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Abstract 
 
Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-
ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling 
technique. The results were compared with those of single- and multi-input linear transfer function models. 
In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning 
algorithm was developed. Input variables in the model were obtained by comparing the response with their 
respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-
ity - weight criterion, and model generalization by cross validation. The performance was evaluated using 
correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single 
input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious 
than the multi input linear transfer function (MI-LTF) and ANN models. 
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1. Introduction 
 
Rainfall-runoff-sediment yield is the most complex hy-
drological phenomenon to comprehend due to tremen-
dous spatial variability of watershed characteristics and 
precipitation patterns, making the physical modeling 
quite complex and involved. The quantity of runoff and 
sediment yield resulting from a given rainfall depends 
mainly on rainfall intensity, duration, and distribution 
besides others, such as initial soil moisture, land use, 
slope, etc. The runoff is critical to many water resources 
activities, for example, design of flood protection works, 
protection of agricultural lands, planning of water stor-
age and release, etc. The erosion in the watershed may be 
occurred due to rainfall and runoff, and degrades its land.  
The sediment transport caused the reduction of storage 
capacity of rivers and reservoirs. Also, sediments can 
carry pollutants such as radioactive materials, pesticides 
and nutrients, and their transportation is generally 
avoided. 

A number of linear and non-linear hydrological mod-
els have been developed since 1930’s for describing the 
processes of rainfall-runoff, runoff-sediment yield, and 
rainfall-runoff-sediment yield in a watershed fluvial sys-
tem, and these are also useful in forecasting. These mod-

els can be broadly classified as lumped, conceptual, hy-
drological, and hydraulic models. The physically based 
classical models requires wide range of parameters re-
lated to land uses, soil characteristics, soil horizon, wa-
tershed treatment, man made activities, conservation 
practices, soil moisture variation, topographic data, sur-
face roughness, etc. These parameters vary significantly 
over a space and time, and very difficult to monitor. Un-
der these circumstances, classical models require as-
sumption of the parameters. Most common assumption 
to be made for describing the rainfall-runoff-sediment 
yield process is: sediment produced in the catchments is 
uniformly distributed over the catchments, uniform soil 
group, approximation of slopes, etc. These assumptions 
create lumped-ness in the physically based distributed 
classical model. On the other hand, ANN based approach 
yields satisfactory results without going into the details 
of catchments characteristics. The artificial neural net-
work (ANN) approach comprises both linear and non- 
linear concepts in model building, and can be operated 
with the dynamic or memory less input-output system. It 
has the following major advantages [1]. 1) An ANN 
model does not require a prior knowledge of the system 
and, therefore, can be applied to solve the problems not 
clearly defined, 2) The model has more tolerance to 
noise and incomplete data, and thus, requires less data 
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for model development, and 3) The results are the out-
come of the collective behavior of data, and thereby, the 
effect of outlier is minimized. In ANN, the gradient de-
scent search optimization embedded with back propaga-
tion algorithm [2] is quite popular in ANN for exploring 
diverse areas such as bio-medical, engineering, image 
processing, water resources, and others [3,4]. 

The hydrologic applications of ANN include modeling 
of daily rainfall-runoff-sediment yield process, snow- 
rainfall process; assessment of stream ecological and 
hydrological responses to climate change; rainfall-runoff 
forecasting, sediment transport and groundwater quality 
forecasting, and groundwater remediation. A good over-
view of ANN application to rainfall-runoff simulation 
and forecasting is available elsewhere [5−16]. Imrie  
improved the generalization by adding a guidance system 
to the cascade correlation learning architecture and ex-
trapolation properties using an activation function. Wilby  
interpreted the internal behavior of an ANN-based rain-
fall-runoff model by deleting all the nodes other than the 
hidden nodes and comparing the state variables and in-
ternal fluxes. Danh and Elshorbagy proposed back 
propagation artificial neural network (BPANN) models 
for runoff forecasting using fixed stopping criterion and 
independent variables, respectively, and compared them 
for performance with the available conceptual models. 

It is apparent from above that the generalization of 
ANN models for varying data sets and their application 
to sediment modeling do not appear to have been studied 
extensively or even attempted. Thus, the objective of the 
study is to develop memory-based linear transfer func-
tion, ANN-based runoff and sediment yield forecasting 
models for daily and weekly time periods; and to evalu-
ate the model performance for their forecasting abilities 
using the data of the Vamsadhara River watershed of 
India. 
 
2. Model Development  
 
The linear transfer function (LTF) models require mini-
mum input and computation, and yield the results of de-
sired accuracy [17]. In an LTF, two or more time-de-
pendent observations are linked as: 
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1 1 1
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where, St is the dependent observation; Rt and Qt  are 
independent observations; p, q, r are the response or time 
memory; and aj, bj, cj are the parameters associated with 
the jth variable. Least square method can be used to solve 
the set of t linear equations for parameters. Representing 

[a1, a2,…, ap, b1, b2,…,bq, c1, c2,…,cr]
T as , the vari-

ance of the response {var ( )} is given as [17]: Var ( H ) 
= [A T A]-1 2, where A is the input matrix and 2 is the 
variance of error term (et) expressed as: 
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The Var ( ) helps in parsimonious selection of re-
sponse or time memory by comparing the respective 
standard error (SE) associated with each response 

( 

Ĥ

Ĥ )ĤVar( ) as follows. The initially selected re-

sponse value is increased one by one and if the resulting 

 is less than the respective standard error {Ĥ )ĤVar( }, 

otherwise the response value is decreased one by one. 
The obtained response value represents the number of 
successive past events of the variable affecting output 
[17]. 

In a feed forward BPANN scheme, nodes of the input 
layer receive the normalized data set (input). The wei- 
ghted sum corresponding to each node of next layer is 
calculated and passed to next layer usually through a 
sigmoid activation function. For updating the weights of 
interconnection, the error (E) is calculated at the output 
as; 
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This error is propagated back to hidden layer and fi-
nally to input layer. Here, d(k) is the observed output at 
the kth node of the output layer and O(k) is the estimated 
output at the kth node of the output layer. In all iterations, 
weights are updated using W(ij) n+1 = W(ij) n + W(ij) n. 

The speed of convergence in gradient descent is nor-
mally increased by introducing a momentum term  (0 < 
 < 1) considering the effect of previous weight change 
as: 

( )  1 ( ) ( ) ( ) ( ) -1  [ ]ij n ij n ij n ij n ij nW W W W W        (4) 

The change in weights (W) in the direction of nega-
tive gradient is given by W(ij) = -  , where  

is learning rate such that 0 <  < 1. The learning rate 
governs the rate of change of weights. 

(ij)WE/

The network parsimony (minimum network structure) 
can be achieved through A information criterion (AIC) 
[18], B information criterion (BIC) [19], or by pruning of 
network [20]. AIC and BIC utilize SE statistic for decid-
ing the number of free parameters [21]. In pruning, [20] 
suggested the use of error sensitivity Se(ij) with respect to 
weight W(ij) for elimination of the respective weight 
without involvement of excessive calculations. Se(ij) is 
defined as: 
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Finally, Se(ij) with respect to W(ij) reduces to: 
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Table 1. Summary of annual hydrological data of Vamsadhara River basin. 

Year Weighted Average Rainfall 
(mm) 

Runoff 
(m3/s) 

Runoff 
(mm) 

Sediment yield 
(kg/s) 

Runoff-Rainfall 
Ratio 

Sediment Yield-runoff ratio/ 
Sediment Concentration 

(kg/m3) 

1984 965.2 13245.2 146.3 28917.2 0.15 2.18 

1985 1079.6 17195.9 190 29802.3 0.18 1.73 

1986 971.7 20519.6 226.7 36233 0.23 1.77 

1987 715.8 6506.6 71.9 12230.4 0.1 1.88 

1988 1053.7 25454.9 281.2 42742.8 0.27 1.68 

1989 1074.2 19789.9 218.7 30699.6 0.2 1.55 

1992 1028.7 40017.2 442.1 62668.2 0.43 1.57 

1993 773.3 15005.5 165.8 20177.2 0.21 1.34 

1994 1142.3 31896.4 352.4 33675.8 0.31 1.06 

1995 1010.6 34237.4 378.3 30291.5 0.37 0.88 
 
where, i and f indicate the initial and final values of weights. 
Since the weight update is available during learning, only 

summation of squares of change in weight, i.e. , is 
determined for estimation of the sensitivity of error. A com-
paratively low sensitivity suggests the pruning of the corre-
sponding node. 
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A perfect agreement between the observed and esti-
mated values yields the coefficient of efficiency as 100 
percent. For zero agreement, all the estimated values 
must be equal to the observed mean. A negative effi-
ciency shows that the estimated values are less than the 
observed mean. It can be used to compare the model’s 
relative performance on different watersheds. 

The model can be generalized by cross-validation, but 
without ascribing a level of accuracy in the beginning of 
model formulation. The performance of the developed 
model is checked in all iterations. In this method, the net-
work is trained on training data set and its statistical per-
formance is evaluated on training and cross-validation data 
sets. The method monitors the generalized performance, and 
the process of learning is stopped when there is no more 
improvement in training along with the performance in 
cross validation period. For performance, the following 
statistical and hydrological criteria were used in the present 
analysis. 

 
2.3. Root Mean Square Error (RMSE) 
 
An alternate criterion of residual error is the root mean 
square error [22] which is expressed as the measure of 
mean of the residual variance summed over the period, 
that is: 
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2.1. Correlation Coefficient (CC) 
 
The correlation between the observed and estimated val-
ues is accounted by the correlation coefficient expressed 
as follows. 
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3. Study Area 
 
The Vamsadhara river basin is located between 18015' to 
19055' north latitudes and 83020' to 84020' east longitudes 
(Figure 1) situated between Mahanadi and Godavari river 
basins in South India. The river originates from Kala-
handi and travels through a distance of about 254 km 
before it joins the Bay of Bengal. Its principal tributaries 
are Chauldua, Phaphalia, Ganguda, Sanna Nadi, and 
Mahendrathanaya. The watershed (7820 km2) has six 
raingauge stations: Kutraguda, Mohana, Gudari, Mo- 
handragarh, Gunur, and Kashinagar. Weighted rainfall 
for study was estimated by considering the Thiessen po-  

where, Y  and Y


 are mean of observed and esti-

mated values, Y and  are the observed and estimated 

values respectively and n is the number of observation. 

Ŷ

 
2.2. Coefficient of Efficiency (CE) 
 
Nash and Sutcliffe proposed this non-dimensional crite-
rion on the basis of standardization of the residual vari-
ance with initial variance. It is estimated as follows: 
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Figure 1. Index map of Vamsadhara River basin showing 
catchment details. 
 
lygons as shown in Figure 1. The calculated weights for 
each rainguage, starting from rainfall stations one to six 
were 0.2640, 0.1835, 0.2696, 0.1096 and 0.0224 respec-
tively. The yearly weighted rainfall, runoff and sediment 
yield are shown in Table 1. The mean annual rainfall and 
temperature varies from 170 to 1280 mm, and 10 to 43 
˚C, respectively and humidity is above 95% during the 
monsoon. The soils of area can be classified into mixed 
red, black soils, red sandy soils, yellow soils, coastal 
sands, and forest soils, and its surface is mostly covered 
with Kankar and Murum. The hydro-meteorological data 
are being collected by India Meterological Department 
(IMD) and Central Water Commission (CWC), Godavari 
Mahanadi Circle Division, South Eastern Region, Bhu-
baneswar, Orissa. The measurements include rainfall, 
stage and sediment concentration in a one litre of sample. 
Rainfall is measured by India Meteorological Depart-
ment (IMD) in the units of mm/day using a self re-
cording raingauge. The runoff is recorded by CWC by 
area velocity method and observed once in a day starting 
at 8.00 h. The velocities are measured by current metre 
and using sounding rod. The runoff recorded by CWC is 
reported in the units of m3/s. The sediment yield, that is 
the suspended is measured by taking 1l water sample and 
is reported in the units of kg/m3. 

In this study, the daily rainfall, runoff, and sediment yield 
data of monsoon period (June 1–October 31) for 1984-1987 
were used for model calibration, and the data of 1988-89 
and 1992-95 for cross validation and verification. 
 
4. Analysis of the Results 
 

In the present study, the acceptable significance limits 
only for CC and CE for the model were considered as > 
75% and > 60% respectively. The criterion RMSE is 
basically used to compare the models and therefore no 
limits for these criteria have been fixed for evaluating the  
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Figure 2. Daily observed and predicted runoff from SI-LTF 
model during calibration period (1984-87). 
 
performance of a particular model. The descriptive sta-
tistic of data used in model development, cross-valida-
tion, and verification is shown in Table 1. It is seen that 
runoff-rainfall ratios for 1992, 1994, and 1995 are higher 
than those in other years, implying that the verification 
with former years data may underestimate the runoff. 
However, sediment concentration values in 1993, 1994, 
and 1995 are lower than those in the other years, and 
therefore, the developed models may overestimate the 
sediment yield in those verification years. 
 
4.1. Runoff Forecasting 
 
4.1.1. Model development 
1) SI-LTF model: 

Following the above-described procedure, the sin-
gle-input linear transfer function (SI-LTF) rainfall (R)- 
runoff (Q) models were developed for daily and weekly 
time steps, and the results are shown in Table 2. In this 
table, the value of time memory for input rainfall is a 
maximum, and for runoff, it is a maximum of three. The 
time memories of runoff are 3 and 2 respectively for 
daily and weekly models, indicating that the lumping of 
time periods from daily to weekly reduced the time 
memory of the runoff. It can be inferred from the values 
of CC and CE that the daily runoff forecasting model 
performed better than the weekly model (Table 2). Daily 
observed and predicted runoff by SI-LTF model during 
calibration period is shown in Figure 2. 

2) MI-LTF model: 
The multi-input linear transfer function (MI-LTF) 

models account for the spatial variation of rainfall over 
the watershed. Therefore, rainfall values of all raingauge 
stations, viz., R1 to R6 along with runoff (Q) were util-
ized in models of the considered time steps, and the re-
sults are shown in Table 2. It is observed that the rainfall  
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Table 2. Model order and corresponding parameters for different time periods of runoff forecasting in SI-LTF and MI-LTF 
models for Vamsadhara River basin. 

Model Parameter Associated with Input time Memory Performance of Developed Model 
Model and variable 

t-1 t-2 t-3 CC (%) CE (%) RMSE 

R 3.390 -- -- -- -- -- SI-LTF 
(Daily) Q 0.524 0.127 0.181 80.0 64.0 65.0 

R 6.192 -- -- -- -- -- SI-LTF 
(Weekly) Q 0.332 0.202 -- 62.7 37.9 490.0 

R1 0.728 0.479 -- -- -- -- 

R5 0.296 -- -- -- -- -- 

R6 2.166 -- -- -- -- -- 
MI-LTF 
(Daily) 

Q 0.448 0.249 -- 80.0 63.3 66.0 

R4 0.894 -- -- -- -- -- 

R6 5.173 -- -- -- -- -- 
MI-LTF 
(Weekly) 

Q 0.333 0.203 -- 62.9 38.1 490.0 
 
at Mohana (R2) and Gudari (R3) does not influence the   
output of any time scale model though these areas are 
located near the centroid of the watershed. It may be at-
tributed to the presence of a dense forested area in the 
middle of the watershed acting as a sink. The time mem-
ory of the runoff in multi-input daily and weekly is 2. 
Again the results infer that the daily runoff forecasting 
model performed better than weekly model. 

3) ANN model: 
Artificial neural network (ANN) models developed for 

daily and weekly bases with sigmoid as activation func-
tion by pattern learning were subjected to maximum 
5000 iterations. The highest value of respective variable 
in series was considered for normalization of input and 
output variables. The learning rate () and momentum 
term () were assumed constant (0.5) for error conver-
gence. All interconnecting weights were updated using 
the error of input-output pairs. The pattern learning is 
governed by the error of each data set, and the intercon-
necting weights simultaneously adjusted. The processing 
is however slow as it continuously improved the weights 
for each data set.  

The three-layer network structure was selected so that 
the number of nodes in the input layer equaled the num-
ber of input variables. Due to non-availability of guide- 
lines [1], the number of hidden nodes in the hidden 
layer(s) was initially taken twice the input nodes [23] and 
it was increased by one at a time considering the im-
proved generalization and the above pruning criterion. 
Corresponding to one output, only one node was taken in 
the output layer. Thus, a three-layer network structure 
with varying numbers of hidden nodes in the hidden 
layer was tried, and the performance, in both cross-vali-
dation and validation, of the finally selected ANN mod-
els for all above mentioned time steps for pattern learn-
ing is shown in Table 3. In this table, the generalized 
case exhibits least errors in both calibration and cross- 
validation. Here, the data of 1984 to 1987 were used in 
calibration, and the data of 1988 to 1989 and 1992 to 
1995 in cross-validation, referred as the first and second 

verification periods in the text, respectively. Performance 
of daily models both in calibration and cross-validation 
is better than the weekly model suggesting that the daily 
model is better than weekly model. 

 
4.2. Sediment Yield Forecasting 
 
4.2.1. Model Development 
1) SI-LTF model: 
These models consisted of rainfall (R), runoff (Q), and 
sediment yield (Sy), and the results are given in Table 5. 
Apparently, the results of daily model show the effect of 
one day preceding sediment yield on today’s computed 
sediment yield. Daily observed and predicted sediment 
yield by SI-LTF model during calibration period is 
shown in Figure 5. On the other hand, the weekly model 
has no preceding sediment yield term(s) in the model, 
implying that the preceding weekly or higher time step 
sediment yield have no effect on the current output. The  
model performance reduces with increased lumping of 
data to larger time periods. Based on the evaluation cri- 
teria, though no model passes the criteria, these could be 
used cautiously for the study area. 

2) MI-LTF model: 
Similar to the above, the rainfall values of six rainfall 
gauging sites were considered in the models developed 
for various time periods, and the results are given in 
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Figure 3. Daily observed and predicted runoff from SI-LTF 
model during verification period (1988-89). 
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Table 3. Pattern learned artificial neural network runoff forecasting models for different time periods for Vamsadhara River basin. 

Performance in model development, % 
Calibration (1984-1987) Cross validation (1988-1989) 

Model Structure Iteration 
CC (%) CE (%) RMSE CC (%) CE (%) RMSE 

Daily 4,8,1 2490 83.8 70.1 60.0 79.5 62.5 82.0 

Weekly 3,6,1 53 65.7 43.2 470.0 68.1 37.7 600.0 

 
Table 4. Performance evaluation of SI-LTF, MI-LTF and ANN runoff forecasting models during verification stages. 

Performance evaluation criteria 

Verification (1988 – 1989) Verification (1992 - 1995) Model 

CC, % CE, % RMSE CC, % CE, % RMSE 

SI-LTF  (Daily) 80.7 63.5 80 86.7 72.4 103 

SI-LTF  (Weekly) 68.9 37.8 590 70.7 40.4 956 

MI-LTF  (Daily) 80.6 62.8 82 85.6 60.7 108 

MI-LTF  (Weekly) 68.2 39.5 592 70.6 39.9 961 

ANN  (Daily) -- -- -- 84.5 63.9 -- 

ANN  (Weekly) -- -- -- 71.4 26.3 -- 

 
Table 5. Model order and corresponding parameters for different time periods of sediment yield forecasting in SI-LTF and 
MI-LTF models for Vamsadhara River basin. 

Model parameters associated with input time Performance evaluation of developed model 
Model and variable 

t-1 t-2 t-3 CC, % CE, % RMSE 

R 15.98 -- -- -- -- -- 

Q 0.31 0.23 -- -- -- -- SI-LTF  (Daily) 

Sy 0.15 -- -- 64.4 41.4 284.0 

R 17.60 3.21 -- -- -- -- 

Q 0.25 -- -- -- -- -- SI-LTF  (Weekly) 

Sy -- -- -- 35.0 8.7 1551.0 

R5 3.54 -- -- -- -- -- 

R6 13.56 0.58 -- -- -- -- 

Q 0.61 -- -- -- -- -- 
MI-LTF  (Daily) 

Sy 0.07 -- -- 65.0 42.2 282.0 

R4 10.73 4.79 -- -- -- -- 

R6 4.95 -- -- -- -- -- 

Q 0.17 -- -- -- -- -- 
MI-LTF  (Weekly) 

Sy -- -- -- 40.7 13.8 1507.0 

 
Table 6. Pattern learned artificial neural network sediment yield forecasting models for different time periods for Vamsad-
hara River basin. 

Performance in model development 
Calibration (1984-1987) Cross validation (1988-1989) 

Model Structure Iteration 
CC CE RMSE CC CE (%) RMSE 

Daily 4,8,1 65 63.4 40.0 290 57.3 31.0 280.0 

Weekly 3,6,1 793 46.8 21.7 1400 44.0 15.7 1300.0 

 
Table 7. Performance evaluation of SI-LTF, MI-LTF and ANN sediment yield forecasting models during verification stages. 

Performance evaluation criteria 
Verification period (1988 – 1989) Verification period (1992 - 1995) Model 

CC CE RMSE CC CE RMSE 

SI-LTF  (Daily) 60.3 35.3 268 67.9 45.0 347 

SI-LTF  (Weekly) 39.1 1.4 1367 45.5 18.6 2143 

MI-LTF  (Daily) 60.4 33.4 276 67.6 45.5 349 

MI-LTF  (Weekly) 40.4 3.1 1355 48.1 17.4 2158 

ANN  (Daily) -- -- -- 67.2 44.8 351 

ANN  (Weekly) -- -- -- 25.7 5.1 2300 
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Table 5. Similar to the single-input model, the daily 
multi-input model indicated the effect of successive past 
sediment yield on the output whereas weekly did not. In 
addition, the rainfall of Kutraguda (R1), Mohan (R2) and 
Gudari (R3) did not influence the output of any of the 
models despite their being in the center and upper part of 
the watershed, perhaps due to the presence of forest and 
better soil conservation practices in the Koraput district, 
which covers the polygon area of Kutraguda, Mohan and 
Gudari rain gauge sites (Figure 1). As seen and inferred 
from Table 5, the lumping of time periods improved the 
model performance in calibration. 

3) ANN model: 
Similar to above, the ANN models for various time  
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Figure 4. Daily observed and predicted runoff from SI-LTF 
model during verification period (1992-95). 
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Figure 5. Daily observed and predicted sediment yield from 
SI-LTF model during calibration period (1984-87). 
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Figure 6. Daily observed and predicted sediment yield from 
SI-LTF model during verification period (1988-89). 
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Figure 7. Daily observed and predicted sediment yield from 
SI-LTF model during verification period (1992-95). 
 
steps were developed for sediment yield. The models 
were calibrated on 1984 to 1987 data set, cross-validated 
for maximum generalization with the data of first verifi-
cation period (1988-1989). The ANN structure was se-
lected as explained earlier, and the number of hidden 
nodes were selected on the bases of improved generali-
zation and pruning criteria. The values of CC and CE 
indicated no model to perform well. 

 
4.2.2. Model Verification 

Similar to the models performance in calibration, Ta-
ble 7 shows non-workability of all the models in verifi-
cation probably due to high variation of sediment con-
centration (Table 1) and nonhomogeneous data. However, 
the daily model worked better than the weekly model. 
Daily observed and predicted sediment yield by SI-LTF 
model during both the verification periods is shown in 
Figure 6 and 7. 
 
5. Conclusions 
 
The following conclusions can be drawn from the study: 

1) A three-layered ANN structure with the number of 
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nodes in hidden layer as twice of the input nodes was the 
best generalized model obtained in less than 5000 itera-
tions. 

2) The daily SI-LTF, MI-LTF, ANN models worked 
well in runoff forecasting, whereas others failed in cali-
bration as well as in both the verification periods. The 
daily SI-LTF model was superior to daily MI-LTF model 
in calibration as well as in both the verification periods. 
However, the daily ANN model showed an improvement 
over the former in calibration, but was slightly poor in 
cross-validation as well as in verification. 

3) Any of the proposed SI-LTF, MI-LTF, ANN mod-
els can be useful for sediment yield forecasting with little 
variation in accuracy. 
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