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Abstract

Wigner theorem is the cornerstone of the mathematical formula of quantum
mechanics, it has promoted the research of basic theory of quantum mechan-
ics. In this article, we give a certain pair of functional equations between two
real spaces s or two real spaces s, (), that we called “phase isometry”. It is
obtained that all such solutions are phase equivalent to real linear isometries

in the space sand the space s, (H ) .
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1. Introduction

Mazur and Ulam in [1] proved that every surjective isometry Ubetween Xand ¥
is a affine, also states that the mapping with U(0)=0, then Uis linear. Let X
and Y'be normed spaces, if the mapping V: X — Y satisfying that

Iy ()= =l 1} (xve ).

It was called isometry. About it’s main properties in sequences spaces, Tingley,
D, Ding Guanggui, Fu Xiaohong in [2] [3] [4] [5] [6] proved. So, we give a new
definition that if there is a function ¢:X —){—1,1} such that J=¢&V is a
linear isometry. we can say the mapping V' : X — Y is phase equivalent to /.

If the two spaces are Hilbert spaces, Ritz proved that the phase isometries
V:X =Y are precisely the solutions of functional equation in [7]. If the two
spaces are not inner product spaces, Huang and Tan [8] gave a partial answer
about the real atomic L, spaces with p>0.Jia and Tan [9] get the conclusion
about the L -type spaces. In [6], xiaohong Fu proved the problem of isometry
extension in the sspace detailedly.

In this artical, we mainly discuss that all mappings V:s—>s or

s,(H)—s,(H) also have the properties, that are solutions of the functional
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equation
W @=-r G+ D=l e+ oly (oyex). @

All metric spaces mentioned in this artical are assumed to be real.

2. Results about s

First, let us introduction some concepts. The sspace in [10], which consists of all

scalar sequences and for each elements x={§k} =Z§kek , the F-norm of x is
k

4]

0

defined by []= zlk

| | Let S(a) denote the set of all elements of the
2
form x—{f 5} with ||x|| |§k| where
T 510 25 Nk .
a 2" 14|85,

e =1{& & =15 =0,k" £k, forallk' e F} . We denote the support of xby T,

Le,
supp(x)zl"x :{yel":éy ;tO}.

For all x,yes,if T (1 =, we say that x is orthogonal to y and write
xLly.

Lemma 2.1. Let S, (s) be a sphere with radius 7, and center 0 in s
Suppose that VS, (s) =S, (s) is a mapping satisfying Equation (1). Then
forany x,yeS, (s),wehave

xLlyeV,(x)LV,(y )
Proof: Necessity. Choosing Vx={&}, y= S, (s) that satisfying
x L y.Wecansuppose V,(x)={&}, Vo(y):{n,,} Andwealsohave
7 Gy =7 % (o) + 7 () = e =l e 1
So

175 ()= Vo )=l = sl =l 1= 2 = ()] + 7 ()]

or
7o (2) =7 ()| = e+ ol =[xl + Il = 2 =7 ()] + 7% ()
Thus
A 1 |m
Z{z_" / ;2"1 ,,212"1+ "
That means
= 1 s ml |
22_ 1+ ,;_1+77,', =0 @

It is easy to know [ (x)= is strictly increasing. And

+|7| . We can get the result &' 770 =0.
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For ||V )+V, () " similarty to the above ( ! +\n! ) It is
Vo(x) LV (y ) Sufficiency. For ¥, (x)L¥,(y), thatis, & 77, =0, so (2) holds,

and we have

= l1= 1V () = =7 (7 ()] = 25

so, it must have [lx— =[x + ]

== G+ 7o =l (ol ()] = 22

as the same ||x - y" = ||x|| + ||y|| . It follows that

E E 1 |n,
— = i ) 3
nZ:‘fZ" ;2" ,,Z’Z”l+ n, ®

Similarly to the proof of necessity, we get x L y.
Lemma 2.2. Let S, (S(n)) be a sphere with radius 7 in the finite

dimensional space S0 > where 7, <2in. Suppose that 7 :S, (s(”))—> S, (S(n))
is an phase isometry. Let A, =%(k eN,1<k<n), then there is a unique
—“<
real 0 with |¢9| =1, such that V,(4.e,)=0e,.
Proof: We proof first that for any k(l <k< n) , there is a unique l(l <I< n)
and a unique real € with |¢9| =1 such that V (4e,)=04e (because the

assumption of 4, implies A, €S, (S(n)) ). To this end, suppose on the
contrary that ¥ (ﬂ.koeko ) =>ne, and 1, # 0,1, #0. In view of Lemma 1, we
=]
have
[suppV0 (lkoeko ):| N [SuppVo (Aey )] =0 Vk#k,1<k<n.

Hence, by the “pigeon nest principle” (or Pigeonhole principle) there must

exist £, (1 <k < n) such that ¥ (/1,(, e ) =@, which leads to a contradiction.
0 0 i0 R0

Next, if V,(4e)=04e, V,(-Ae )= 0,2,e,, where |91| = |¢92| =1, then

I=p and 6,=-6,.Indeed, if /# p,wehave

()7 (a2
or
IV (he)-V (~Ae)|=0
and
|7 (hen) -V (~he)| =[04e B¢, | = 21, (4)

a contradiction which implies /= p . From this 6, =-6, follows. Finally, there
isaunique @ with |9| =1 suchthat V,(4e,)=064e,.Indeed, if
Vy (A€, ) =04, by the result in the last step, we have ¥, (-4, )=-64¢,, thus
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{"V(Zkek ) + V(—/lkek )" , "V(lkek ) - V(—/Ikek )"}

_ _J 1 24
-pred o) {3 oL o)

and
 (e)+v ae) ¥ (e) =V (e
1 24 ;
-l o) = 7o
SO) we get

124 1 24
2X1+24,| 2" 1+]24]

and we also have
LAl v Al
AR REEREIRY

through the two equalities of above
1241 24
2°1+24,| 2" 1+)24)]
A7 N
2°1+|4] 2144

In the end,
|| =[] (6)

The proof is complete.

Lemma 2.3. Let X =5, (S(n)) and Y=5, (S(n))' Suppose that V : X >Y
is a surjective mapping satisfying Equation (1) and A, as in Lemma 2.2. Then
for any lement x=) e, €X, we have V (x) =>'n.e,, where |§k| :|77k| for
any 1<k, <n. * *

Proof: Note that the defination of V,, we can easily get ¥, (0)=0. For any

O#£xeX , write xzzk:é‘kek, where Zklziklﬁ];lA

=1, . we can write

1
Vo (x)= Zklnkek , Where ;2—]( " _|:7|k77| | =1, . we have
k

”VO (x) % (ikoe"o )” + ”VO (x) Vs (lkoeko )

= ”x + /11{0 €, " + "x - ﬂkoeko ”

= Z*fkek +(§k0 + 2, )eko + kaek +<§k0 =, )eko
k#kq k#kg
B 1 ‘fko + ﬂ’ko 1 kao 1 §k0 _ﬂ’ko 1 §k0

0

0

2_kol+§ko+ﬂ’ko 2k0 1+|§ko| 2"0 l_i_é:"fo_/l"fo_zk0 l—'_|d—’gko|.

On the other hand, we have
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Vo (x) -V (j‘koeko)

€ — gkoﬂ’ko €

f (x) +7, (ﬂ,koeko ) ‘ +

e, + Hko/lkoeko +

0

D e +(77k0 +6, A, )ekO

k#ky

Z M+ (77/‘0 ko /11‘0 ) €k

k#kg

|77k0 1 |k yo Ll |77k0 _gko/lko B |77k(J
2° 1+|77k +€ /1 | 2k 1+|77k| ° ok 1+|77k0—¢9kﬂﬁk0| 2 1+|77k0|.

Combiniing the two equations, we obtain that
R I I
1+|§k0 +Ako| 1+|§k0| 1+|§k0

|771(0 _ |277k0| |77k0 ﬂ“ko
1+|77k0+49k0/1k0| 1+|77k0| 1+|77k =6,

As & 2|g | and 2, 2|, |,
gko + ;Lko _ 25’(0 + lko B é:/\'o
1+& +4, 1+& 1+4, —&,
Ay + Oy, 3 21, 4 Ay = Ok,
1+ A’ko + gko U 1+ U 1+ ﬂ’ko - eko s

Therefore,
ﬂ’ko + /1]; B ékzo + My, _ gko _ /Iko + ﬂ’kzo B 771?0
2 2
(1+ﬁk0) —f,fo 1+77k0 1+§k0 (1"'/11(0) _’7/30

Analysis of the equation, according to the monotony of the function, that is
|§k| = |’7k| 7)

The proof is complete.[]
The next result shows that a mapping satisfying functional Equation (1) has a
property close to linearity.

Lemma 2.4. Let X =5 , and Y=s, - Suppose that V: X =Y is a

()
surjective mapping satisfying Equation (1). there exist two real numbers « and

£ with absolute 1 such that
V(x+y) = aV(x)+ﬁV(y)

for all nonzero vectors xand yin X, xand yare orthogonal.

Proof: Let x and y be nonzero orthogonal vectors in X; we write x=» e,
k
Y=
k

V(x) = Zk:gléek > V(y) = Zk:n/,fek
V(x+y)= Z‘fkek + Z’hek >

where |&/]=|&]=|%| and |ni|=

"= |77k| . We infer from Equation (1) that
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{

}

{||V k) ()L (e y) =7 (o)
:{ . +Z771,c'ek+zk:§llek
1
g B

{ 1
24148 + &l 1+& =&
Through the above equation we can get &' +& =0 or & —& =0. This
implies that Y &le, =4V (x), and similarly Y n/e, =%V (y). The proof is
k k

>

}

14 n ’
€ + anek + Z’?kek
P %

complete.[]

Lemma 2.5. Let X =5 and Y =s. Suppose that V: X =Y is a surjective
mapping satisfying Equation (1). Then V is injective and ¥ (—x)=-V(x) for
all xelX.

Proof: Suppose that V is surjective and V(x)=V(y) for some x,yeX .
Putting y=x in the Equation (1), this yields

{l2v ()]0} ={l2+.0}

V(x)=0 if and only if x=0. Assume that V(x)=V(y)#0 choose
ze X such that V(z) = —V(x) using the Equation (1) for x,y,z, we obtain

b=l ={ ()47 (5) )= ().}
(o=l A = {7 () + V(Z)II’IIV(X)- V(@)= {2 ()]0}

This yields y,ze{x,—x}. If z=x, then V(x):—V(x):O, which is a

contradiction. So we obtain z=-x, and we must have y =x. For otherwise we

get y=z=-x and
V(x) :V(y) = V(z):—V(x):O
This lead to the contradiction that V(x) #0.

Theorem 2.6. Let Xzs(n) and Y:s(ﬂ).

surjective mapping satisfying Equation (1). Then V is phase equivalent to a

Suppose that V:X =Y is a

linear isometry /.

Proof: Fix y,el,andlet Z={zeX:z Le,}. By Lemma 2.4 we can write
V(z+42e, )=a(z,4)V (2)+B(2.4)V (e, ).|a(z.4) =|B(z.4) =1
forany zeZ. Then, we can define a mapping J:s,) — s, as follows:
J(z+2e, ) =a(z,2) B(z,4)V (2)+V (2e,)
J(Az)=a(z,2) B(z AV (Az)
I(en)=r(e,)> I(-e,)=7(e,)

for VO#AeR. The Jis phase equivalent to V. So it is easily to know that
satisfies functional Equation (1). Forany zeZ,and V0zA1eR,
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”22"+L t+2 1 [1-4]
20 141+ 4] 727 1+]1- 4]

:{”J(z+em)+J(z+/1eyo)

,‘J(Z+eyo)—J(z+/1€y0)

!
ez 807 (2)+a(z2) Bz AV ()4 (e,)+V (2e, )|
”a(z,l)ﬂ(z,l)V(z)—a(z,ﬂ)ﬂ(z,ﬂ)V(z)+V(eyo)—V(/Ieyo) |

1|1+
” 27°1+|1+/1|’

|||06(z,1)ﬂ(z,1)_ (2,2 " 1 |1+A|}

:{ma(z,l)ﬂ(z 1)+a(z ﬂ

27 1+|1+ 4
That means a( l)ﬂ(z l): (z,/”t)ﬂ(z,/l),
(z+ﬁ,ey0)= )+ ( ) forany zeZ,and VO0=zAeR.
That yields
G+ =) - +2V( i

={”J(z+ey0)+J(—z—eyo s

:{0,“2(24-@0) }

That means J(—z) = —J(Z) On the other hand,

R TN

:{HJ z+e, )+J(zz+e

(OTNEN eSS VENETEN |

for Vz,z,eZ, It follows that |J(x)=J(y)|=|x-| for all x,yeXx, by
assumed conditions, so Jis a surjective isometry.[]
Theorem 2.7. Let X =5 and Y=s . Suppose that V:X —>Y is a

surjective mapping satisfying Equation (1). Then V is phase equivalent to a

)7 (—2—¢,)

}

,‘J Zl+ey0)—.l(zz+eyo)

!

linear isometry /.
Proof: According to [10] Theorem 1, Theorem 2 the author presents some
results of extension from some spheres in the finite dimensional spaces S(o -

And also we have the above Theorem 2.6, so we can get the result easily.

3. Results about s, (H)

In this part, we mainly introduce the space s, (H ), where His a Hilbert space.

In [11] mainly discussed the isometric extension in the space s, (H ). For each

element x={x(k)}, the F-norm of x is defined by ||x||:iik ||x(k)|| . Let
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et [xe)] N
||x||—k:1?1+"x(k)" . where x(l)(l—l, ,n)eH.

Some notations used:

ex(k):(O,~-,x(k),-~-,0)esn(H ), where ||x || 1.

Specially, when |x(k)|=0, we have e i =(0,-50).

()]

Next, we study the phase isometry between the space s,(H) to s,(H), that
if Vis a surjective phase isometry, then Vis phase equivalent to a linear isometry
J

Lemma 3.1.If x,yes,(H), then

||x - y” = ||x|| + ||y|| ifand only if suppx (N suppy =&

x(n) #0,ne N} .

Proof: It has a detailed proof process in [11].

Lemma 3.2. Let S, (s,(H)) be a sphere with radius 7, in the finite

where suppx = {n :

dimensional space s, (H ), where r0<2in.Deﬁned
Vy:S, (s,(H))—>S, (s,(H)) isan phase isometry, then we can get
xLyeV(x) LV, (y).
Proof: “=” Take any two elements x={x(i)} , y={y(i)} , let

Vo(x)={x'(i)}, ¥,(¥)={»'(i)}. Then we have

20, =+ bl === ()7 ()] = 35 L @)=y

s l+||x y'(i)"

or

¥ @)=y

—||x|| ||y|| ||x y|| "V )+V () " 221 1+||x y'(i)" (8)
at the same time, we have
o1 OO ¢ O e el
25 —1+||x R 0 e AT O
z_ ||x )+J’()" < i ||x’(z)|| +z_ ||y " _ (9)

@)+ G)| =2
T2+ (1) + ()] T T2 ()| T2y () Ty

That means ||V, (x)=V, (¥)] =V, (x)+7% ()| =V )|+ [#7o ()] > it s

Vo(x) LV, (y) . “<” The proof of sufficiency is similar to the Lemma 2.1.
k

. 2",
Lemma 3.3. Let V, be as in Lemma 3.2, 4, =T ok
—2kr,

(keN),(lSkSn),

and ey =S (H). (”x (k) ||:1). Then there exists x'(k) eH("x'(k)":l), such

n

that ¥, (+4,e,4 ) = Ay -

Proof: We prove first that, for any k(1<k<n), there exist /(1</<n) and
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x’(l)("x’(l)”:l) such that Vo(ﬂ,kex(k)):/ilex,(k). And then prove /=p. It is
the same an Lemma 2.2.

Finally, we assert that, there exists x'(k) such that ¥, (+ﬂ e )) e -

Indeed, if 7, (ﬂkex( k)) e,(;)> by the result in the last step, we have

Vo (—/Ikex(k)) = /lze,w(/) ’

0.1 1 24
{ 21424, }
{ 0 (ﬂ'kex(k) ) i (_ﬂ’kex(k)) o (ﬂ’kex(k)) +V (_/Ikex(k))

= {“ﬂ.lex,(l) - e, ‘/1 e~ Alexﬂ(l)“}

:{ 1 Al (1) - x"(1) L /1,||x’(1)+x"(1)||}
? "0

!

2’1+/1,||x =x" (D)2 1+ 4 e (1) +x" (1
Therefore,
124 1 ARG 1 24
21422, 21+ 4|l (1) -x"(1)] 2" 1424,
or

123 1 l,||x’(l)+x"l|| 1
21422, 21+ 4 |x (1) +x || 2’1+2,1

(10)

So, we can get k=/. And "x'(l)—x”(l)”:||x'(l)+x"(l)||:2, that means
X (l)=£x"(1).
Lemma 3.4. Let X =s,(H) and Y =s,(H). Suppose that V: X >V isa

surjective mapping satisfying Equation (1). there exist two real numbers « and
S with absolute 1 such that

V(x+y) =aV(x)+[)’V(y)

for all nonzero vectors x and y in X, x and y are orthogonal. Proof: Let

x= {x(z)} and y= {y(z)} be nonzero orthogonal vectors in X.

)£ W J
A H H

V{y(i)} = iwl/[”ie (i) }
= RG]

] sbel, [ J
Hy’(f)H

where "x’(z)” = "x(x)" and ||y’(z)|| = "y(z)" . We infer from Equation (1) that

A

sty =50 "v[ﬂ ’

DOI: 10.4236/ajcm.2018.83017 217 American Journal of Computational Mathematics


https://doi.org/10.4236/ajcm.2018.83017

M. M. Song, S. X. Zhao

{2+ 11 11
={||V{x(i)+y(z +V{x " "V l)+y {y(z)}"}

Through the above equation we can get "x’(z)” = "x(x)" or "x'(z)” = —"x(z)” .
The proof is complete.[]

Lemma 3.5. Let X =s,(H) and Y =s,(H). Suppose that V:X —>7Y isa
surjective mapping satisfying Equation (1). Then Vis injective and
V(-x)=-V(x) forall xeX.

Proof: Suppose that V is surjective and V(x)=V(y) for some x,yeX .
Putting y=x in the Equation (1), this yields

{l2v ()]0} ={l2+].0}

V(x)=0 if and only if x=0. Assume that V(x)=V(y)#0 choose
ze X such that V( ) = —V( ) using the Equation (1) for x,y,z,we obtain

= W} =7 ()]0}
{||x+z||,||x—z||}={||V<x>+V<z>||,||v<x>—v<z>||} {2 (x)].0

This yields y,ze{x,—x}. If z=x, then V(x):—V(x):O, which is a

contradiction. So we obtain z=-x, and we must have y=x. For otherwise we

I (x)+7(»)

(e A= 1

get y=z=-x and
V(x) = V(y) = V(z) = —V(x) =0
This lead to the contradiction that V(x) #0.
Theorem 3.6. Let X =s,(H) and Y =s,(H). Suppose that V:X —>7Y is

a surjective mapping satisfying Equation (1). Then V is phase equivalent to a

linear isometry /.

()

Il

Proof: Fix y, eI, and let Zz{zeX:zJ_e } By Lemma 3.4 we can

write

V{Hiexm)J (zz>v<z>+ﬂ<zz)v{4e Jlawl o) =1

lrol H?oH
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forany zeZ.Then, we can define a mapping J:s,(H)—>s,(H) asfollows:

J{z+ﬂex(yo)J=a(z,l),3(z,/1)V(z)+V[/1ex(m)]

Il

J(lz) = a(z,/l)ﬁ(z,ﬂ)V(lz)

J{ex(yo) } = V[ex(m J > J{—ex(yo)] = —V{ex(yo)}
lIrol lI7ol llrol lI7ol

for VO#AeR. The Jis phase equivalent to V. So it is easily to know that
satisfies functional Equation (1). Forany zeZ,and V0zAeR,
1+ 1-2
e A
20 1+ 1+ 4] 27 1+[1- 4
J [z e ) } +J [z + /Iex(yo) J NIV {z +e ) J -J [z + ﬂex(yo) J
[7ol 7ol ol 7ol

_{ a(z,1)B(z1)V (2)+a(z,4)B(z,A)V (2)+ V{ex(yo)]+ V{/"Lex(m}

I
—

lrol ol

a(z,l)ﬂ(z,l)V(z) —a(z,ﬂ)ﬂ(z,/l)V(z) + V{ex(yo)J— V[lex(yo)J

lrol lral

|

1+4

:{ma(z,l)ﬂ(z D+a(z2) Bz )|V ()] + 21701|+|;+|ﬂ|
1 |1+4

ez p(z0-a(=2)8(= 20 )+ Zml'ﬂL'ﬂ}

That means a(z,1)f(z,1)=a(z,4)B(z,4),

I7al

J{z-i-/iex(yo)]:J(z)+V{lex(yo)J forany zeZ,and VOzAeR.
That yields

lI7ol
I (z)+ +2V{e( )J
lI7ol
J|z+ €.(0) J + J[—z ~€.00) ] J(z + €\() J — J{—z ) J
[ol lI7ol llrol lFrol
= 0, 2{2"1‘8}((70)}
[ol

That means J(—z) = —J(Z) . On the other hand,

>

|
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21
Iz 2+ 3 -2l

0 70 70 70
[I7ol Il [I7ol [I7ol

J Zte,) +J L te,) Nv4 Zite ) -J Zte ) H

TR T

for Vz,z,eZ, It follows that "J(x)—.](y)” =|x—y| for all x,yeX, by
assumed conditions, so Jis a surjective isometry.[]

4. Conclusion

Through the analysis of this article, we can get the conclusion that if a surjective
mapping satisfying phase-isometry, then it can phase equivalent to a linear

isometry in the space sand the space s(H).
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