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Abstract 

Submerged arc welding (SAW) has been well utilised for the production of 
weld joints in 304 L ASS for various industrial application. However, effective 
performance of the material in service has been hampered by improper 
choice of electrode. Therefore, in this study, effects of different types of elec-
trode on the microstructure and tensile property of type 304 L austenitic 
stainless steel heat-affected zone (HAZ) were studied. Chemical composition 
of the as-received sample was determined. A number of samples were cut 
from the as-received sample. Afterwards, two half were joined together with 
308 L, 312 L and 316 electrodes at a controlled welding speed, current and 
voltage of 4.6 mm/s, 160 A and 30 V to produce a constant heat input of 
626.09 J/mm. An automatic SAW machine with Model Type: DX3-301, and 
Frequency: 50 Hz was used. And based on ASTM standard, tensile and hard-
ness samples were prepared from the as-received and HAZs. Tensile and 
hardness measurements were made. Also, specimens for microscopy studies 
were prepared from the HAZ and as-received samples. From the results, mi-
crostructures of the HAZs revealed varied volume fraction of austenite and 
ferrite phases and grain sizes, and at austenite and ferrite grain boundaries, 
chromium carbide formation and precipitation were observed. The weld joint 
produced with 308 L electrode revealed optimum UTS value and YS value of 
475 and 325 respectively. While weld joint produced with 316 L electrode has 
superior ductility of value 41%. Irrespective of the types of electrode used, the 
as-received sample revealed superior tensile properties over the weld joints. 
Also, optimum hardness value of 45.7 HRA was obtained with 308 L. Hard-
ness value of the as-received sample was higher than that of HAZ samples. 
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1. Introduction 

The Type 304 L Austenitic Stainless Steel (ASS) has featured prominently in dif-
ferent areas of engineering applications, including metallurgical, mechanical, 
chemical, automobile and nuclear industries. One major factor for its wide ac-
ceptance in these areas is its good welding characteristics [1]. Although, different 
arc welding techniques, which include shielded metal arc welding (SMAW), gas 
tungsten arc welding (GTAW), submerged arc welding (SAW), and plasma arc 
welding (PAW) have been used to join the type 304 L ASS [2] [3] and [4]. And 
due to ease of process control, high deposition rate, time savings, reduced cost, 
excellent surface appearance, invisible arc, lower welder skill requirement, im-
proved repair procedure and increased efficiency and productivity, the SAW 
process has been widely utilized relative to the other techniques in these various 
areas of applications for the production of weld joints [5] [6]. 

The weld joint is comprised of base metal (BM), heat-affected zone (HAZ) 
and fusion zone (FZ), and in service, performance of the weld joint is deter-
mined by the microstructural characteristics of these zones. However, due to 
differently feature microstructures in the HAZ, resulting from thermal cycles, 
which correspond to different mechanical properties, the HAZ becomes more 
critical than BM and FZ. Microstructural characteristics of the weld joint can be 
influenced by electrode composition [7] [8]. In SAW, weld joints are produced 
by chemical and physical reaction of the weld electrode, the base metal and the 
flux and the alloying elements coming from them [9]. The chemical composi-
tions of the weld electrode can influence strength and toughness of weld metal; 
during the solidification of weld joint, volume fraction of acicular ferrite and 
δ-ferrite have been influenced by electrode composition [10]. 

Selection of electrode in maintenance of welding is a very important step for 
achieving the desired results. The two major factors, which basically control the 
selection of electrodes, are: 1) Types of base material. 2) Service condition. 
Though there are other factors, which can influence the choice on welding elec-
trodes, the above two factors primarily decide the welding electrodes. The dif-
ferent types of base materials that are normally encountered in any industry are 
(a) carbon and low alloy steels, (b) stainless steels, (c) austenitic Mn steels and 
(d) cast iron. A number of investigations on the microstructural and mechanical 
behavior of SAW welded 304 L ASS have appeared in learned journal; however 
the desired attention required by the HAZ has not been adequately addressed. 
Hence, in this study, 312 L ASS, 308 L ASS and 316 L ASS electrodes were used 
to produce 304 L butt joint SAW welded samples, with particular emphasis on 
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HAZ; this is with a view to determining the best match for optimum service 
performance. 

2. Materials and Methods 

2.1. Materials 

The materials employed for the work included type 304 L austenitic stainless 
steel plate sheet of 8 mm thickness and welding electrodes with the following 
specifications: AWS 308 L, AWS E312L and AWS E316 and diameter φ = 2.5 
mm. 

2.2. Method 

2.2.1. Spectrometric Analysis of the As-Received Sample 
Chemical analysis of the as-received 304 L austenitic stainless steel plate was 
done by optical emission spectrometry using AR 4 30 metal analyzer and the re-
sult is depicted in Table 1. While the composition of the different electrode used 
such as 308 L, 312 L and 316 L are shown in Tables 2-4 respectively. 

2.2.2. Weld Preparation and Design 
Samples with length 50 mm, breadth 3.5 mm and thickness 4.5 mm were cut 
from the plate with hacksaw; the use of hacksaw was informed by the need for 
avoidance of distortion and thermal damage from thermal cutting [11]. To allow 
for sufficient root penetration single bevel-butt joint design configuration with 
60˚ within the edges and root opening (air gaps) of 2.5 mm was adopted Care 
was taken not to allow the root opening to exceed twice the specified gap [12] 
[13]. Before welding all the edges were thoroughly cleaned in order to avoid any 
source of contamination like rust, scale, dust, oil, moisture that could creep into 
the weld metal and later on could result possibly into a weld defect [14] and de-
picted in Figure 1 is the experimental sample with single V geometry. 

2.2.3. Gas Tungsten Arc Welding Process 
An automatic SAW machine with Model Type: DX3-301, and Frequency: 50 Hz 
SAW was used for the welding. Prior welding, edges and area adjoining the 
samples were cleaned of dust using wire brush. Afterwards, the samples were 
then positioned with respect to each other, aligned accurately, tacked sparingly 
and welded using 308 L, 312 L and 316 L, electrodes selection was based on 
American Society of Mechanical Engineers (ASME) standard, and it was metal 

 
Table 1. Chemical composition of the as-received 304 L austenitic stainless steel plate. 

Element C Si S P Mn Ni Cr Mo V 

% Wt 0.0367 0.6489 0.0513 0.0505 1.8798 8.0798 18.4032 0.3194 0.0750 

Element Cu Nb Co Al Pb Ca Zn Fe  

% Wt 0.8713 0.1036 0.1718 0.0265 0.0126 0.0046 0.0313 69.6502  
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Table 2. Chemical composition of 308 L electrode. 

Element Ti Si S P Mn Ni Cr Mo 

% Wt 0.030 0.6489 0.0513 0.0405 1.8599 10.20 18.4032 0.3194 

 
Table 3. Chemical composition of 312 L electrode. 

Element C Si S P Mn Ni Cr Mo 

% Wt 0.030 0.40 0.010 0.018 1.8599 10.20 19.58 0.319 

 
Table 4. Chemical composition of 316 L electrode. 

Element C Si S P Mn Ni Cr Mo Ti 

% Wt 0.03 0.349 0.015 0.018 0.929 9.07 18.4032 0.282 0.006 

 

 
Figure 1. Experimental sample with single V configuration. 

 
manually fed to the work piece during welding. The weldments were produced 
with single-pass under 99.97% argon gas shielding at a flow rate of 15 litre per 
minute. 

2.2.4. Tensile Samples Preparation and Testing 
The preparation of the HAZs tensile samples were done in accordance with 
ASTM E 8-04. Wire-cut electric discharge machining was used to remove flash-
ing and other surface irregularities from the top and bottom surfaces of the ten-
sile specimens. Cross-sectional area and pre-determined gauge length of the 
samples were measured, and to ensure that the samples undergo deformation, 
they were placed in the proper grippers. The test was carried out in x-direction 
with INSTRON tensile testing machine; load was applied at the rate of 0.5 
mm/min. 

Samples Preparation for Hardness Testing 
Figure 2 is a sample of the SAW weldment. Prior to testing, sides and ends of 

the samples (base metal and weldment) were properly ground, this is necessary 
to ensure dimensional accuracy; their surfaces were also ground, to maintain 
flatness and stability. Hand grinder was used for the grinding. Thereafter, the 
samples were mounted in bakelite, polished and etched by Vilella’s reagent. 
Preparation of the samples was in accordance with ASTM E 8-04 standard. Mi-
cro-hardness test was carried out on all the weldment samples using Vickers mi-
cro hardness tester LECO 700AT with diamond pyramid. Tests were performed 
on the transverse cross-section of the base metal (BM), heat affected zone  
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Figure 2. A sample of the SAW weldment. 

 

(HAZ), weld metal (WM). On each of the three zones of the test samples, three 
indentations were made with gap of about 3 mm in-between. The indentations 
were made using a 980 μN load and a dwell time of 10 s. The specimens were 
placed with the surface on the anvil, and slowly turning the hand wheel until 
they were raised to touch the indenter. The numbers were read directly from the 
dial indicator and converted to the Vicker number. The test was carried out in 
air at room temperature based on ASTM E384 standard. 

2.2.5. Hardness Sample Preparation and Measurement 
Surfaces of the (as-received and HAZ) samples with dimensions 20 mm length, 
20 mm breadth and 8 mm thickness (Figure 3) were properly ground to give it 
flat and stable surface using a hand grinder. Thereafter, hardness measurement 
was made using Digital Rockwell hardness (HRA) Tester with 16 inches indenter 
and 60 gf indenting load with a dwell time of 10 s. Hardness measurements were 
made in three different locations, and the average value was taken [11]. 

2.2.6. Metallography 
Samples for metallographic examination were prepared from the weldments. In 
order to make the sample convenient for handling, transverse sections were 
prepared by mounting on thermosetting material known as Bakelite, their sur-
faces flattened by filing and grinding using laboratory grinding and polishing 
machines, a set of emery papers of 100, 240, 320, 600, 800 1000 and 1200 p were 
used. Grinding was done in order of coarseness of the papers, and as each spe-
cimen was change from one emery papers to the other, it was turned through an 
angle of 90˚ so as to remove the scratches sustained from the previous grinding. 
After grinding, the specimens were polished using rotary polishing machine, a 
polishing cloth was also introduced to give it mirror like surface [8] [11]. The-
reafter, the specimens were then etched in a solution of 1 ml HCL + 3 ml HNO3 
+ 1 ml glycerol and the microstructures examined at a magnification of 400× × 
using metallurgical microscope. 

3. Results and Discussion 

Figures 4(a)-(c) are HAZs microstructures of SAW weld joints produced with 
302 L, 316 L and 308 L respectively. The HAZs microstructures are comprised 
majorly of austenite matrix with varied volume fraction of ferrite grains, sensi-
tized regions in form of white patches and precipitates in form of dark tiny par-
ticles in varied amounts are dispersed within the austenite matrix. The varied  
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Figure 3. Hardness test specimen used for the experimental work. 

 

 
Figure 4. (a)-(c) Optical micrographs of SAW weld joints produced with 312, 316 and 
308 electrodes, after etching in solution of 1 ml HCl + 3 ml HNO3 + 1 ml glycerol at mag. 
×400. 
 
volume fraction of ferrite observed may be due to difference in cooling rates that 
resulted from heat inputs of the electrodes [15]. It is well known that, electrode 
heat input varies, and can be classified into high and low heat inputs [5]. The 
observed sensitised regions may be chromium carbide precipitates. The precipi-
tates, which may have been formed at high temperature, may be due to the 
welding heat. Also, the inclusions may have resulted from reaction of oxidation 
with some elements at the high temperature of welding to form intermetallic 
compounds, which may include oxide of chromium and nickel, and the precipi-
tates may be accounted for by the present of impurities in the weld metal and 
contaminants within the welding atmosphere. 
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In SAW, the use of low heat electrode remains one effective approach for re-
ducing welding heat input, and hence improving HAZs mechanical properties 
[5]. For ASS, as the welding heat input decreases, more volume fraction of ferrite 
is produced, and since ferrite grains are stronger than austenite grains, with 
more ferrite phase, the mechanical properties of HAZs are improved. Also, with 
low heat input, the austenite grain size decreases, leading to improvement in 
HAZ mechanical properties [6]. Hence, the improved tensile properties (UTS 
and YS) of weld joints produced with 308 L, whose values are 475 MPa and 325 
MPa respectively, as seen in stress strain curve in Figure 5 may be attributed to 
low heat input of the electrode relative to the 312 L and 316 L electrodes. Past 
research findings have shown that the use of low heat input electrodes increases 
the amount of weld metal deposition, weld penetration depth increases and 
sharpens weld metal tip shape [15]. Hence, enhancing the mechanical properties, 
and thus the service performance of the weld joints. The same justification for 
strength may be applicable for the observed relative superior hardness property 
of the weld joint produced by 308 L with value of as seen in Figure 6. As heat 
input decreases, smaller grains are produced, which allows for greater interac-
tions between dislocations, the grain size and the available room for their gliding 
through the lattice is reduced. 

Nearness in mechanical properties of the base plate and HAZ is dependent on 
similarity in their chemical compositions. Hence, for the production of high 
quality weld joints, chemical composition of the electrode becomes a critical pa-
rameter. And this may be contributory to the observed variation in tensile and 
hardness properties of the HAZs. From the chemical compositions presented in 
Tables 1-4, it can be seen that unlike electrodes 312 L and 316 L, most alloying 
elements for the base metal (Table 1) are replicated for 308 L electrode thereby 
making it more compatible for this application than the other ones. For instance 

 

 
Figure 5. Tensile stress-strain curves of the HAZ samples at a range of electrode types, 
and as-received sample. 
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Figure 6. Hardness characteristics of as-received sample and HAZs produced with 308 L, 
312 L and 316 L electrodes. 

 

 
Figure 7. Elongation behaviour of as-received and the HAZs produced with 308 L, 312 L 
and 316 L electrodes. 

 
effects of Cr and Mo, (as alloying elements in BM and 308 L electrode) on the 
final HAZ microstructure after solidification promotes hardness by formation of 
acicular ferrite and fine carbides in the weld [10] [16]. The presence of Ti 316 L 
may have accounted for reduction in ultimate tensile strengths and elongation 
percentages of the HAZ [17] (Figure 7). Welding low carbon steel with low car-
bon filler metal and martensitic and semi austenitic precipitation hardening 
stainless steel with type 630 filler metal have given optimum weld joint perfor-
mance in different applications; provide the weld joint is devoid of defects in-
cluding discontinuities, entrained contaminants or porosity [18] [19]. 

Also, the observed variation in mechanical properties may have been in-
formed by differences in electrode extension. It is well known, that the amount 
of resistant heating which occurring in the electrode is governed by electrode 
extension, if the electrode extension is short, heating effect will be small and pe-
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netration will be deep, if on the other hand, the extension is increased, heating 
effects and penetration rate are increased and deposition reduced [8]. 

4. Conclusions 

Based on the results of the findings, the following conclusions were drawn: 
1) The microstructures of the 316 L, 312 L and 308 L HAZs are comprised of 

austenite matrix with varied volume fraction of ferrite. 
2) Inclusions, chromium carbide formation (white patches) and precipitates 

(dark tiny spots) are seen in the HAZs microstructures. 
3) Optimum tensile properties (UTS, YS and %E) were obtained with 308 L 

electrode, and tensile properties of the HAZs samples were found to be relatively 
lower when compared with the as-received sample. 

4) Optimum hardness value was obtained with 308 L as compared to 316 and 
312 electrodes respectively. 

Hardness value of the as-received sample was high relative to HAZs produced 
with 308 L, 316 L and 312 L respectively. 
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