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Abstract 
In this paper, based on Hirota bilinear form, we aim to show the diversity of 
interaction solutions to the (2 + 1)-dimensional Sawada-Kotera (SK) equa-
tion. By introducing an arbitrary differentiable function in assumption form, 
we can obtain abundant interaction solutions which can provide the possibil-
ity for exploring the interactions between lump waves and other kinds of 
waves. By choosing some particular functions and values of the involved pa-
rameters, we give four illustrative examples of the resulting solutions, and ex-
plore some novel interaction behaviors in (2 + 1)-dimensional SK equation. 
 

Keywords 
Hirota Bilinear Form, Lump Solution, Interaction Solution,  
(2 + 1)-Dimensional Sawada-Kotera Equation 

 

1. Introduction 

As we all known, integrable nonlinear evolution equations have soliton solu-
tions, which reflect a common nonlinear phenomenon in nature. In the past few 
decades, many researchers have paid attention to the study of exact solutions. 
For instance, the rational rogue waves and lump waves exponentially localized 
solutions in certain directions. Compared with soliton solution, lump wave is a 
kind of special wave, rationally localized in all directions in the space. The lump 
solution for its significant physical meanings was first discovered by Manakov et 
al. [1]. Many integrable equations have been found to possess lump solutions, 
such as the KP equation [2] [3] [4], the two-dimensional nonlinear Schrödinger 
type equation [3], the three-dimensional three wave resonant interaction equa-
tion [5] and the Ishimori equation [6]. 

With Hirota bilinear method, the lump solution can be transformed into a 
new equation which is called the Hirota equation [7] [8] [9] [10] [11]. It is natu-

How to cite this paper: Hu, R. (2018) 
Diversity of Interaction Solutions to the (2 
+ 1)-Dimensional Sawada-Kotera Equation. 
Journal of Applied Mathematics and Phys-
ics, 6, 1692-1703. 
https://doi.org/10.4236/jamp.2018.68145 
 
Received: June 27, 2018 
Accepted: August 25, 2018 
Published: August 28, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.68145
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.68145
http://creativecommons.org/licenses/by/4.0/


R. Hu 
 

 

DOI: 10.4236/jamp.2018.68145 1693 Journal of Applied Mathematics and Physics 
 

ral and interesting to use this method to search for lump solutions of nonlinear 
partial differential equations. Based on this method, the lump solutions of some 
more integrable equations have been found, such as dimensionally reduced 
p-gKP and p-gBKP equations [1], Boussinesq equation [12] and dimensionally 
reduced Hirota bilinear equation [13]. Recently, lump solutions are being raised 
more questions about interaction solutions [14], especially interaction solutions 
between lumps and either solution or kinks [15] [16] [17]. 

In this paper, we will study the (2 + 1)-dimensional Sawada-Kotera (2DSK) 
equation 

3
4

55 5 5 5 d 5 d 0
3t x xx xy y yy x y

x

u u uu u u uu u x u u x − + + + − + − = 
  ∫ ∫       (1) 

which was first proposed by Konopelchenko and Dubrovsky [18], where u is a 
function of the variables x, y and t. It was widely used in many physical branches, 
such as two-dimensional quantum gravity, conformal field theory and conserved 
current of Liouville equation [19] [20]. The 2DSK equation’s Lax pair was found in 
Ref. [21] [22] [23], bilinear Bell polynomials were obtained in Ref. [24], symmetry 
analysis was studied in Ref. [25] [26] [27] [28] and four sets of bilinear Bäcklund 
transformations were constructed to derive multisoliton solutions in Ref. [29]. 

Through the transformation 
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Equation (1) can be turned into the Hirota bilinear form 
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       (3) 

Therefore, if f solves bilinear Equation (3), then ( )6 ln xxu f=  will solve the 
2DSK Equation (1). 

In order to get lump solutions, the following quadratic function can be as-
sumed [30]: 

2 2
9 1 2 3 4 5 6 7 8, , ,f g h a g a x a y a t a h a x a y a t a= + + = + + + = + + +      (4) 

where ( )1 9ia i≤ ≤  are real parameters to be determined. By a direct calcula-
tion, three families of lump solutions for 2DSK Equation (1) have been pre-
viously presented in Ref. [30]. 
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  (5) 
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where f is defined in Equation (4) 

( ) ( )
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 (7) 

In Ref. [30], it has been shown that the solutions (5) and (7) can exhibit the 
bright lump wave structure (one peak and two valleys), while the solution (6) 
displays a bright-dark lump wave (one peak and one valley). 

In this paper, our intention is to further extend the assumption in Equation (4) 
by introducing an arbitrary function which is more generalized than some other 
assumption forms. It can provide the possibility for exploring the interactions 
between lump waves and other kinds of waves in Equation (1). We will give some 
examples to show the diversity of interaction solutions to the (2 + 1)-dimensional 
Sawada-Kotera equation.

 2. Interaction Solutions to the (2 + 1)-Dimensional  
Sawada-Kotera Equation 

We assume that f has the combined solutions of the form 

( )2 2
13,f g h k aω= + + +                    (8) 

where ω  is a function and three linear wave variables are 

1 2 3 4

5 6 7 8

9 10 11 12

,
,

,

g a x a y a t a
h a x a y a t a
k a x a y a t a

= + + +

= + + +

= + + +
                   (9) 

where the parameters ( )1 13ia i≤ ≤  are all real constants to be determined. It is 
noted that this ansatz (8) can generate a class of lump and interaction solutions. 
In particular, combined solutions (8) can reduce to the lump solutions when the 
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function ( )kω  disappears. 
With the aid of symbolic computation, substituting Equation (8) into Equa-

tion (3) and eliminating the coefficients of the polynomial yield the following 
constraining equations on the function and parameters: 

( ) ( ) ( )

( ) ( )

2 4 2 2
2 5 9 1 3 1 9 1 6 1 9 1

4 2 3 5 2
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4 2 4

, ,

, ,
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a a a c a a c a a c

c c c c

c c c c

ω ω ω ω ω ω

ω ω ω ω

 = − = =

 = = =


′′′ ′ ′′= = = =


′′ ′ ′′= − = −

         (10) 

where ( )1,2,3ic i =  are all arbitrary real constants. Therefore, we can say that if 
( )kω  and parameters obey constraining conditions (10), the resulting com-

bined solutions (8) will generate many classes of interaction solutions. Further-
more, if we require ( ) 13 0k aω + > , the function f in Equation (8) is positive and 
interaction solutions have no singularity. 

In the following, to illustrate the resulting interaction solutions, we give four 
examples to show the diversity of interaction solutions to the (2 + 1)-dimensional 
Sawada-Kotera equation. 

Case I: When 1 2 31, 0, 1c c c= − = = −  and ( ) ( )sink kω = , we have 
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Case II: When 2 3 0c c= =  and ( ) ( )9 10 11 122e a x a y a t akω − + + += , we have 
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with 
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( ) ( )3 5
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Case III: When 2 30, 0c c≠ ≠  and ( ) ( ) 2
9 10 11 12sinhk a x a y a t aω  = + + +  , we 

have 
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Case IV: When 2 30, 0c c= ≠  and  
( ) ( ) ( )9 10 11 12 9 10 11 12sinh 2coshk a x a y a t a a x a y a t aω = + + + + + + + , we have 
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2
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         (21) 

Then, we will discuss the interaction between lump solutions and soliton solu-
tions for Equations (14), (17) and (20), respectively. In order to get the collision 
phenomena, 2 2 2

3 7 11 0a a a+ + ≠  is essential. So the asymptotic behaviors of the 
obtained solutions (14), (17) and (20) can be got: ( )0 1,2,3,4iu i→ =  as 
t →±∞ . 

For Equation (14), the collision behavior shows the single stripe soliton wave 
feature. From the expression of 1u , it is algebraically decaying and also expo-
nentially decaying. Hence it is a mixed exponential-algebraic solitary wave solu-
tion. It reflects the completely non-elastic interaction between lump solution and 
single stripe soliton. Without loss of generality, we take 4 8 0a a= = . 

In order to investigate the interaction phenomena in 11 0a >  and 11 0a < , we 
can change 9a  in Equation (14). When 11 0a > , as shown in Figure 1, the col-
lision behavior of lump solution and single stripe soliton will occur. It is clear 
that when t →−∞ , the solution 1u  represents two waves: the lump solution 
and the single stripe soliton. When t →+∞ , the lump solution disappears, and 
only the single stripe soliton exists. It reflects the completely non-elastic interac-
tion between two different waves. When 11 0a < , oppositely, we can see from Fig-
ure 2 that when t →−∞ , only the single stripe soliton exists. When t →+∞ , 
the lump solution appears and the solution 1u  represents the lump solution and 
the single stripe soliton. It also reflects the completely non-elastic interaction 
between two different waves. From above two behaviors, we can see that the in-
teraction phenomena both happen near 0t = , when 11 0a > , the lump solution 
is drowned or swallowed by the single stripe soliton after 0.3t = , and when 

11 0a < , the lump solution rises up and appears before 0.3t = − . 
For Equation (17) and Equation (20), the collision behaviors show the soliton 

wave feature. From the expression of 2u  and 3u , they are mixed exponen-
tial-algebraic solitary wave solutions, too. The difference is that they reflect the 
elastic interaction between lump solution and soliton solution. After a series of 
the same steps as 1u , the collision behaviors indicate that the interaction phe-
nomena in 11 0a >  and 11 0a <  are consistent. It is clear that when t →−∞ , 
only the soliton solution exists. When 0t → , the lump solution appears and the 
solution 2u  and 3u  severally represent two waves: the lump solution and the 
soliton solution. When t →+∞ , the lump solution disappears, and only the so-
liton solution exists. The process of interaction can be seen from Figure 3 and 
Figure 4. 
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(a)                                       (b) 

 
(c)                                       (d) 

 
(e)                                       (f) 

Figure 1. Evolution plot of lump solution and single stripe soliton with a1 = 0.1, a4 = 0, a5 
= −0.1, a8 = 0, a9 = 0.7, a12 = −1 in Equation (14). (a) t = −1; (b) t = −0.1; (c) t = −0; (d) t = 
0.1; (e) t = −0.3; (f) t = 1. 
 

 
(a)                                       (b) 

 
(c)                                       (d) 
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(e)                                       (f) 

Figure 2. Evolution plot of lump solution and single stripe soliton with a1 = 0.1, a4 = 0, a5 
= −0.1, a8 = 0, a9 = −0.7, a12 = −1 in Equation (14). (a) t = −1; (b) t = −0.3; (c) t = −0.1; (d) 
t = 0; (e) t = 0.1; (f) t = −1. 
 

 
(a) 

 
(b)                                       (c) 

Figure 3. Evolution plot of lump solution and soliton solution with a1 = 0.5, a4 = 0, a5 = 
−0.5, a8 = 0, a9 = 0.9, a12 = 2 in Equation (17). (a) t = −0.5; (b) t = 0; (c) t = 0.5. 
 

 
(a) 
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(b)                                       (c) 

Figure 4. Evolution plot of lump solution and soliton solution with a1 = 0.8, a4 = 0, a5 = 
−0.8, a8 = 0, a9 = 2, a12 = −1 in Equation (20). (a) t = −0.5; (b) t = 0; (c) t = 0.5. 

3. Conclusion 

In this paper, via the Hirota bilinear form, we have studied the (2 + 1)-dimensional 
Sawada-Kotera equation. The lump solutions and the mixed exponential-algebraic 
solitary wave solutions have been obtained. We have presented a class of interac-
tion solutions between lump solutions and other kinds of solitary wave solutions 
for the (2 + 1)-dimensional Sawada-Kotera equation. This class of the resulting 
interaction solutions requires a function satisfying four linear ordinary differen-
tial equations. All of these have provided abundant interaction solutions and 
supplemented the existing lump and soliton solutions. Then, we will study other 
high-dimensional nonlinear problems based on the interaction solutions pre-
sented in this paper. 
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