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Abstract 
In this paper Hopf bifurcation control is implemented in order to change the 
bifurcation from supercritical to subcritical in a differential equations system 
of Lorenz type. To achieve this purpose: first, a region of parameters is identi-
fied where the system has a supercritical Hopf bifurcation; second, a class of 
non-linear feedback control laws is proposed; finally, it is shown that there 
are control laws which the disturbed system undergoes subcritical Hopf bi-
furcation. 
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1. Introduction 

In [1] the Bifurcation Control is described as the task of designing a control law 
that modifies the bifurcation characteristics in order to achieve a desirable 
dynamic behaviour. To specify the above, set a given nonlinear system,  

( ), ,f α=x x                          (1) 

with state vectors n∈x   and parameters vector mα ∈ , which presents a 
bifurcation. A parametric class of functions ( ),u α⋅  is proposed, called control 
laws, with which (1) is perturbed, resulting the nonlinear system,  

( ) ( ), , .f uα α= +x x x                      (2) 

The bifurcation control problem consists in to find, within the parametric 
class, a control law that achieves a desirable behaviour or an established 
objective in the perturbed system. 

Objectives of the bifurcation control are diverse, some of them are: to move 
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the critical value or the bifurcation points [2] [3], introducing a new bifurcation 
at a preferable parameter value [4], to change the amplitude or frequency of 
some limit cycles emerging from bifurcation [1] [5], to stabilize the periodic 
orbit that emerges from the Hopf bifurcation [3] [6], to modify the shape or type 
of a bifurcations chain [7] [8], to change and/or create a bifurcation [4] [9]. 

A kind of bifurcation is the Hopf bifurcation, this corresponds to the 
following situation: when the parameter crosses a critical value, the Jacobian of 
the system evaluated in the equilibrium has a pair of conjugate complex 
eigenvalues, which moves from the left to the right half-plane, while the other 
eigenvalues remain stable; at the crossing moment the real parts of the two 
eigenvalues become zero, the stability of the equilibrium changes from stable to 
unstable and a limit cycle arises. When the limit cycle is stable the Hopf 
bifurcation is said to be supercritical and when the limit cycle is unstable it is 
said that the Hopf bifurcation is subcritical [10]. 

When the system (1) presents Hopf bifurcation in a equilibrium point 

( ),α∗x , the Hopf Bifurcation Control consists in to determine a control law 

( )0,u α⋅  of a parametric class ( ),u α⋅ , in such a way that the equilibrium point 

( ),α∗x  of (1) moves to an equilibrium point ( )0 0,αx  of the perturbed system 
(2), the Hopf bifurcation is preserved and one of the following situations occurs:  

1) Stability of the limit cycle that emerges from the Hopf bifurcation changes 
from unstable to stable or vice versa.  

2) Change the orientation of the limit cycle.  
In this paper is consider the Lorenz type system  

( ) ,
,

,

x a y x
y dy xz
z bz gxy

= −

= −
= − +







                        (3) 

with state vector ( )T 3, ,x y z ∈ , parameters 0a > , 0g >  and ,b d ∈ . The 
system (3) is a particular case of the system studied by Xianyi Li y Qianjun Ou in 
[11], where is proved, under standar hypotheses, the system has a Hopf 
bifurcation. Recently, in [12] is proved the Hopf bifurcation in (3) is 
non-degenerated and supercritical. 

The objective is apply Hopf Bifurcation Control to the system (3) in order to 
change the Hopf bifurcation from supercritical to subcritical, by using non-lineal 
control laws in state feedback. The used method for Hopf bifurcation analisys 
include the Hopf Theorem, the Central Manifold Theorem, Normal Forms, and 
a formule for the first Lyapunov coefficient given in [13]. 

On one side, the system (3) is a particular case of the system studied in [11], 
another side it is an extension of the Lu system [14], namely, when the 
parameter g takes the value 1, the system (3) is reduced to the Lu system [14]. 
The Lorenz type systems class is studied or taken as reference in fields of physics, 
engineering, and mathematics; in topics such as: chaos [15] [16], Hopf 
bifurcation [11] [17] [18], synchronization [14] and control [19] [20] [21] [22] 
[23]. 
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On the other hand, in [3] [24] [25] [26], Hopf bifurcation control is done with 
the purpose of to change the Hopf bifurcation from supercritical to subcritical, 
for systems that are not Lorenz type. 

Remainder of this paper is ordered as follows. The Section 2 describes some 
preliminary results concerning the existence of the Hopf bifurcation in the 
system (3). In Section 3 it is proved that the Hopf bifurcation is non-degenerate 
and supercritical. In Sections 4 and 5 the Hopf bifurcation control of the system 
(3) is made. Finally, in Section 6 the conclusions of this paper are presented. 

2. Dynamics System 

In this section, in order to make a self-contained writing, the results of [11] are 
specialize to the system (3), which correspond to the Hopf bifurcation. 

System that Li and Ou considers is as follows,  

( )

2

,
,

,

x a y x
y dy xz
z bz fx gxy

= −

= −

= − + +







                     (4) 

where 0a > , 0f ≥ , 0g ≥ , 0f g+ > , ,b d ∈ , and states vector 

( )T 3, ,x y z ∈ . It is observed that when 0f =  the system (3) is obtained. 
Li and Ou [11] found that when ( ) ( ), , , , 10,3,6,1,0a b d f g =  and  

( ) 23 33 7, , , ,
20 10 2

x y z  =  
 

, the system that results presents the Lyapunov exponents:  

1
0.4265LEλ = , 

2
0.000001LEλ = , 

3
7.4264LEλ = − , it is observed that two of these 

exponents are positive, which characterizes the emergence of a chaotic orbit. The 
Figure 1 shows the chaotic attractor of the system (4) when the initial conditions 
and parameters are as indicated at the beginning of the paragraph.  

Equilibrium points of the system (4) are classified according to the next cases:  
• Case 0bd < : There is only one equilibrium point ( )0 0,0,0P = .  
• Case 0bd = : If 0b = , all point of form ( )0,0, z  is an equilibrium and for 

0d =  the equilibrium is 0P .  
• Case 0bd > : There are three equilibrium points ( )0 0,0,0P = , 

1 , ,bd bdP d
f g f g

 
=   + + 

 and 2 , ,bd bdP d
f g f g

 
= − −  + + 

. 

From now, the analysis focuses on the system (3) that results from taking 
0f =  in (4), and is restricted to the case 0bd > . 

Li and Ou in [11] proved that in P0 the system (3) has a no-bifurcation 
dynamics and that in the equilibrium points P1 y P2 the system presents Hopf 
bifurcation, if 0b >  the bifurcation critical value is:  

.
3

a bd−
+

=  

Next theorem guarantees the existence of the Hopf bifurcation of the system 
(3) in the equilibrium points P1 and P2.  
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Figure 1. Chaotic attractor of Li-Ou. 

 
Theorem 1 When 0a > , 0b > , 0d >  and 0g > , the following 

statements are true to the system (3):  

1) For 0
3

a bd +
< < , the equilibriums P1 and P2 are asymptotically stable.  

2) When 
3

a b d+
< , the equilibriums P1 and P2 are unstables.  

3) When 
3

a bd +
= , in each equilibrium P1 and P2 a periodic orbit emerges 

with period 
2πT
ab

= .  

Hence the system (3) presents Hopf bifurcation at the equilibrium points P1 
and P2.  

3. Hopf Bifurcation Analysis 

In this section it will be showed that the Hopf bifurcation of the system (3) is 
non-degenerated and supercritical. To achieve this it is used the central manifold 
theory, it can be consulted in [10] Chapter 5. 

Theorem 2 can be found in [12] and the proof presented here is in essence the 
same except that the Lyapunov coefficient is obtained through a different way. 

Theorem 2 If the parameters satisfy 0b > , a b= , 
3

a bd +
= , and 0g > ,  

then the system (3) exhibits non-degenerated and supercritical Hopf Bifurcation 
in the equilibrium points P1 and P2.  

Proof. Since the conditions in the Theorem 1 are met, the system (3) exhibits 
Hopf bifurcation in the equilibrium points P1 and P2. It will be demonstrated 
that Hopf bifurcation is supercritical, at verifying that the first Lyapunov 
coefficient is negative in the equilibrium point P1. Since the symmetry of the 
system, the conclusion is the same for the equilibrium point P2. 

The Jacobian matrix A of the system (3) in the point P1 is given by,  
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2

0
2 2 2, with ,
3 3 3

a a
a a aA h h

g
gh gh a

− 
 
 = − − =
 
 − 

               (5) 

and corresponding characteristic polynomial  

( )
3

3 2 24 4 .
3 3
a aP aλ λ λ λ= + + +  

Let P be with a couple of pure imaginary roots and a not-zero real root 
denoted by 1 iλ ω= , 2 iλ ω= −  and 3λ , respectively, where 0ω > . Due to the 
relationship between the roots and the P coefficients, it follows that  

1 2 3
4 ,
3
a

λ λ λ+ + = −                        (6) 

2
1 2 2 3 1 3 ,aλ λ λ λ λ λ+ + =                      (7) 

3

1 2 3
4 .
3
a

λ λ λ = −                         (8) 

By replacing 1 2 0λ λ+ =  into (6) is obtained the root 3
4
3

aλ = − , which is  

negative since a is positive. Then, by replacing in (8) 1 iλ ω= , 2 iλ ω= −  and 

3 4 3aλ = − , is obtained aω = . 
Resolving the system Aq aiq= , it has that the complex eigenvector is,  

2 2

.
1
3

ah
q ah ahi

a a i

 
 
 

= + 
 
 −
 

 

By resolving the system TA p aip= − , it has the complex eigenvector,  

2 2 2

2 2

5 1
3 3

.

a gh a i

p a a i
ah

  − +  
  
 = − +
 
 
 
 

 

In order to eigenvectors p and q satisfy the condition , 1p q = , the 
eigenvector p is rewritten in the form:  

2 2

2 2
3

5 5
9 3

9 7 1 .
3 350

4
3

a a i

p a a i
ha

ah ahi

 + 
 
 = − − 
 
 + 
 

 

The equilibrium point 1
2, ,
3
aP h h =  

 
 is moved to the origin via the 
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transformation 1x h y= + , 2y h y= + , 3
2
3
az y= + , thus the system (3) 

beecomes  

1

0
2 2 ,
3 3

a a
a aY h Y y BY

gh gh a

− 
 
 = − − +
 
 − 

                  (9) 

where ( )T
1 2 3, ,Y y y y=  and 

0 0 0
0 0 1
0 0

B
g

 
 = − 
 
 

. 

Observe that the system (9) has the form ( )Y AY F Y= + , where A is the 
Jacobian matrix of the system evaluated in the equilibrium point 1P  and the 
non-linear part ( ) ( )2F Y O Y= , is a smooth function with Taylor expansion in 
a neighbourhood of 0Y =  with expression:  

( ) ( ) ( ) ( )41 1, , , ,
2 6

F Y B Y Y C Y Y Y O Y= + +  

where ( ),B Y Y  and ( ), ,C Y Y Y , are multi-linear vector functions of Y. 
To the system (9), the multi-linear functions B and C are: 

( )

( )

( )2 2

0 0
1, 2 , , 2 ,
3

B q q ah a i q q ah
ahgh ag g i

ω ω ω

ω

 
  
  = − + = −       + 

 

( )

( )

( )2

0 0
1, 2 , , , 0 ,
3

0
B q q ah a i q q q

h ag g i

ω ω

ω

 
  
  = − − =        − 

 

finally, obtaining  

( ) 1 3

1 2

0
.F Y y y

gy y

 
 = − 
 
 

 

First Lyapunov coefficient 1  is calculated using the formula taken from 
[10],  

( ) ( )

( )( )
( ) ( )( )

1

1

1
3

10 , , ,
2
2 , , ,

, , 2 , ,

Re p C q q q

p B q A B q q

p B q i I A B q q

ω

ω

−

−

= 

−

+ − 



            (10) 

where ,⋅ ⋅  denotes the usual inner product in the field of complex numbers 
and ( )Re ⋅  denotes the real part function of a complex number. Some 
elements of the formula are written below. The inverse matrix of A defined in 
(5) is  
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2 2

2 2
1

3 2 1
6 2 2

1 2 3 1 .
6 2 2

2 1 0
3

gh a a
ahg hg g

a h g aA
h ahg hg g

−

 − + −
 
 
 + −
 =
 
 
 − 
 

 

The matrix 32i I Aω −  and its inverse are,  

3

2 0
2 22 2 ,
3 3

2

i a a

i I A a i a h

hg gh i a

ω

ω ω

ω

+ − 
 
 − = −
 
 − − + 

 

( )
( ) ( )

( )

2 2 2

2 22 2
1

3

2

9 2 2 2
6 2 2

4 4 21 2 3 62 ,
6 2 2

2 12
3 3

a a i a a i ah

a a i h a ia h g ii I A
r

agh gh i h ag g i a i

ω ω ω

ω ω ωω
ω

ω ω ω ω

−

 − − + + −
 
 
 − + − +− − − − =
 
 
 − + + − +
 
 

 

where 3 32 3r a iω= − − . 
By replacing this elements in (10), result the first Lyapunov coefficient  

( ) 2
1

1420 ,
65

a= −  

which is negative, thus the periodic orbit that arises in the equilibrium point 

1P  of the system (3) is stable. Hence in the equilibrium points 1P  and 2P  of 
the system (3) the supercritical and non-degenerated Hopf bifurcation is 
presented.  

Example 1 For each case of the Theorem 1 a particular system and the graph 

of the orbit with initial condition ( )0 0 0
5 5 89, , , ,
4 4 100

x y z  =  
 

 are presented. 

System with parameters ( ) 9 9 9, , , , , , 2
10 10 20

a b d g  =  
 

 satisfies the conditions 

0a > , 0b > , 0g >  and 
3

a bd +
< . Then by the part 1 of the Theorem 1, the  

equilibrium points P1 and P2 are asymptotically stables. The Figure 2(a) 
illustrates the behaviour of the orbit around P1. 

When the parameters are ( ) 9 9 7, , , , , , 2
10 10 10

a b d g  =  
 

, the conditions 0a > , 

0b > , 0g >  and 
3

a bd +
>  are satisfied, and the part 2 of the Theorem 1  

guaranties that the equilibrium points P1 and P2 are unstable, as is illustrated in 
the Figure 2(b). 

To the parameters ( ) 9 9 3, , , , , , 2
10 10 5

a b d g  =  
 

, the conditions 0a > , 0b > , 
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0g >  and 
3

a bd +
=  are verified, and the part 3 of the Theorem 1 guaranties  

the existence of a periodic orbit. As consequence of the Theorem 2 this orbit is 
stable. The Figure 2(c) shows a orbit that converge at limit cycle around P1.  
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Dynamics of the system (3) when ( ) 9 9, , , , 2
10 10

a b g  =  
 

. 

(a) 9
20

d = ; (b) 7
10

d = ; (c) 3
5

d = . 
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4. Hopf Bifurcation Control 

In this section the main results about Hopf bifurcation control in the system (3) 
are presented, the proofs are postponed to the next section. 

In order to resolve the Hopf bifurcation control problem in the system (3), the 
control laws class in closed loop are used, 

( ) ( )( )T
, , 0, ,0 ,u X d k kx z d= − −                (11) 

where ( )T, ,X x y z=  is the states vector, the parameter k is a positive real 
number called control gain, and d is a parameter of the system (3). The control 
laws class (11) was used by Pei in [23] to the Hopf bifurcation control in the Lü 
system. 

Perturbed system with the control laws class (11) is the next,  

( )
( )

,

,
.

x a y x

y dy xz kx z d
z bz gxy

= −

= − − −

= − +







                  (12) 

with parameters 0a > , 0g > , 0k >  and ,b d ∈ . 
Problem consists in finding a control law of the class (11) such that the 

perturbed system preserves the equilibrium points of the system (3), it presents 
Hopf bifurcation and this is subcritical. When a control law achieve the planted 
objectives, it is said that it changes the Hopf bifurcation of the system (3) from 
supercritical to subcritical. 

Observe that the perturb system preserves the equilibrium points P1, P2 and P3 
of the system (3), since ( ) ( ) ( )1 2 0, , , , , , 0u P d k u P d k u P d k= = = . 

Next theorem states that the perturbed system (12) presents Hopf bifurcation 
in the equilibrium points P1 and P2. 

Theorem 3 To the system (12) with parameters 0a > , a b= , 0d > , 0g >  

and 0k > , the critical value of the bifurcation is 3 8 9
2H

kd a
k

− + +
=  and the 

next sentences are true:  
1) When 0 Hd d< < , the equilibrium points P1 and P2 are stable.  
2) For the case Hd d< , the equilibrium points P1 and P2 are unstable.  
3) When Hd d= , in each equilibrium point P1 and P2 arises a periodic orbit 

with period 2πT
ω

=  where ( )22 1
2

H

H

a d k
a d

ω
+

=
−

.  

Thus, the system presents Hopf bifurcation in the equilibrium points P1 and 
P2.  

Next theorem states that there are control laws for which the Hopf bifurcation 
of the perturbed system is subcritical.  

Theorem 4 Let the perturbed system (12) be, with parameters 0a > , a b= ,  

0g >  and 3 8 9
2

kd a
k

− + +
= , then there is at least a value of k such that the  

system presents subcritical Hopf bifurcation in the equilibrium points P1 y P2.  
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Next corollary summarizes the obtained results.  
Corollary 1 The control law in feedback of states  

( )( )T
0, 9 ,0 ,x z d= − −u  

changes the Hopf bifurcation of the system (3) from supercritical to subcritical.  
Example 2 In the Figure 3, a numerical simulation is presented to illustrate 

the Theorem 4 results. Taking the parameter values  

( ) 3 3 19, , , , , , , ,0,3,10
5 5 100

a b d f g k  =  
 

 the conditions 0a > , a b= , 0g >  and  

Hd d=  are met, and the Theorem 4 ensures the presence of an unstable 
periodic orbit around each equilibrium P1 and P2. On the graph, the orbit with  

initial condition ( )0 0 0
433 433 2, , , ,

1250 1250 5
x y z  =  

 
 converges to equilibrium point 

and moves off of cycle, while the orbit with initial condition  
1501 249 1041, ,
2000 1250 10000

 
 
 

, moves around of each equilibrium point, like a Lorenz 

attractor.  

5. Proof of Theorems 3 and 4 

To proof the Theorems 3 and 4 the following lemmas are used. 
Lemma 1 Let 3 3:T →   be defined as ( ) ( ), , , ,T x y z x y z= − − . The system 

(12) is invariant under T.  
The proof follows from the fact that vectorial field f associated to the system 

(12) satisfies ( )( ) ( )( )f T X T f X= , for all 3X ∈ . 
A consequence of the previous lemma is that the dynamic system, determined 

by the perturbed system, is symmetric with respect to the z-axis. 
Lemma 2 Polynomial with real coefficients ( ) 3 2

1 2 3P l l lλ λ λ λ= + + +  has a 
couple of conjugate imaginary pure roots, if and only if, 3 1 2l l l=  with 2 0l > .  
 

 

Figure 3. Unstable limit cycle for ( ) 3 3 19, , , , , , , ,0,3,10
5 5 100

a b d f g k  =  
 

. 
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Lemma 3 Let ( ) ( ) ( ) ( )3 2
1 2 3=P l l lλ λ α λ α λ α+ + +  be a polynomial which 

coefficients are differentiable real functions with respect to the parameter α  in 
the neighbourhood ( )0;V α ε . Suppose that for 0α α= , P has a couple of 
conjugate roots ( ) ( ) ( )1 0 0 0iλ α µ α β α= + , ( ) ( ) ( )2 0 0 0iλ α µ α β α= −  with 
( )0 0µ α =  and ( )0 0β α ω= > , and a negative real root ( )3 0λ α . Then, for all 

α  in a neighbourhood of 0α , the polynomial P has two conjugate roots 
( ) ( ) ( )1 iλ α µ α β α= + , ( ) ( ) ( )2 iλ α µ α β α= −  with ( ) 0β α >  and a negative 

real root ( )3λ α , and the derivative of the real part of the 1λ  in 0α  is:  

( )( )
00

1 3 2 1 2 1
2

1 2

.
2 2

D Re l l l l l
D l l α αα α

λ
α

==

′ ′ ′− −
=

+
               (13) 

Proof of Theorem 3. Under the established conditions in the parameters the 
analysis of stability of the system in the equilibrium point P1 is done. As the 
system is symmetric, the conclusion is the same to the equilibrium point P2. 

The Jacobian matrix A of the system (12) in the point P1 takes the form  

( )
0

1 , with ,
a a

adA d d k h h
g

gh gh a

− 
 = − − + = 
 − 

             (14) 

and characteristic polynomial  

( ) ( ) ( ) ( )3 2 2 22 2 1 .p a d a akd k a dλ λ λ λ= + − + + + +         (15) 

With help of the Lemma 2, the necessary and sufficient conditions so that 
( )p λ  to have two imaginary pure roots are  
1) ( )( ) ( )2 22 2 1a d a akd k a d− + = +   
2) 2 0a akd+ >   
From 1)  

1 2
3 8 9 3 8 9and .

2 2
k kd a d a

k k
− + + − − +

= =  

From 2) and by the hypothesis of the theorem ( 0a >  and 0d > ),  

3 8 9 .
2H

kd a
k

− + +
=                      (16) 

Case 1. Let 0 Hd d< <  be, that is,  

2 3 9 8 .dk a a k+ < +  

As the terms of inequality are positive,  
2 23 2 0.kd ad a+ − <  

Thus ( )( ) ( )2 22 2 1a d a akd k a d− + > + . As 0k >  and 0d > , it follows that 
( ) 22 1 0k a d+ > , and ( )( )22 0a d a akd− + > . Hence, 2 0a d− > . 
By Routh-Hurwitz criterion, [27] page 460, a necessary and sufficient 

condition so that eigenvalues 1λ , 2λ  and 3λ  of the matrix A to have negative 
real part is that the expressions 2a d− , ( ) 22 1 k a d+  and  

( )( ) ( )2 22 2 1a d a adk k a d− + − +  are positives, which is proved. Hence, the 
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point P1 of the perturbed system is stable. 
Case 2. Let Hd d<  be, that is,  

9 8 2 3 .a k kd a+ < +  

Since the terms of inequality are positive,  
2 20 3 2 .kd ad a< + −  

Then ( )( ) ( )2 22 2 1 0a d a akd k a d− + − + < . From the previous inequality and 
from ( ) 22 1 0k a d+ > , by the Routh-Hurwitz criterion there is at least a 

{ }1,2,3j∈  such that ( ) 0jRe λ ≥ . The case 0jλ = , implies that 
( ) 22 1 0k a d+ = , which is not possible. In the case that jλ  is pure imaginary, 

by the Lemma 2, Hd d= , which is not possible, since that Hd d< . Hence, 
when Hd d<  there is at least a { }1,2,3j∈  such that ( ) 0jRe λ > . Therefore 
the equilibrium point P1 of the system (12) is unstable. 

Case 3. Let 1λ , 2λ  and 3λ  be the roots of ( )p λ . When 3 8 9
2

kd a
k

− + +
= ,  

it follows that two of these are pure imaginary, of the form 1 iλ ω= , 2 iλ ω= −  
with 0ω > . To find the value of ω , it is observed that the coefficients of 
( )p λ  satisfy,  

( )1 2 3 2 ,Ha dλ λ λ+ + = − −                   (17) 

2
1 2 2 3 1 3 ,Ha akdλ λ λ λ λ λ+ + = +                 (18) 

( ) 2
1 2 3 2 1 .Hk a dλ λ λ = − +                    (19) 

By replacing 1 2 0λ λ+ =  in (17), the real root ( )3 2 Ha dλ = − −  is obtained. 

By replacing 1λ , 2λ  and 3λ  in (19), ( )22 1
0

2
H

H

a d k
a d

ω
+

= >
−

 is obtained. 

Hence, as Hd d= , the polynomial (15) has two conjugate eigenvalues 1 iλ ω= , 

2 iλ ω= −  with ( )22 1
0

2
H

H

a d k
a d

ω
+

= >
−

 and ( )3 2 0Ha dλ = − − < . Since to the 

Lemma 3 the transversality value is,  

( ) ( ) ( )
( )

2 2
1

2 2

2 1 2 2
.

2 2
H

H

d d H

DRe k a k a d
Dd a d

λ ω

ω=

+ + + −
=

 − + 

 

Due to 2 0Ha d− > ,  ( ) 22 1 0k a+ >  and 0ω > ,  i t  follows that the 
transversality value is positive. And by the Hopf Theorem, in the equilibrium  

point P1 of the system (12) arises a periodic orbit with period 
( )1

2πT
Im λ

= , 

where ( ) ( )2

1

2 1
2

H

H

a d k
Im

a d
λ

+
=

−
.  

Proof of Theorem 4. Let the parameters be as in the Theorem 4. According to 
Theorem 3, the system (12) exhibit Hopf bifurcation in the equilibriums P1 and 
P2. Using the central manifold theory and the same steps that in the proof of 
Theorem 2, below is shown that the periodic orbit which arises in P1 is unstable. 
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When solving the system ( ) 0A iI qω− = , with A the Jacobian matrix of the 
system (12) evaluated in P1, the complex eigenvector  

( )
( ) ( )

( )2

1
1 1 ,

H

ah k
q ah k k hi

d a i
ω

ω ω

+ 
 = + + + 
 + − 

 

is obtained, with Hadh
g

= . When solving the system TA p i pω= − , the 

eigenvector,  

( ) ( ) ( ) ( )
( ) ( )
( ) ( )( )

2 2

2 2

2 2
1 3 2 ,

1 2 1

H H H H H

H H

H

d a d a a d a d a a d i

p a a d a a a d i
r

ah k ah a d k i

ω ω

ω ω

ω

  − − − + − + −     
  = − − + − −  
 + + − +
 

 

is obtained, where ( ) ( )232 1 2 Hr ah k a dω ω = + + −  . Also , 1p q =  is 
satisfied. 

Equilibrium point P1 is moved to the origin via the transformation 

1X P X= + , with ( )T, ,X x y z= , resulting the system (12) in ( )X AX F X= + , 
where A is given by (14), the non-linear part ( ) ( )20F X X=  is a smooth 
function with Taylor expansion in a neighbourhood of 0X = ,  

( ) ( ) ( ) ( )41 1, , , 0 ,
2 6

F X B X X C X X X X= + +  

where ( ),B X X  y ( ), ,C X X X  are vectorial multi-linear functions with 
3X ∈ . 

To the system (12) in the origin, the vectorial multi-linear functions B and C 
are:  

( ) ( ) ( )
( )

2 2

0
, 2 1 ,HB q q ah k d a i

h ag g i
ω ω

ω

 
 = + − − − 
 + 

 

( ) ( )2 2

0
, 2 1 ,B q q ah k

ahg
ω

 
 = + − 
 
 

 

( ) ( ) ( )
( )

( )2 2

0 0
, 2 1 , , , 0 ,

0
HB q q ah k d a i C q q q

h ag g i
ω ω

ω

   
   = + − + − =   

  −   

 

resulting,  

( )
0

.F X xz kxz
gxy

 
 = − − 
 
 

 

First Lyapunov coefficient ( )1 0  is founded using the formula (10), below 
the elements of this formula are described. 
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Inverse matrix 1A−  of the matrix A definite in (14) is,  

( )
( ) ( )
( )

( ) ( )

( )

2

2
1

1 1
2 1 2 1 2

11 1 .
2 1 2 1 2

1 0
1 1

H

H

H

gh k ad a
ahg k hg k g

ad h g k aA
h ahg k hg k g

d
a k k

−

 − + + −
 

+ + 
 + + − =
 + +
 

− 
 + + 

 

Matrix 32i I Aω −  and her inverse are:  

( )3

2 0
2 2 1 ,

2
H H

i a a
i I A d i d h k

hg gh i a

ω
ω ω

ω

+ − 
 − = − + 
 − − + 

 

( )
( ) ( )

( ) ( )( )

[ ] [ ] ( )

1
3

2 2

2 2 2

2

3 2 12
2 2 2

1 2 1 21 4 4 ,
2 2 2

2

H H

H

H H

i I A

ad a d i ah ka a i

ad h g k i h k a ia a i
s

h d g g i h ag g i a d i

ω

ω ω ω

ω ωω ω

ω ω ω ω

−−

 − − + − − ++
 
 
  − + + + − + +− +  =
 
 − + + − + −   
 
 

 

where ( )2 33 1Hs a d k iω = − + +  . 
Finally, these are replaced in (10), resulting the Lyapunov coefficient  

( ) (2 2 3
1

4 5 6 7

8 9 10 11

12 13 2

3 4

0 2 2 196830 1277208 3519855 4921830

2091738 5196138 12026872 13293502

9317612 4357822 1338423 245120

18252 808 65610 396576 1003509

1230894 233486 1749622

a k k k

k k k k
k k k k

k k t kt k t
k t k t k

= − − − −

− + + +

+ + + +

+ − + + +

+ + −



5 63243200t k t−

 

) (

)(

)

7 8 9 10

11 12 13 2

3 4 5 6 2

3 4 5 2 3

2 3

3154458 1952508 792330 202421

27452 796 72 2025 6930 11144

10514 5423 1164 24 675 2010 2888

2390 941 96 27 63 56 18

9 17 12 6 3

k t k t k t k t

k t k t k t k k

k k k k t kt k t

k t k t k t k k k

t kt k t k t k t

− − − −


− − + − − −


− − − − + + +

+ + + − − − −

+ + + + − + +( ) ( )( )1 3
,

3
k t

kt
k t kt

+ − +


− + + 

    (20) 

with 8 9t k= + . 
When 9k = , the expression (20) takes the form,  

( ) 2
1

141750 5 0.
58

a= >  

Due to the first Lyapunov coefficient is positive, the periodic orbit is unstable. 
Hence, in the equilibrium P1 of the system (12) arises sub-critical non-degenerated 
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Hopf bifurcation. By Lemma 1, the conclusion is the same to the equilibrium P2.  

6. Conclusions 

Via the Theorem 2, the existence of the supercritical and non-degenerate Hopf 
Bifurcation to the system (3) in the equilibrium points P1 and P2 was proved. 

It was proved that at perturbing the system (3) in the system (12), the 
control law ( )( )T

0, 9 ,0u x z d= − −  changes the Hopf bifurcation of the system 
(3) from supercritical to subcritical, in the parameters region 0a > , a b= ,  

3 8 9
2

kd a
k

− + +
=  and 0g > . 
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