mechanics of a photon are linked with the 
translational and spin degrees of freedom and have no 
relation with electromagnetic properties. Strictly speak- 
ing, the electromagnetic field quantum mechanical op- 
erators are defined in the Fock space of field theory and 
have no effect in the Hilbert space of a single photon 
(like there is no operator linked to the electric field of the 
electron in the quantum mechanics of a single electron). 
Actually, the average value of the electric field or the 
magnetic field is vanishing. In face of these considera- 
tions, one may wonder whether the consistency between 
the photon wave equation and the Maxwell equations 
should not be interpreted differently, considering the 
components of the wave function as merely behaving as 
classical electromagnetic fields. They fulfill the same 
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n, some of the criticisms 
to

Maxwell equations, transform in the same way under 
Lorentz transformations (see below) and their equations 
are invariant under dual transformations. In other words, 
they may simply be objects with the same mathematical 
properties as the classical electromagnetic fields, but 
devoid of physical electromagnetic properties. They, of 
course, keep their physical meaning concerning the 
quantum probability density.  

Within this new interpretatio
 the wave Equation (4) disappear. Let us consider a 

specific solution ψ . According to the previous interpre- 
tation, attaching s e physical meaning to the real and 
imaginary part, the solution iψe

om
  where   is a real 

constant, is not equivalent to ince the components 
are changed. On the contrary, in the new interpretation, 
the real and imaginary parts of the wave function have 
no physical meaning, but just behave as classical elec- 
tromagnetic fields, both ψ  and iψe

ψ , s

  are acceptable 
solutions of Equation (33). hey ho er correspond to 
the same quantum mechanical reality (probability density 
and current). 
 

 T wev

3. Invariance under Transformations of the  

 
he wave Equation (10) acting in the space of diver- 






Hamiltonian 

T
genceless 1  and 2  has a special property: there are 
infinite num rs of H iltonians equivalent to the one of 
Equation (10), i.e. having the same solutions. Indeed it 
suffices to add any term generating the divergence of 

1  and/or 2 . For instance the substitution 

1 2 3ap ap ap

be am

0 0 0 0

0 0 0 0

0

c c

c

c

          
 

p H p

p H

p H

H
 (40) 

where a is an arbitrary constant, generates an equivalent 
Hamiltonian. The transformed Hamiltonian does not look 
Hermitian, but since the line containing the p-operators 
gives a vanishing contribution in the space of divergen- 
celess 1  and 2 , this Hamiltonian is automatically 
Hermit  It has actly the same matrix elements as the 
original Hamiltonian in the space of divergenceless3 1

ian. ex
  

and 2 . In fact, one can add a similar set of operators  
any l  of any of the four submatrices to generate equi- 
valent Hamiltonians. Of course, it is much easier to drop 
all terms generating a divergence of 1  or 2 . Never- 
theless, this property will be used to di uss t  Lorentz 
invariance in the next Section. Generalizing the argu- 
ment, the Hamiltonians  

6 3

 to
ine

sc he

6 6

3
1 1 1 4

,k i ki k i k
k= i= k= i=

iH' = H + a pU + b p U         (41) 

where the Uik  are the 6 × 6 matrices defined in Equation 

variance 

 

ariance of the wave equa- 

(66), are equivalent to the original Hamiltonian, i.e. they 
have the same eigenvalues and the same (divergenceless) 
eigenfunctions. 
 
. Lorentz In4

 
.1. Introductory Remark4

 
he question of the Lorentz invT

tion (10) may appear as a trivial issue, since the compo- 
nents 1  and 2  behave as classical electromagnetic 
fields. Some poi s however need a clarification. First, 
Equation (10) is restricted to divergenceless functions 
and the condition for vanishing divergence has no obvi- 
ous Lorentz covariance property. Second, 1  and 2

nt

  
are associated in a 6-vector and not in a tens like or F , 

e. Iwhich is the usual basis to discuss Lorentz invarianc t 
would then be desirable to prove explicitly the Lorentz 
invariance of the wave equation. Here below, we restrict 
ourselves to show explicitly the Lorentz invariance for a 
Lorentz boost and for space inversion, following closely 
the method ordinarily used for the Dirac equation. 
 

.2. Lorentz Invariance for a Boost 4
 

e start with the remark that the wave EquW ation (10) can 
be cast, after multiplication on the left by the a non- 
singular 0  matrix, in the following Dirac form (for a 
massless particle) 

0μ
μγ ψ= ,                (42) 

with  


             (43) 

Note that these gamma matrices are 6 × 6 matrices. 
Th

0
.

0
0 ii

i

H
=

H

 
 


γ

e 0  matrix is arbritrary, except that its square should 
be equal to the identity matrix. It is tempting to take  

0 1 0 
.

0 1
=   

γ               (44) 

The i  matrices are then given by 


           (45) 

Using these matrices and momentum operators, the 
wave Equation (42) can be written as: 

0 H 
.

0
ii

i

=
H 



3Note however that one has to be careful when applying the Hamil-
tonian on the bras; then one has to use the Hermitian conjugate of the 
6 × 6 matrix in Equation (65). 
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0 1

0 2

1
0,

1

p c

c p

   
      

p H

p H




        (46) 

which, with  0p = i   ,t  is equivalen
(10). The gamma matrices introduced here do not follow 

ommutation re

t to Equation 

the same antic lations as the Dirac matrices. 
The reason is that the square of the operator in Equation 
(42) is not equal to p2, but to an operator which reduces 
to p2 for divergenceless functions. Presumably, the 
gamma matrices (43) are not unique and Equation (42) is, 
like the Dirac equation, independant of the representation. 
We did not investigate this point. 

We shall not attempt to derive the Lorentz invariance 
in general. Following the method described in Reference 
[15], we will verify this property for one particular 
transformation, namely a boost along the z axis. Ac- 
cording to this reference, it is sufficient to show that 
there exists a matrix S, relating the wave functions in the 
two different frames by    S , which is such that if 
  is a solution of Equation (42),    is solution of the 
wave equation written in t ormed frame:  

0.μ
uγ ψ' =                (47) 

This equation may be rewritten as  

he transf

0,μ νγ a Sψ=μ ν

where 

              (48) 

ν
μa  

e usu
is the Lorentz transform

ing th al method, it is thus su
ist

However, according to the discu
Section, one must admit in th
Eq

  

where the dots stand for such terms, an
giving vanishing contributions in the w

ation matrix. Follow- 
fficient to show that 

there ex s a matrix S satisfying   

.μ ν ν
μγ a = γS                (49) 

ssion of the preceding 
e right hand side of 

uation (48), additional terms, which give a vanishing 
contribution for divergenceless 1  and 2 , and the 
previous condition becomes 

μ ν ν
μ ν νγ a = γ  S          (50) +

d any other terms 
ave equation. 

We merely show that the following matrix 



3

3

1

1

=

H

H  
 


 

 
 
 
 

 

S

 



           (51) 

satisfies these requirements. In this equation, –β is the 
velocity of the primed frame with respect to the un- 
primed one. The corresponding Lorentz transformation 
matrix in Equation (50) is given by 

0 0

0 1 0 0

0 0 1 0
=

0 0

 

 
 
 

 
 
 


a


            (52) 

We leave the detail of the calculat
We collect the results for the operator of the lhs of 
Equation (48) from Equations (75-78): 

ion in Appendix C. 

 
 

64 1 65 2 66 3

31 1 32 2 33                

a p S p U p U p U p

U p U p U p

  
    



   

  

  
  

3

33 0 35 1 34 2

66 0 62 1 61 2

                1

                1

U p U p U p

U p U p U p





   

    

  (53) 

where the 6 × 6 matrices Uab have all vanishing el
except for the one at the crossing of line a and column b, 
which is equal to one. It is then very easy to see that the 

ements 

second and third terms of the rhs of the last equation 
gives vanishing contributions when applied to diver- 
genceless 1  and 2 . It can also easily be seen that 
the terms proportional to (γ − 1) are simply the z-com- 
ponents of the two Equations (14), giving thus also a 
vanishing c tributio  One then recovers the Equations 
(46) or the Equations (14), except that the third and sixth 
equations are multiplied by (γ − 1). 

There is no secret beyond the matrix (51). It is nothing 
but the matrix expressing the transformation of classical 
transverse electromagnetic fields form one frame to the 
ot

on n.

her: 

,S
   
      

E E

B B
              (54) 

see [16]. However, we consider here wave functions and 
thus we have to take care of some
requirements. First, Equation (10) acts on divergenceless 

 quantum mechanical 

functions. Therefore, one has to verify that this trans- 
formation preserves the vanishing divergence of the trans- 
formed components 1  and 2 . Once again, we limit 
the demonstration to the Lorentz boost described by Eq- 
uation (52). In this case, one has, with  

      1 1 11 2 3
, ,       1   2 2 2 21 2 3

,   : 

     1 1 2 1 3 11 2 3
               

       
        

   
      

      

1 1 2 1 1 3 11 2 3 3

1 2 2 11 2 2 1

1 3 13 3

1 1 2 1 3 11 2 3

1 2 2 2 22 1 3

) (

    

   

t

t

t

t

 

   

 





              

         

     

        

        

2

 (55) 

In the second line, the explicit form of S (Equation 
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(51)) has been used. The last parenthesis vanishes, by 
virtue of Equation (35) or Equation (14). This shows that 

is divergenceless if is divergenceless. The simi- 
roperty for is ed on exactly the same way. 

at this  no an that any divergen
tion in a f  is matically divergenceless in 

 other fram h vation of Equation (55), ex- 
licit use of th ve ation (10) (or the Maxwell 

tions), link

1  
lar p
Note th
func
any
p
equa

1  
 obtain

t me
 auto

e deri
 Equ
 and 

2  
 does
rame
e. In t
e wa
ing 

celess 

1 2 , has been made. 
Let us notice that the transformation    S , with S 

given by Equation (51) is not a unitary transformation 
and therefore does not conserve the norm of the wave 
function. This, of course, is consistent with the fact that, 
for a classical electromagnetic field ( E , B ), the quantity 
   2 2

3 3E + B  is an invariant, whereas its integral (over 
coordinate r  in one case and coordinate r  in the 
other case) is not invariant under a Lorentz transfor- 
mation (along the z-direction). In other words, if one has 
normalized the wave function as in Equation (36) in a 
giv sformed en frame, the wave function tran through 
   S  (with S given by Equation (51)) in another 
frame does not automatically fulfill Equation (36) in this 
new frame.  
 
4.3. Loren  Invariance for Space Inversion 
 
It is interesting to consider the Lorentz transformation 
corresponding to space inversion. Again, we have to find 
a matrix 

tz

PS  which satisfies4 

,a  
 P PS S               (56) 

where ν
μa  is 

1 0 0 0

0 1 0 0

 
 

 
0 0 1 0

=  
 

a              

0 0 0 1 

It is easy to see that 

(57) 

PS  is the 6 × 6 matrix  

1 0

0 1
=
 
 

PS  


  

et ame result as for the Dirac equation (ex- 
cept that in the latter case 

              (58) 

We g  the s

PS  
ince o

c equat
 electrom

is a 4 × 4 matrix). Here 
also, there is no surprise, s ur Equation (42) has the 
same structure as the Dira ion. 
tion is behaving like an agnetic wave, space in- 
version leaves unchanged and flips the sign of 

Since the wave func- 

.  

5.
 
We have re-analyzed the prop
for a six-component wave function of a photon. This 
w

era

f f t
ve equation and wave function pro- 

We have shown that the diffi- 

ropagation of

W

 

ium 
co, 4-7 January 1994. 

the Wave Function of the Pho- 

olf Ed., Progress in Optics XXXVI, Elsevier, Amster- 

irula, “Exponential Localization of Pho- 
tons,” Physical Review Letters, Vol. 80, No. 24, 1998, pp. 

1  2

 Conclusions 

erties of a wave equation 

ave equation and this wave function have been already 
proposed in the past by sev l authors. The purpose of 
this work was a careful analysis of the quantum and 
invariance properties of the formalism. We have shown 
that the properties of the latter are more consistent with 
the principles o quantum mechanics than those o he 
three-component wa

osed in Reference [12]. p
culty for the latter choice comes from the interpretation 
of the wave function as an observable electromagnetic 
field. If this interpretation is abandoned, the incon- 
sistency of the formalism of Reference [12] with quan- 
tum mechanics disappears, except for the problems 
which are linked with the position operator, that survive 
in our formulation as well. Let us however mention that 
the three-component wave equation does not admit plane 
wave solutions  .i ωtψ = e k ra  with a 3-vector a  for 
real ω5. That is the reason why the introduction of 
polarization is not natural in the wave Equation (4) or 
(33).  

We have also demonstrated explicitly the Lorentz in- 
variance of the six-component wave equation for Lorentz 
boosts and space inversion. 

Let us finally mention that the results are rather trans- 
parent for free photon solutions in vacuum. As under- 
lined in [3], the real interest of the formalism lies in the 
treatment of the p  photons in media.  
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


Appendix A: Properties of the Hi Matrices 
 
The matrices 

1 2 3

0 0 0 0 0 1 0 1 0

0 0 1 , 0 0 0 , 1 0 0

0 1 0 1 0 0 0 0 0

     
           
          

H H H

 (59) 

possess the following property: 

 i ijkjk
= H                 (60) 

Therefore, the scalar product of an arbitrary vector  
with  is a 3 × 3 matrix, whose matrix elements are 
given by 

a
H

  ljk ljk
l

= ε a H a              (61) 

If this matrix multiplies a column vector , the j-th 
element of the resulting column vector is given by  

b

     .jlk l k jj
l k

= ε a b =  a H b a b     (62) 

One can thus write 

  .=  a H b a b             (63) 

The square of  is a 3 × 3 matrix, whose ele- 
ments are given by 

 a H 

      2

2 .

jm mkjk m

l ljm l l'jm jk j k
l l'

=

= a ε a 'ε = δ + a a

 





 

a H a H a H

a
      (64) 

The matrices i  have also some other remarkable 
properties. The product of two of them , for 

 is given by  

H

i jH H
i j

    .i j ij ik jlkl kl
U   H H          (65) 

i.e., for instance, H1H2 has all vanishing elements, but 
the element (1,2), which is equal to one. Note that, in this 
paper, the matrices Uij are defined by 

  .ik jlkl
 ijU                (66) 

even for i = j. The squares of the matrices  are given 
by 

iH

2 1i i= H                   (67) 

where 1i is the unit 3 × 3 matrix in which the i-th diagonal 
element has been replaced by 0. More generally, 

4 1 4 2 4 3 4, 1 , ,n n n n
i ii i i i i i

   1 ,     H H H H H H   (68) 

and 

2 1.=  H H                 (69) 

Properties (65) and (67)are summarized formally in  

 i j ikm jml ij kl ik jlkl
m

=        H H       (70) 

Finally, the matrices Hi satisfy the following com- 
mutation relations 

,i j ijk k=    H H H .             (71) 

Thus, the matrices iHj, j = 1,2,3, are the adjoint repre- 
sentation of the SU(3) algebra. 
 
Appendix B: Probability Density and  
Current 
 
Starting with Equation (14), multiying the first line on 
the left by *

1 , and the second line by  and sum- 
ming, one readily gets 

*
2

  

* *
1 1 2 2

* *
1 2 2 .

t t

c c

 
 

 
     


  

1     
      (72) 

Summing this equation and its complex conjugate 
leads to 

    

  

2 2 * *
1 2 1 2 2 1

* *
1 2 2                           .

c c
t

c c


      


     

       

     



1

 (73) 

Using       ,       a b b a a b    one readily 
gets  

   2 2 * *
1 2 1 2 2 1. .c c

t


     


        (74) 

 
Appendix C: Demonstration of  
Equation (53) 
 
Let us consider the left hand side of Equation (50) for ν = 
0. Using Equations (52) and (51), one has   
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

 









 

 
3 3

0 3

3 3

1

1

1
                      

1

                  

H H

=

H H

=

 
   


 

 
   



  
   


   

   


  
    
  

   
  

    
      
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where Uij is the 6 × 6 matrix defined in Equation (66), 
whose elements are vanishing, except the one at the cross- 

ing of line i and column j, which is equal to one. 
For ν = 1, 2, one has successively 
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              (77) 

Finally, one has, for ν = 3, 
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