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Abstract

The paper presents constitutive theories for non-classical thermoviscoelastic
fluids with dissipation and memory using a thermodynamic framework based
on entirety of velocity gradient tensor. Thus, the conservation and the balance
laws used in this work incorporate symmetric as well as antisymmetric part of
the velocity gradient tensor. The constitutive theories derived here hold in co-
and contra-variant bases as well as in Jaumann rates and are derived using
convected time derivatives of Green’s and Almansi strain tensors as well as
the Cauchy stress tensor and its convected time derivatives in appropriate
bases. The constitutive theories are presented in the absence as well as in the
presence of the balance of moment of moments as balance law. It is shown
that the dissipation mechanism and the fading memory in such fluids are due
to stress rates as well as moment rates and their conjugates. The material
coefficients are derived for the general forms of the constitutive theories
based on integrity. Simplified linear (or quasi-linear) forms of the constitutive
theories are also presented. Maxwell, Oldroyd-B and Giesekus constitutive
models for non-classical thermoviscoelastic fluids are derived and are com-
pared with those derived based on classical continuum mechanics. Both,
compressible and incompressible thermoviscoelastic fluids are considered.

Keywords

Rate Constitutive Theories, Non-Classical Thermofluids, With Memory,
Convected Time Derivatives, Internal Rotation Gradient Tensor, Generators
and Invariants, Cauchy Moment Tensor

1. Introduction

The conservation and the balance laws used in the derivation of the ordered rate

DOI: 10.4236/am.2018.98063 Aug. 22, 2018 907

Applied Mathematics


http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2018.98063
http://www.scirp.org
https://doi.org/10.4236/am.2018.98063
http://creativecommons.org/licenses/by/4.0/

K.S. Surana et al.

constitutive theories presented here for the thermoviscoelastic non-classical flu-
ids have been derived and presented by Surana et a/ [1] [2] [3] [4] for solid and
fluent continua in Lagrangian as well as Eulerian descriptions. For the benefit of
the readers and for the sake of completeness we briefly describe the motivation
behind non-classical continuum theory incorporating internal rotation rates as
well as a brief description of the development of the theory. In complex flows the
velocity gradient tensor varies between a location and its neighboring locations.
Polar decomposition of the velocity gradient tensor or its decomposition into
symmetric and skew symmetric tensors shows that varying velocity gradient
tensor results in varying rotation rates between the neighboring locations. Since
these varying rotation rates arise due to varying deformation of the continua,
hence are completely defined by the deformation (antisymmetric part of the ve-
locity gradient tensor), thus do not require additional degrees of freedom at a
material point. If the internally varying rotation rates are resisted by the de-
forming fluid, then there must exist corresponding conjugate moments. This
physics is all internal to the deforming continua and is present in all flows but is
completely neglected in the presently used classical continuum theories for flu-
ent continua. The continuum theory presented in references [3] [4] for fluent
continua considers internal varying rotation rates in addition to the strain rate
tensor between the neighboring material points (or locations) and the associated
conjugate moments in the derivation of the conservation and the balance laws.
This theory has been referred to as “internal polar theory” or non-classical con-
tinuum theory with internal rotation rates.

There is much published work on non-classical continuum theories under the
titles: micropolar theories, stress couple theories, rotation gradient theories,
strain gradient theories with applications to beams, shells, plates, vibrations, etc.
[5]-[37]. A comprehensive review of these works can be found in references [1]
[2] [3] [4] and others [5]-[37]. This is not repeated here for the sake of brevity.
In this paper we utilize the conservation and the balance laws presented in ref-
erences [4] [5] to derive constitutive theories for thermoviscoelastic fluids, both
compressible and incompressible. The ordered rate constitutive theories for
compressible and incompressible thermoelastic solids, thermoviscoelastic solids
with and without memory, thermofluids and thermoviscoelastic fluids within the
framework of conservation and balance laws of classical mechanics have been
presented by Surana et al [38]-[46]. The ordered rate constitutive theories for
non-classical solid and fluent continua in which internal rotations due to Jaco-
bian of deformation and the internal rotation rates due to velocity gradient ten-
sor are considered also have been presented by Surana et al. [47]-[53]. The con-
cepts used in these works leading to ordered rate constitutive theories of various
orders are utilized in the present work.

The constitutive theories in this paper are derived in a basis independent
manner, hence are valid for co- and contra-variant bases as well as for Jaumann
rates. Entropy inequality and other conservation and balance laws are used to

determine the constitutive variables. Their argument tensors are decided based
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on the conjugate pairs appearing in the entropy inequality as well as the addi-
tional desired physics that is not obvious from the conjugate pairs in the entropy
inequality. Argument tensors of the constitutive variables as well as the choice of
the constitutive variables are generalized to include convected time derivatives of
the stress and the strain tensors up to certain orders giving rise to the ordered
rate constitutive theories. The constitutive theories are primarily derived using
representation theorem [54]-[73], ie., theory of generators and invariants. Ma-
terial coefficients for each constitutive theory are established using Taylor series
expansion of the coefficients in a linear combination about a known configura-
tion. It is shown that Maxwell model, Oldroyd-B model and Giesekus constitu-
tive models based on classical mechanics are a subset of the constitutive theories
derived here. Furthermore, it is shown that single constitutive theories for stress
tensor, moment tensor, and heat vector derived based on integrity based on the
non-classical mechanics also degenerates to the Maxwell, Oldroyd-B and Giese-
kus models derived in classical continuum mechanics. That is only a single con-
stitutive model derived here is sufficient to represent dilute and dense polymer

physics for classical as well as non-classical cases.

2. Notations

In the following we give a brief explanation of the notations. This is necessary as
some of the notations are new [38]. If x, and X, denote the position coordi-
nates of a material point in the reference and current configurations respectively

in a fixed frame (x-frame), then
)_c,=f,(xl,x2,x3,t) (2.1)
or x =x(%,%,,%,1!) (2.2)
If {dx}= [dxl,dx2,dx3]T and {dx}= [d)?l,dfz,d)?}]T are the components of
length ds and ds in the reference and current configurations, and if we neg-

lect the infinitesimals of orders two and higher in both configurations, then we

obtain,
{ax} =[J]{dx} (2.3)
{dx} =[ T |{dx) (2.4)
with
1=[77" [7]=01% DIT)=070=1 e
and using Murnaghan’s notation [74]

5] ot ] oo

Xps X5 X3 Xps X5 X3

in which the columns of [J] are covariant base vectors §,, whereas the rows
of [.7 J are contravariant base vectors g' [38]. [J ] and [.7 ] are Jacobians
of deformation tensors. The basis defined by [j ] is reciprocal to the basis de-

fined by [J]. The following relations are useful in the paper:
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D

E[J] =[L][J] (2.7)
2{7]--7)E) e
where l_‘ij :% (2.9)

J

D —
in which D stands for material derivative, [L] is the spatial velocity
t

gradient tensor, and v, are the velocity components of a material point ¥, in
the current configuration in the x-frame. Over bar on all dependent quantities
refers to their Eulerian descriptions, ie., they are functions of X, and ¢whereas
the quantities without over bar are their Lagrangian description, Ze, they are

functions of x, and « Thus, Q(X,t) and Q(x,t) are Eulerian and Lagran-
gian description of a quantity Qin the current configuration.

3. Choices of Stress Tensor, Moment Tensor, and Convected
Time Derivatives of the Strain Tensor

Stress, moment, and strain tensors and their convected time derivatives can
be considered in contravariant basis, covariant basis, or Jaumann rates. Fol-
lowing reference [38] for example (5(0),5(0),(0)5J), (ﬁ(o),rﬁ(o),(o)ﬁﬂ) can
be considered as measures of Cauchy stress and moment tensors in contra-
variant and covariant basis and corresponding to Jaumann rates. Likewise we
can consider [y(k)},[;/(k)},[(k)yq;k:1,2,---,nr, the convected time deriva-
tives of the Almansi, Green’s strain tensor and Jaumann rates. Where,

[;/(I)J = [7(0] = [(1)7/’ J = [5} , symmetric part of the velocity gradient tensor.
Let (0)5, (O)ﬁ, and [(k) 7J;k:1,2,---,nr define Cauchy stress tensor, Cauchy

moment tensor and convected time derivatives of the strain tensor conju-

gate to the stress tensor in a chosen basis. Conjugate measure to Om s
yet to be decided. We present derivations of the constitutive theories using

this notation so that the resulting derivations are basis independent. By replac-
ing (& Vy [ik=1.2wn,) with ("], |ik=1.2.0m, )
(5(0)ﬁ(0),[y(ﬂ;k:1,2,--~,n,,), and (‘O)E",‘O’rﬁ-’,["‘)w];k=1,2,--~,nr>, the
constitutive theories in contravariant basis, covariant basis, and in Jaumann

rates can be obtained. Since in this paper we consider non-classical polymer-
ic fluids, we also need to consider convected time derivatives of the Cauchy

stress tensor as well as Cauchy moment tensor. Let ([)E;i:I,Z,---,ng and

(j)lﬁ; j=1,2,---,n_ be the convected time derivatives of Cauchy stress and
moment tensors up to orders #n_ and 7, .Additionally, rotation rates and their
gradients naturally appear in the balance laws through thermodynamic equili-
brium considerations. As shown subsequently, the heat vector can be chosen to
be basis independent if its argument tensors are density, temperature gradient,
and temperature.
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4. Rotation Rates, Gradients of Rotation Rates and
Decompositions

Let [Z ] be the velocity gradient tensor, then

o

v ]:[BHW] @)

[[_)J and [VI_/] are symmetric and antisymmetric tensors
— 1fr=— = —— 1fr=— r=
[D]=5([E]+[2T ) [7]=5{[Z1-[2T) (4.2)
W| is internal rotation rate tensor containing rotation angle rates about
7]

X,,X,,X, axes in the x-frame. If we define rotation angle rates ‘0 ,'0 ,,'0 ,

x12 i x20 0
by
l;(:)xl = I;@l :l a_iz_@
) 2\ ox; Ox,
— — 1 o, i
10,=10,== &_% (4.3)
’ 2\,
i@xl'a = iés —l @ &,
2\ ox, ox
then,
0 e, -0,
[7]= —§@x3 (7) (4.4)
i’@xZ x] O
If we represent rotation angle rates as a vector C:)
(16} =[10,.10,,.18, ] (4.5)

Alternatively, we could consider
Vi =e(-2(10,))+e(-2(10,)) +e (-2(10.:)) (4.6)
rotation angle rates in (4.3) are positive when clockwise and correspond to half
the angles whereas the rotation angle rates (coefficients of e, ) are positive when
considered counterclockwise and correspond to full angles. We note that ‘®
are purely due to the velocity gradient tensor L hence, are present in all de-

forming fluent continua. We refer to these '® as internal rotation angle rates.
The gradients of {f(:)} in (4.5) can be defined as

(7} S L2 ]

In which [I?j } and [ffj J are symmetric and antisymmetric components
o=

of the gradients of rotation rate tensor ["@J J and are defined as

a2+ (77
o297
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5. Conservation and Balance Laws

Consider a tetrahedron of volume Vand boundary O in the reference confi-
guration whose planes are parallel to the fixed x-frame and whose oblique plane
is subjected to average stress P and average moment M . Upon deformation
it occupies volume ¥ with boundary surface 0V . The faces (planes) of the
deformed tetrahedron are defined by covariant base vectors. These tetrahedron
faces are flat but not orthogonal to each other as well as not parallel to the planes
of the x-frame. Equilibrium considerations for the deformed tetrahedron yield
the conservation and the balance laws keeping in mind that these laws resulting
from classical continuum theories may need to be modified to the existence of
the new physics associated with internal rotation rates and conjugate Cauchy

O that balances with M through Cauchy principle. Con-

moment tensor
servation of mass, balance of linear momenta, balance of angular momenta, first
and second laws of thermodynamics yield the following [1] [2] [3] [4] in the

current configuration.

—+V-(pv)=0 5.1
o (Pv) (5.1)
_ _ (0) =
_0v, o, _= 8( o'/i)
iy oy i _prb__ N "1 _ 5.2
o P T T, 52
© n_qﬂk,p _eijk (O)O_-ij =0 (5'3)

ﬁ%f+§'(7—tr([(o)a][Z])—tr([(o)ﬁ][i'@jJ)— i@(e (")5):0 (5.4)

5{%+ﬁ%ﬂ+%—tr([”)&}[Z])—tr([”)nﬂ[f@i})— 6-(e:"5)<0
(5.5)

in which

_r+ _ oy, Cia— 0 ;@
tr([<°>a][q):<°>%%; s([oa][ 7)), (a)—cjk)
The Cauchy stress tensor ©)

O . Antisymmetric components of () are balanced with the
(0)

o is nonsymmetric and so is the Cauchy mo-
ment tensor
gradients of "im (Equation (5.3)). p=p(X,r) is density, F:.b are body
forces per unit mass, e is specific internal energy, g is heat vector, @ is
Helmholtz free energy density, 7 is entropy density, g is temperature gra-

dients tensor, and 6 is temperature.

Balance of Moment of Moments Balance Law

Yang et al. [75] showed that when the additional physics of internal rotations is
accounted for in a deforming volume of solid matter the conservation and the

balance laws used in classical continuum mechanics are not sufficient to ensure
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equilibrium of the deforming matter. Yang et al [75] presented equilibrium of the
moment of moments as an additional equilibrium law necessary in non-classical
continuum mechanics. The derivation originates from geometric consideration
and requires static balance of the moment of moments due to Cauchy moment
tensor and the moment of moments due to antisymmetric part of the Cauchy
stress tensor. This derivation in the strict sense cannot be called a balance law,
Le., we cannot refer to this as “balance of moment of moments balance law” as a
balance law must be derived from rate considerations (as rate of linear and an-
gular momenta in the balance laws of linear and angular momenta). Surana et al.
[76] [77] have shown that in case of non-classical continuum mechanics consi-
dering internal rotations and rotation rates, rate of change of angular momenta
due to rotation rates must balance with the moment of moments and the mo-
ment of moments due to antisymmetric Cauchy stress tensor. Since the rate of
change of moment of angular momenta due to rotation rates is zero in conti-
nuum mechanics (as the material points have no inertia). Thus, the complete
balance of moment of moments derivation in [76] [77] reduces to the same equ-
ation as derived by Yang et al [75] using static equilibrium considerations.

Based on this balance law
e, im, =0 (23)
(0)

”_1,-,- = O i 1, the Cauchy moment

tensor is symmetric. On the other hand in the absence of this balance law, sym-

must hold. Equation (5.6) implies that

metry of the Cauchy moment tensor is not established, hence Cauchy moment

tensor (©)

(0)

m will be nonsymmetric. In the derivation of the constitutive theory

(0)

for ' we assume '“m to be nonsymmetric implying that the balance of

moment of moments is not considered as a balance law. This is the more general

case. The constitutive theories when ()

(0)

m is symmetric are a subset of the more

general case in which
0)

m is not symmetric, keeping in mind that nonsymme-
tric part of (
shown in [76] [77].

m , ie., absence of this balance law leads to spurious behavior as

6. Conjugate Pairs in Entropy Inequality, Constitutive
Variables and Their Argument Tensors

From the entropy inequality we note that in each of the two trace terms both
tensors are nonsymmetric, thus based on the works of Spencer, Wang and Zhang
and others [61]-[73] these pairs of tensors in each trace term do not constitute
conjugate pairs. That is either of the tensors in each pair cannot be expressed in
terms of the other due to lack of existence of integrity or basis for nonsymmetric

tensors. We consider the following

V- On=e: O (6.1)
[L]=[D]+[W] (6.2)

Stress tensor, and moment tensor, and rotation rate gradient tensor decompo-

DOI: 10.4236/am.2018.98063 913 Applied Mathematics


https://doi.org/10.4236/am.2018.98063

K.S. Surana et al.

sitions yield

[Ve)=[Va] [Vl [m ][ Vm] [ O] ana [7]<[ 2T ][ 27]
(6.3)

in which subscripts sand a stand for symmetric and antisymmetric. Substituting
from (6.1)-(6.3) in (5.5) and noting that

o5 7)o w25
(e er] o of(2a] 7))

(6.4)

and

tr([“j)&][w‘/]) =-10-(e:"5) (6.5)

We obtain the following from (5.5)
(D> _DO) q-% =
R SO

ol o] 7]

The energy equation can accordingly be written as

p%fﬁ.q_tr([%][ﬁ})_tr([@,ﬂ[fﬁj})_u([g»ﬂ[fsj}):o 6.7)

We note that in (6.6), in the trace terms either both tensors are symmetric or

(6.6)

antisymmetric, hence all three trace terms in (6.6) can be considered as conju-
gate pairs in the constitutive theories. First, from (6.6) we can easily infer that
o, 1,9, (2)5, (g)rﬁ and (?lﬁ are a possible choice of constitutive variables. The
argument tensors of these constitutive variables are decided using the conjugate
pairs as well as the desired physics these are to represent that perhaps may not
be obvious from the entropy inequality.

For compressible matter, density varies during evolution. Based on continuity

equation in Lagrangian description, this is defined by changing |J |

Py = |J|p(x,t) (6.8)

Po 1 1 . . .
or , hence ——— in Eulerian description
plxt) — p(x1) p(¥.1)

must be an argument tensor of the constitutive variables. Choice of § as an
(0)
s

Hence |J | or

argument tensor is straight forward. '!'G as a constitutive variable and D as

its argument tensor is obvious from the conjugate pair in the entropy inequality.
(0) (0)

a

Likewise ''m and ' /m are constitutive variables and a@J and 5'a® J are
their argument tensors is straight forward as well. Similarly, ¢ as dependent
variable and g as its argument tensor is also quite obvious from (6.6). ® and
77 at this stage must contain totality of all argument tensors based on principle
of equipresence some of which may be ruled out later due to some other consid-

erations at a later stage in the derivation. Thus, at this stage we have
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5 =<T>[é,f>, e, ffJ,g,éj
12
— [l 5= oy =p
ﬂ:n(:,D,'SJ,'aJ,g,Hj
2]
Vo~ L.5.7 |
2]

(6.9)

-3
]

I
2
3
VR

NI bLIH
)
=~
|

N—

G
5|
Il
NG
S|
7\
5
&~
2
Ne—

<
Il
<
N\
| =
¥
|
N——

These argument tensors need to be modified based on the following remarks.
1) Recall that first convected time derivative of the Green’s strain tensor in

covariant basis is [D] , Le,

5]+l o0

Tensor y, isa fundamental kinematic tensor in covariant basis based on
Green’s strain tensor, a covariant measure.

2) Likewise if we consider convected time derivative of Almansi strain tensor
in contravariant basis, then [[_)J is also the convected time derivative of the

Almansi strain tensor in contravariant basis, i.e.,
[D]= [7(1)] (6.11)

Tensor [7/(1)] is also a fundamental kinematic tensor in contravariant basis.
3) We also know that [38]

[(I)V'IJZ[J’(I)JZ[Vm]:[ﬁ} (6.12)

in which [(1) 7’ } is Jaumann rate.
4) Convected time derivatives of Green’s and Almansi strain tensors of orders
higher than one (hence Jaumann rates as well) can be derived [38]. These are all

fundamental kinematic tensors as well.
[y(f)};jzl’z’...’n
[y(j)}jzl,z,.--,n (6.13)
[(/)},J]; J=12,n

Thus, [5] in (6.9) can be replaced by [(j);/}jzl,l---,n in which (j)y
(for basis independence considerations of the derivation) can be a desired choice
from (6.13).

5) By examining the Maxwell, Oldroyd-B, and Giesekus constitutive models
for polymeric fluids (based on classical mechanics), we note that these contain

convected time derivatives of orders one and zero (same as stress tensor) of the
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stress tensor. In the work presented here we generalize this choice, hence consider
convected time derivatives of Cauchy stress tensor up to orders m in co- and con-
tra-variant bases as well as Jaumann rates, i.e., we choose (i)ﬁ; j=0,1,---,m (due
to basis independence of the derivation). Thus, now we can update the choice of
constitutive variables and their argument tensors in (6.9). We replace [51 with
[(j)}/}jzlﬂ,m,n and & by & . Additionally, V&, j=0,1,--,m-1

become argument tensors of (:’)5.
6) Parallel to the Cauchy stress tensor, we must also consider

[(?ﬁ];izl,Z,---,lm, [(é)ri];jzl,Z,m,zm and replace (2)11_1 and (g)lﬁ in

(6.9) by [(T)n?} and [( :)17_1} Additionally, we must also include

|:(i)n_1];i=0,1,---,('m—l) and [(i)rﬁ}j:O,l,m,(zm—l) as argument tensors

s

of {(]f)m} and [(2:’);71]

Based on remarks (1)-(6) we can modify the choice of constitutive variables
and their argument tensors in (6.9). Keeping in mind that at this stage ® and

77 must include totality of all argument tensors.

1 ¢ N— _
CD=CD(:,(I)}’,1=1,2,,n,(i)O',]=0,l,,(m—l),(lj)m,

P

k=01,,('m=1), Vi 1 =0,1,+-,(>m-1), 17, ffJ,gx,é]
R N — _
77=77(:,”7;l=1,2,---,n,(1’0;j=0,1,--~,(m—1),(’?m;

P

k=01,,('m=1), Vit 1 =0,1,+-,(m-1), 1, i?.l,gx,é]

(T”)EZ <W)E[i_,(i)}/;i=1,2,“',n (j)g;j:()’l’...’(m_l)’gj

llﬂ lm t f—
() )n_z[l_ ©J, (’;>m;k=0,1,---,(‘m—1),ej
P

(6.14)
2m 2m t —
(a)ﬁ=(a)ﬁ(é,ff1, <2ﬁ;1=0,1,---,(2m—1),9]

D
_ (1 _ =
q:q[tagaaj
P
using CT)() in (6.14) we can determine )
— = D .o D . (mD o ..
Rq):q):ai[__inﬁJrz%(/)%ﬂrZf};‘i(i)g%
Dt 5 lj =077 0 04y
P (6.15)

From continuity equation
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5 = _W V= _/351:1( = _551'1(% (6.16)

) _, 0D
and 6_ =—p 6_ (6.17)

Ot

Using (6.16) and (6.17) in (6.15) we can write

- oD oD | D 6D (-
O=-p Dy6, (/)7}1' + ; (i')o-i
8w)kk2W% ’ éw@ ‘
) (6.18)
) i e 0D . oD =
+ - s l + a mi _—gi +—_0
jzo 8(11)"‘1% : Zo a0 ‘g o0

Substituting CT) from (6.18) in the entropy inequality (6.6) (using Einstein’s
notation for the trace terms) and regrouping the terms.

_, 0® I T PR P
[_pz_p& "(g)mk]D”‘erza(T% TNy

J=1 Vik J=0 0 s Ok

o +P?gi (6.19)

For (6.19) to hold for arbitrary but admissible (j)}'/;jzl,Z,---,n ,
Ve j=01(m=1), Din;j=01,('m-1), Vin;j=0,1,(*m-1),
6 ,and g, the following must hold.

P i;b =0=> f;b =0;j=1,2,---,n (6.20)
0 ¥u 0V
_ oD oD
p————=0=>—"=0;,=01--,(m—1) (6.21)
0 ({Y)O-ik 0 ({Y)O-ik
_ oD oD ,
p——=0=>—-=0;;=0,1,---,('m—1 (6.22)
0 (é)n_/lik 0 (‘;)’711'1{ ( )
_ oD oD )
P—i—=0=——=0;=0L-,(’m-1) (6.23)
om, o,
(oD _ oD _
-+ =0=—+1n=0 6.24
p(aa ﬂj Py (6.24)
_aq) =0= % =0 (6.25)
ag, g,

and the resulting entropy inequality (6.6) can be written as
, 0D = q-8 _ (e _ (o
(_ aé‘lk s O ]D,k = 7 (O)m.ik ( ’?J/k ) - (?z)mjk ( I?ij ) <0 (6.26)

Conditions (6.20)-(6.25) and entropy inequality (6.26) are fundamental rela-
tions.

Remarks
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1) From (6.20) we note that @ is not a function of (j)y s j=1,2,-,n.
2) From (6.21) we can conclude that @ is not a function of
D& j=0,1,,(m-1).
3) Equations (6.22) imply that @ is not a function of
(i)lﬁ ; j:0,1,~--,(1m—1).
4) From (6.23) we note that @ is not a function of
V) jn 3 :0,1,---,(2m—1).

a

_ D _ — _
5) From (6.24), 7 :_2_5’ hence 77 is deterministic from ® . Thus, 77

cannot be a constitutive variable.
6) Equations (6.25) imply that @ is not a function of g.
7) Lastly, in the entropy inequality (6.26), the following are admissible

18 (6.27)

0
O, ( ?f’ijk) >0 (6.28)
O, (?fiﬂ, ) >0 (6.29)

Condition (6.27) must be satisfied by the constitutive theory for g . Condi-
tions (6.28) and (6.29) imply that the rate of work due to symmetric and anti-
symmetric parts of the Cauchy moment tensor must be positive.

8) The argument tensors of @ (based on (6.20)-(6.25)) are given by (using

p inplace of l_)
p
&):é(ﬁ,é) (6.30)

Based on (6.30), the coefficient of 5[,( in the entropy inequality (6.26) can-
not be set to zero because this would imply that (2)5 is deterministic from @
which is only a function of p and @ . This is obviously not true based on the
argument tensors of (2)5 in (6.14). Thus, at this stage the entropy inequality

(49) must remain in this form.

7. Constitutive Theories

We consider entropy inequality (6.26) and introduce decomposition of (2)5 into

equilibrium stress ((2)5) and deviatoric stress ((2)5) . In which ((2)5)
e d e

causes only change in volume while . ((2)5) introduces pure distortion of the

volume of matter [38].
0 =_ (0= (0) =
Sa—e( ,0')+d( 0') (7.1)

((2)5) can only be a function of p and 0 [38]. Thus, we have the follow-
(0)

s

(99)- (22)72)

(@&): (“;’)&) ﬁ,(j)y;j:1,2,---,n,d((?E);i:0,1,-~,(m—1),§) (7.2)

ieng, noting that . ( 5) cannot be a function of ((2)5) .

| =~
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all the other constitutive variables and their argument tensors remain the same

as defined by (6.14), except that é has been replaced by p [38]. Substituting
P

(7.1) in the entropy inequality (6.26) and grouping terms.

( 7 ‘f_’ A e(<2>ak)j5,-k—d(<2>&ik)5,-k+‘7'§

0 (7.3)
_(0)— (?ij) (0)— (?J]k) 0

N

7.1. Constitutive Theory for ((0)6): Compressible Matter

Based on (7.2), we can set the coefficient of D, in the first term in (7.3) to zero
giving
3 _o0(p,6 L
((2)0','1{):_,02#5& :p(pﬂg)é‘fk (7.4)
e 8,0
1_)( ﬁ,g ) is called thermodynamic pressure (defined by equation of state) and
can be derived using @ . If we assume compressive pressure to be positive, then

(p, ) in (7.4) can be replaced by p(p,ﬁ) Equation (7.4) is the constitu-
tive theory for the equilibrium part of the symmetric Cauchy stress tensor.

N

7.2. Constitutive Theory for ((0)6): Incompressible Case

_ oD
For incompressible fluent continua, p = p, =constant, hence e =0, thus for
P

this case (7.4) cannot be used to derive constitutive theory for ((2)5). For
incompressible matter |J|=1 also
V-v=t[D]=D,5,=0 (7.5)

This incompressibility condition must be enforced. Based on (7.5) we can

write
p(0)Dy5, =0 (7.6)
In (7.6), ]7(5 ) is an arbitrary Lagrange multiplier. Adding (7.6) to entropy

inequality (7.6) and setting gi_) =0, we obtain
0

(7)o~ (V5))Du - (V5 ) Dy + LE - O, (127, )= Ui, 127, ) 0
(7.7)

Setting the coefficient of D, in the first term to zero, we obtain the follow-

ing constitutive theory for ((2)6) for the incompressible case.
e((g)gik):ﬁ(g)é‘ik (7.8)

17(5 ) is called mechanical pressure. If we assume compressive pressure to be

positive, then p( ) in (7.8) can be replaced by p(@) The entropy inequa-
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lity now reduces to

Q_d(m)ak)l—)ik_()— (@J ) <)—jk(f§>j[k)£0 (7.9)

K s Y jk

The constitutive variables and their argument tensors now are as follows.

®=0(p.0) (7.10)

('”j)m (1’”) (ﬁ,sJ,(j)m k=0,1,- (lm—l),é) (7.12)
(zf)ﬁz(zf)ﬁ(ﬁ,?SJ,(’;W;k:o,l,---,(zm—l),é) (7.13)
7=4(p.2.0) (7.14)

7.3. Constitutive Theory for ((0)6)
d

N

We consider (7.11) defining the argument tensors of . ((':,’)6) . This constitutive
theory has to be a rate theory in time in stress and strain rate tensors in order to
incorporate dissipation mechanism as well as memory (rheology). We use re-
presentation theorem (or theory of generators and invariants) [29] [38] [61]-[73]
to derive the constitutive theory for the deviatoric part of the symmetric Cauchy
stress tensor. Let ‘GGi ;i:1,2,-~-,N5cr be the combined generators of the ar-
gument tensors of . (('S”)E) that are symmetric tensors of rank two and let
L j= 1,2,--~,M¥ be the combined invariants of the same argument tensors,

(o3

then using the representation theorem we can express (('S”)E) as a linear com-
d

bination of °G";i=1,2,---,N , and I in the current configuration.
(m) =\ _ 0,0 SGAO'iSO' i
d(sa)— q(I)+IZ:1: g( G) (7.15)
in which
saqi — ,\-qu(ﬁ’.yt)’!_i ;j:1’2"“’Msa’§);iZO’l""’Njo- (716)

To determine the material coefficients in (7.15), we expand each
g ;i=0,1,~--,Nl\vU in Taylor series in L :1,2,---,M\_J and @ abouta
known configuration Q, retaining only up to linear terms in
=12, M
“’qi ;i=0, 1,---,NA_ in (7.15). After collecting coefficients of those terms that

o

and 6 (for simplicity) and then we substitute these

.\'G

are defined in the current configuration, we obtain the following

()= tol, 13 v, (7)1 7, (3-5,)14 3 b (76)

N M

s0° 59

X3 e, (1)(76)+ S 4 (7-3)(7)

=l j=1

(7.17)

in which
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- (7.18)

a 50,0
= (a;)
Q
7d, _6(“”_@’) ;i=1,2,---,N _
00 ¢

in which *°a,*°b,, *“¢;,"°d, and *°q,, are material coefficients defined in a
known configuration Q. This constitutive theory requires

(M o FT2N ,+M N, +1) material coefficients. The material coefficients de-
fined in (7.18) can be functions of ﬁ|g,(“"’lj )Q and 59. This constitutive
theory is based on integrity, the only approximation being truncation of the
Taylor series expressions of qui ;i=0, 1,---,NSU . We consider simplified forms

of this theory in later sections.

7.4. Constitutive Theory for “?ﬁ
(')

by (7.12). Similar to the derivation of the constitutive theory for the deviatoric

We consider m as constitutive variables. Its argument tensors are defined
part of the symmetric Cauchy stress, here also the constitutive theory should be
a rate theory in time in the rates of symmetric moment tensor and symmetric
part of the gradient tensor of the rotation rates. This is necessitated in order to
incorporate physics of dissipation as well as memory due to the symmetric
Cauchy moment tensor, its rates and the symmetric part of the gradient of rota-
tion rate tensor. Let 1‘*’"Gi ;i=1,2,-,N

§M

be the combined generators of the
argument tensors of :” m in (7.12) that are symmetric tensors of rank two and
let "I j=1,2,-,M,
tensors, then using the representation theorem we can express ': m as alinear
combination of "G’ ;i=1,2,---,N

be the combined invariants of the same argument

and [ in the current configuration.

s

N

s

> g ("G (7.19)

i=1

( ’:)n_c ="g T+

in which

gl =g (P s =12, M L,,0);i=0,1,, N

e S

(7.20)
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To determine material coefficients in (7.19), we expand each
Mo Q= 0,1,---,N ,, in Taylor series in g =1,2,---,M ,, and 6 about a

m m

known configuration Q, retaining only up to linear terms in
"1 j=1,2,---,M , and @ (for simplicity) and then we substitute these

sm

mQ_{i ;1=0,1---,N , in (7.19). After collecting coefficients of those terms that

s m

are defined in the current configuration, we obtain the following

(1):) _ mm| +Z (Sm]j)l_.v’”gtm (§_§Q)I+N2m .vml_)i(smgi)

o . B = (7.21)
g "(f'”ff)(f'"G‘) Z”"d( %)("¢)
In which *"a,, *"b,;, "¢,

in the known configuration Q. Explicit expressions for these can be obtained

g

le ®

"d, and *"g, are material coefficients defined

from (7.18) by replacing subscript and superscript .o with _m, hence the de-
tails are not repeated for the sake of brevity. This constitutive theory requires
(M wt2N,+M N, +1) material coefficients. This constitutive theory is
based on integrity. The only approximation being truncation of the Taylor series
expansion of ‘mq/ N 0,1,---,N:m . Simplified forms of this constitutive theory
are considered in later sections.

7.5. Constitutive Theory for ©) 2

a

Consider (2:)ﬁ and its argument tensors defined by (7.13). (2:)ﬁ is an anti-
symmetric tensor of rank two and so are its argument tensors except p and 0,
these being tensors of rank zero. Let ”";(ji ;i=1,2,---,N , be the combined ge-
nerators of the argument tensors of : m that are antisymmetric tensors of
rank two and let “"/ T j=12, M o be the combined invariants of the same
agr%)ument tensors. Similar to Sections 7.3 and 7.4, in this case also we express

. m asalinear combination of “"G";i= 1,2,---,N“m in the current configu-

ration
(zm) Nom ) :
m=Y g ("G") (7.22)

in which

oy amqi(ﬁ’qn1lj ;j:l’zj...’Mamjg);izl,z’...’N (7.23)

To determine material coefficients in (7.22), we expand each
"o i=1,2, Nam in Taylor series in ”m[j ;j=1,2,-~~,Mam and @ abouta

known configuration (Q, retaining only up to linear terms (for simplicity) in

m

o Q= 1,2,---,Na in (7.22). After collecting coefficients of those terms that

“[’;j=1,2,--,M , and @ and then we substitute these

m

are defined in the current configuration, we obtain the following

Nom NonM ym . . Nom - = i
S (w6 5 E (1)) K a0 )
i= = =
(7.24)
DOI: 10.4236/am.2018.98063 922 Applied Mathematics


https://doi.org/10.4236/am.2018.98063

K.S. Surana et al.

In which “"b,,”"¢, and <"d, are material coefficients defined in the known

configuration Q. E)j(plicit expressions for these can be obtained from (7.18) by
replacing subscript and superscript .o by _m. This constitutive theory re-
quires (2Num +M amNum) material coefficients. This constitutive theory is also
based on integrity and has the same approximation as those in Sections 7.3 and
7.4. Simplified form of this constitutive theory will also be considered in later

sections.

7.6. Constitutive Theory for g

Recall inequality (50) resulting from the entropy inequality
7:2<0 (as020) (7.25)

In (7.25), ¢ and g are conjugate. The simplest possible constitutive theory
for ¢ can be derived by assuming that ¢ is proportional to —g which leads
to the following ¢ [38].

g=—+k(0)g (7.26)

This is standard Fourier heat conduction law with temperature dependent

thermal conductivity. Alternatively, if we assume (as in (6.9) after replacing 1/p
by p)

7-9(p.2.9) (7.27)

then based on the representation theorem, we can begin with (as g is the only

combined generator of g and 6 that is a tensor of rank one) the following in

the current configuration
ag (7.28)
in which

‘a="9(p.'1.0);:'1=8 8 (7.29)

“] is the only invariant of the argument tensors of g and 6 .Expand ‘¢ in
Taylor series in 7/ and @ about a known configuration Q and retaining
only up to linear terms (for simplicity) in ¢/ and @ , we obtain the following
[38] after collecting coefficients of the terms defined in the current configura-

tion.

g=—K,2-k|,(2-2)2-k|,(0-0)2 (7.30)

where

Q Q a(ql)g Q
_O'¢
I|Q_3("l)g (7.31)
0a
k|l =
oo a0 |,
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The constitutive theory (7.30) is the simplest possible constitutive theory
based on representation theorem. k|Q,k1|Q and k2|Q can be functions of
5|Q , "[|Q and §|Q . Clearly the consti{utivgtheory (7.56) is a subset of (7.30).
This constitutive theory (7.30) is cubicin g.

8. Simplified Constitutive Theories: Non-Classical and
Classical Maxwell, Oldroyd-B, and Giesekus
Constitutive Models

In polymer science the Maxwell and the Oldroyd-B constitutive models derived
using classical continuum mechanics (Surana et al [40] and Surana [38]) are
advocated [46] for dilute polymeric liquids that are dominantly viscous fluids
with some elasticity whereas Giesekus constitutive model based in classical con-
tinuum mechanics (Surana ef al [41]) is advocated for dense polymeric fluids
[46] in which the fluid behavior is elasticity dominated. The original derivations
of these constitutive theories (see [46]) date back to the original papers by Max-
well, Oldroyd and Giesekus [46]. The derivations are explained using kinetic
theory of gases, Brownian motion of polymer molecules, dumbbell models etc.
Surana et al. [40] [41] and Surana [38] showed that these models in fact can be
derived using principles of continuum mechanics, entropy inequality, the condi-
tions resulting from the entropy inequality in conjunction with the representa-
tion theorem [38].

In references [38] [40] [41] authors derived ordered rate constitutive theories
for polymeric fluids using convected time derivatives of the strain tensor up to
order n and the convected time derivatives of the Cauchy stress tensor of up to
order m based on classical continuum mechanics. They showed that 1) Maxwell
model is a simplified linear constitutive model corresponding to n=1and m=1;
2) Oldroyd-B model is a simplified quasilinear constitutive model corresponding
to n =2 and m = 1 that only contains Cauchy stress, its first convected time de-
rivative and the first and second convected time derivatives of the strain tensor;
3) Giesekus model is same as Maxwell model but additionally contains quadratic
term of the Cauchy stress tensor, thus this constitutive model is nonlinear. We
make some remarks regarding the constitutive theories presented in Section 7
for non-classical compressible polymeric fluids.

Remarks

1) The ordered rate constitutive theories presented here for non-classical po-
lymeric fluids naturally contains the ordered rate constitutive theories for the
classical polymeric fluids as subset. These are easily obtained by removing the
internal rotation rate physics that requires (g)n_i = (g)rﬁ =0 and the Cauchy
stress tensor to be symmetric due to balance of angular momenta. The resulting
constitutive theory is same as in references [38] [40] [41] for classical polymeric
fluids.

2) Since the constitutive theories presented here are based on integrity, all
specific simplified forms of the constitutive models are all subset of these. Hence,

it should be possible to present a single non-classical constitutive model for di-
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lute as well as dense polymeric fluids which would also contain commonly used
current constitutive models (based on classical mechanics) within a single con-
stitutive theory. In order for the non-classical constitutive theories to contain
currently used classical constitutive theories we need to choose the following for
the ordered rates. n=2,m=1,'m=1,’m=1. For this choice the constitutive va-

riables and their argument tensors are

) ((}35) - ((130—_)( 5,0y, @y ) ((g) 5)’5)

U]

3

- Qm( 2., O, ) (8.1)

©r, Om,g )

i
a

()

a

m=<2ﬁ(5,

Constitutive theories derived using (8.1) when based on integrity will require
too many material coefficients for deviatoric part of the symmetric Cauchy stress
tensor as well as for each of the moment tensors. Constitutive theory for ¢
remains unaffected. We consider the following simplifications

1) Consider the constitutive theories to be linear in (1)}/, (2)}/, 5S® J and fa@J .

2) Neglect the product terms of (1)7, (2)7, fS@J, if’J, ((2)5), (g)lﬁ ,and (g)n_t .

3) Neglect all (9_ -6 |Q) terms (to conform to the gurrently used constitutive
models).

4) Also neglect the first term in each constitutive theory containing influence
of initial stress and initial moments. , , .

5) We consider generators (d ((2) 5)) ,((2)ﬁ ) , and ((?rﬁ) but neglect
quadratic and cubic trace terms in the invariants as well as products of these ge-
nerators with others.

Based on these assumptions we obtain the following constitutive theories for

stress and moment tensors.

8.1. Constitutive Theory for Deviatoric Part of the Symmetric
Cauchy Stress Tensor

If we consider

oG = (1)},’ oG = (2)7’ oG = ) ((9)5), G =(d ((0)&))2 ’

ST R Y R ()

then we obtain the following from (7.17) (using m = 1, n = 2) based on restric-
tions 1) - 5).

(18)= 7 w(O7)) 1+ wa iy} was (V)1
+7b, ((1)7)+ 50122((2)7)+ :0123(,1 ((2)5))+ :0124(d((2)5))2

In order to rewrite (8.3) in standard easily recognizable form, we transfer
‘”l_g(d ((2)5)) term to the left side of (8.3) and divide the entire equation by

(8.2)

—?b, and define new coefficients as follows.
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: l_73 ’ és ’ 1_73
1K:[_ S:Qs} 2/{':[— SZQzJ’ 277/12:[_521_72], 0(:{— SZZ_74J
' 23 ’ 1_73 ' é3 n ’ 1_73

then (8.3) can be written as

d((2)5)+’1(d((?6)):277((1)7)”%((2)7)+$“(d((3)5))2

) K(tr((l)y))l i IK(tr(d ((3)5)))1+ ZK(tr((z)}’))I o

In which 7 is viscosity, A is relaxation time, A, is retardation time, x

RS

and ’k are second viscosity and the viscosity associated with @y ,and a is
mobility factor. This constitutive model holds for compressible polymeric fluids.
In case of incompressible fluids, tr[(l)y} :tr[5] =0 can be used to simplify
(8.5).

Maxwell model: Compressible

To obtain Maxwell model from (8.5) we set (2)7 =0,=0,'x=0 and

*k =0. The resulting constitutive theory is given by
OF Oz =0,(O® U]
d( So-)—i-/l(d( A_0'))—277( 7)+K(tr( 7))1 (8.6)

This is a linear viscoelastic Maxwell model.
Oldroyd-B model: Compressible
To derive this constitutive model we also use (8.5) with =0, 'x =0 and

*k=0 to obtain a quasilinear viscoelastic model (nonlinearity due to @ ¥ ).
0 & Mg\ = 2,(® @) U]
d( s 0')+/1(d( Sa))—277( }/)+2772,2( }/)+K(tr( 7))1 (8.7)

Giesekus model: Compressible
In this constitutive model we use (8.5) and set A, =0, 'x=0 and *x=0 to

obtain the Giesekus constitutive model.

N e B R o 2 I

Remarks

1) The constitutive models (8.5)-(8.8) are valid in case of non-classical as well
as classical continuum theories.

2) The constitutive theory (8.5) is valid for Maxwell model, Oldroyd-B model
as well as Giesekus model based on classical continuum theory with appropriate
choice of material coefficients. Thus, there is no need for (8.6)-(8.8). When cali-
brating (8.5), for dilute or dense polymeric fluids the material coefficients that
are not applicable for the physics under consideration will automatically assume
zero or small values.

3) In case of constitutive theories for non-classical continuum mechanics in
addition to (8.5) we also need constitutive theory(ies) for the moment ten-

sor(s).

DOI: 10.4236/am.2018.98063 926 Applied Mathematics


https://doi.org/10.4236/am.2018.98063

K.S. Surana et al.

8.2. Constitutive Theory for (2%

V)

s

Consider dependent variable '/m and its argument tensors in (8.1). As men-
tioned earlier, the constitutive theory based on integrity will require too many
material coefficients. If we consider

2

smgl _ fse)J’ SmG2 _ ((i)ﬁ’ smG3 _ ((2)&)

1 =u(0), =)

(8.9)

then we can obtain the following from (7.21) (based on assumptions 1) - 5)

stated in Section 8).

(13)1% =+"a, (tr(i_@J))I+ "a, (tr((g)iﬁ))1+ “"”Ql(a@J)
s (8.10)
+ gmlzz((g),ﬁ)Jr sm123((2)n—,)

We transfer *"b, ((2)171) term to the left side in (8.10) and divide the entire
equation by (—""122) and define

may _ | _ 1 om __imé Sm__Smg
ﬂ{ sz 2 ”)_( lz] K‘[ lzj

i , (8.11)
- s —_| = sm— smf 1 _ _smg
e “)_( QJ ( K)_( iz]
then, (8.10) can be written as
O a( ) =2 a){ (2 ) e{w(0))1
(8.12)

Maxwell and Oldroyd-B models
Following the derivation of constitutive theory for deviatoric symmetric
Cauchy stress tensor, in (8.12) if we set S”’(]K) =0 and "a =0, then we ob-

tain
) i + :'"/1(@@)zz(s"fn)(fl?J)Jr s’"zc(tr(ff’.l))l (8.13)
Giesekus model
Consistent with the derivation of constitutive model for classical continuum

theory, we set """(IK)=0 to obtain the following constitutive model from
(8.12).

(2)ﬁ+ S”’/l((ls)ﬁ):2<5’"77)(f?J)+ S’”K(tr(ff)J))I+ ;mﬂ(j”’a)((g)ﬁ)z (8.14)

Remarks
1) It is rather obvious that (8.13) and (8.14) are a subset of (8.12). When cali-
brating (8.12), the material coefficients not contributing to the physics will au-

tomatically be zero (or small values).
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2) Thus, we see that for symmetric Cauchy moment tensor also we need to

consider only a single constitutive model (8.12).

8.3. Constitutive Theory for (?m

U]

a

m and two of its four argument tensors are antisymmetric tensors of rank

Consider the constitutive variable
(0)

a

m and its argument tensors in (8.1). Since

two, the combined generators of the argument tensors and invariants are quite
limited. Thus, for this constitutive theory we consider integrity first before any
simplification. Based on (8.1) we have the following combined generators and

invariants

T L LA R e ST

and

oeaffiof), o-sf(eaf) wo-esoom) wo

This constitutive theory will naturally lead to a large number of material coef-
ficients (N“m =3,M , :3). The choice of which generators and invariants to
retain is not simple as neglecting nonlinear and product terms in this case is
quite detrimental. For illustrative purposes we consider a constitutive theory that
0)

is linear in ﬁfJ and (a m and contains the product of these terms as well, Ze,
we consider all three generators but only invariant «"[*. In this theory products
of the generators and the invariant «"I” is not admissible as this would contain
0)

a

a quadratic term in 55) J and '
lecting (§—§|Q) terms)

) g = am,zl(ffy)+ améz((g),;,)+ am,z3((ff,)(((;),;,)_(((;),;,)(ffJ)) (8.17)

transferring "b, (“{?n_z) to the left side of (8.17) and dividing the whole equa-
tion by —<"b, and defining

I " “h
am/l —_ — ; 2 umnl — (_m_—]j’ umnz = (— m_3 ] (818)
a [22 ( ) a [22 a éz

m . Thus we can write (following (8.10), neg-

we obtain

©) i + am(<2m):2(amnl)(5f1)+ ", ((?J)(QW)—(@%)(ffJ)) (8.19)
0)

a

The constitutive theory (8.19) is linear in 5’5) J and “"m but contains their
product terms.
Maxwell model

This following constitutive model, similar to Maxwell model for classical me-
n,=0.
© i + “"’/1((21%):2(”'"77])(5?]) (8.20)

am

chanics, is easily deduced from (8.19) by setting

Oldroyd-B and Giesekus models

Derivation of these models (parallel to those based on classical continuum
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mechanics) from (8.19) is not clear as this model (8.19) does not have second
convected time derivative of the rotation gradient tensor (needed for Oldroyd-B
model) and ((?ﬁ)z term needed for Giesekus model. Even the constitutive
model based on integrity does not contain these terms. We simply leave with
(8.19) at this stage.

9. Complete Mathematical Model

In the following we provide complete mathematical model including the consti-
tutive theories for non-classical thermoviscoelastic fluids in simplified forms
that contain the constitutive theories based on classical continuum theories as
subset. The constitutive theories for classical case are easily obtained by elimi-
nating the moment tensor and the constitutive theories for it and recognizing
that for this case the Cauchy stress tensor is symmetric. In the following we as-
sume that the balance of moment of moments is not a balance law, hence
Cauchy moment tensor is not symmetric.

Conservation and balance laws

P o —
—+V-(pv)=0 9.1
5 TV (Pv) (0.1)

B Ry
+ v_—l— F _—— O .. :0 9.2
PP PE a;,( ) 9:2)
O, -, V5, =0 (9.3)

Constitutive theories using general constitutive theories (8.5), (8.12),

(8.19), and (7.30) applicable to dilute as well as dense polymers

((0)6): ﬁ(ﬁﬁ)l; compressible ©.7)
e\’ ;_7(5 ) I;  incompressible
() (1)
:277((1);/)+27712((2)7)+%a(d((2)5))2 (9.8)
+K‘(tl‘((l)}’))l+ 1K(tr(d ((2)5)))I+ zk(tr((z)}’))l
Qi (Vi) = z(xmn)(ff.])Jr s"’zc(tr(ﬂ‘?J))I
(9.9)

() ) 142 ) (V)

n
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) + am(<2ﬁ):z(amnl)(?f1)+ ", ((?J)(QW)—(@%)(ff’J)) (9.10)
§=-K,g-k|,(88)8kl,(0-6,)8 (9.11)

We show that this mathematical model has closure for compressible as well as
incompressible non-classical polymeric fluids.

Compressible:

For this case thermodynamic pressure ]3( p.60 ) is defined by an equation of
state and e 25(17, P, 5) = E(,E, 5) is also known, hence p and e are not
dependent variables in the mathematical model. Thus we have (number in the
brackets is the count of the number of variables):
p(1).7(3), (V5)(6).5(3).7(3).8(1). Vii(6), Vi (3), a total of 26 de-
pendent variables. The number of equations in this mathematical model are:
continuity (1), balance of linear momenta (3), balance of angular momenta (3),
energy equation (1), constitutive theories for:

) ((2)6)(6),(2) m(6), O (3).4(3). a total of 26, hence this mathematical model
has closure.

Incompressible:

In this case p = p, =constant, hence known, but the pressure p= [3(5 ) is
not known, hence the number of equations as well as the number of variables for
this case also remains 26 but instead of known ﬁ(ﬁﬁ_),ﬁ(ﬁ_) becomes an
unknown dependent variable.

Remarks

1) When balance of moment of moments is considered as a balance law [75] [76]
() ((:) O and

[77], then Cauchy moment tensor m=

3 =0 . This eliminates

a a

m becomes symmetric, Ze,
m , three as dependent variables in the mathemati-
()

a

cal model as well as three constitutive equations for *m . Thus, for this case we
have 23 dependent variables and 23 equations.

2) The mathematical model uses basis independent measures, i.e.,

((2)5), (?E, (2%, (?ﬁ,n-,etc . This mathematical model can easily be made ba-
sdis dependent by choosing these measures in contravariant basis or covariant ba-
sis or using Jaumann measure keeping in mind that if these measures are con-
travariant then the corresponding conjugate quantities are covariant or
vice-versa.

3) These polymeric fluids have elasticity, dissipation mechanism, as well as
memory. Elasticity is due to stretching of long chain polymer molecules, dissipa-
tion is due to both short chain molecules of solvent as well as long chain mole-
cules of polymer and their interactions and memory is due to relaxation pheno-
menon inherent in these fluids because of stretched polymer molecules resuming
their unstressed (or relaxed state).

4) Dissipation and memory mechanism in these non-classical polymeric fluids
0z} © ()

are due to ( . 5) m as well as ' /m (when balance of moment of mo-
d

ments is not used as a balance law). These are fully accounted for in the consti-

tutive theories based on integrity as well as their simplified general forms ((9.8),
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(9.9), and (9.10)) and their specific forms that are only valid for Maxwell, Ol-
droyd-B, and Giesekus constitutive models respectively.

10. Retardation and Memory Moduli

> s a

hand sides and defining “Q_, "Q, and "Q,

7Q, = 277((1)7)+277/12((2)7)+K(tr((l)y))l+2 K(tr((z)y))l (10.1)

Using (9.8)-(9.10) and discarding . ((2)6) Om and i terms on the right

", =2( v’”n)(ffJ)+ »fmzc(tr(ffJ))I (10.2)
"Q, =2(a’"771)(ff’J) (10.3)
We can write (9.8)-(9.10) as follows
) (Q’&)m(d((?&)): ) (10.4)
O + smﬂ((?n—i) ="Q (10.5)
© jgg + “"‘ﬁ((’Jﬁ):”Qa (10.6)

Equations (10.4)-(10.6) are first order differential equations in time in

a

. ((2)5), “?iﬁ and i , hence can be integrated using the following: The dif-

ferential equation

d
Lo p(x)p=0(x) (107)

has the solution

p=e " [o(x)Mdx+C ] (10.8)
where Cis a constant of integration. We consider (10.4) and rewrite
nz\. 1 (0z_1c
[0)+4 (95)-1 e w9
Hence using (10.7) and (10.8) we can write
0=\ _ | 1/s [14ds
(95)=¢ [U( 0)e dt+C}
1 ,

e |=(70,)e"dt'+C 10.10
[ [Z("2) } (10.10)

j %(”QS (t'))e”dt’
== = +Ce™*

Based on reference [46] choice of —oo 1is arbitrary. Some other value could
result in different value of C. If we prescribe that the stress in the fluid is finite
at ¢=—oo, we must choose C to be zero. We must also check the first term in
(10.10), since both numerator and denominator go to zero as ¢ goes to —oo . Us-

ing L’Hoépital’s rule we get:

DOI: 10.4236/am.2018.98063

931 Applied Mathematics


https://doi.org/10.4236/am.2018.98063

K.S. Surana et al.

lim ((?5): lim 24—~ —°Q (—x) (10.11)

{—>—o0 d 10 1

Thus, if “Q,(—) is finite, the stress is finite at ¢=—o0, hence (10.10) re-
duces to

(V)= j [%e‘(’"’)’“] °Q, (') dt' (10.12)

—0

The quantity in the bracket in the integrand in (10.12) is called “retardation
modulus” for . ((2)5). When ?Q, only contains 277((1) y) term, we can ob-
tain relaxation modulus for . ((2)5) from (10.12). This is straight forward. We
omit this here as it requires approximating °Q,. Retardation modulus is as
good a measure of rheology as relaxation modulus. Using similar approach we
can also derive the following from (10.5) and (10.6), first by rewriting them by
dividing by *"4 and <"A respectively.

1) — 1 — 1 m
Qm{@j (g)m{s%j( 0,) (10.13)

Wi | L] Om o[ L |(n
and am-{a»%j “m_(am,ij< Qa) (10.14)
and then following the derivation for . ((2) 5)
t
((z)ﬁ — J [ 1 ef(t—t')s l] mQY (tf)dtr (1015)
: A :
tf 1 Nam
(g)’ﬁ: J.{ " e*(f*l) iija (t/)dtr (1016)

The terms in the brackets in (10.15) and (10.16) are called retardation mod-

ulus for (g)n_t and (?1)171 , respectively.

Remarks

1) We observe that the non-classical polymeric fluids have relaxation me-
(0) 0)

a

chanism due to d(“j)&) aswellas i and "’ when balance of moments

of moments is not considered as a balance law.
2) When the balance of moments of moments is used as a balance law ©)
(0) (0) (0)

a

is symmetric, hence "/m=""m and ‘'/m =0. Thus in this case the relaxation

mechanism is only due to ) ((2)5) and (2)”1 .

11. Summary and Conclusions

This paper considers conservation and balance laws for non-classical continuum
theory for fluent continua to present derivations of the constitutive theories for
thermoviscoelastic fluids, both compressible and incompressible. The non-classical
continuum theory and the corresponding constitutive theories incorporate
symmetric as well as antisymmetric parts of the velocity gradient tensor. The ro-

tation rates defined by the antisymmetric part of the velocity gradient tensor
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(referred to as internal rotation rates) act about the axes of a triad located at each
material point (or a location). The axes of the triad are parallel to the axes of the
fixed x-frame. The constitutive variables are determined from the entropy in-
equality as well as other conservation and balance laws. The argument tensors of
the constitutive variables are decided using conjugate pairs in the entropy in-
equality as well as by considering other desired physics that is not obvious from
the entropy inequality. The constitutive theories are derived using representa-
tion theorem. All constitutive theories are based on integrity. Simplified linear,
quasilinear, and nonlinear forms of the constitutive theories are presented and
compared with parallel constitutive theories for such fluent continua in classical
continuum theories. In the following we present a summary of the significant
aspects of the work presented in this paper.

1) The constitutive theories for stress and moment tensors are ordered rate
constitutive theories up to any desired orders. That is, the constitutive theories
utilize convected time derivatives of the constitutive variables (up to any desired
orders) as well as convected time derivatives of their argument tensors (also up
to any desired orders).

2) All constitutive theories are based on integrity, hence utilize complete basis.
The only assumption is in the Taylor series expansion of the coefficients in the
linear combination (truncated after linear terms) about a known configuration.
These theories provide more comprehensive description of the constitution of
the deforming matter.

3) The derivations of the constitutive theories are basis independent due to
basis independent choice of the constitutive variables as well as their argument
tensors. By appropriate choices of the bases for the constitutive variables and
their argument tensors, the constitutive theories can be easily made basis specific.
For example, if ((2)6), (2)17: and (?I)ﬁ are chosen as contravariant measures
( (Sﬁ(o)), _Yn_t(o) dand an_1(0) ), then their conjugates must be in covariant basis
a;d vice-versa.

4) In the non-classical thermoviscoelastic fluids considered in this paper, the
mechanisms of energy storage, dissipation of mechanical work, and rheology are
due to ((2)5), (2)11_1 and (?1)171 , whereas in the case of classical thermoviscoe-
lastic ﬂu{ids, these mechanisms are only due to . ((2)5) .

5) It has been shown by Yang et al [75] and Surana et al [76] [77] that the
balance of moment of moments is a necessary balance law in non-classical con-
tinuum theories to ensure that the deforming volume of matter is in equilibrium.
In the presence of this balance law, the Cauchy moment tensor becomes sym-
metric. In this paper we have presented derivations of the constitutive theories
when the balance of moment of moments is not a balance law. This is a more
general case. When the balance of moment of moments is a balance law, the
Cauchy moment tensor becomes symmetric, Ze., ©) i = (‘j)ﬁ and @lﬁ =0.

6) Retardation moduli are derived for d((‘j)a), “j’m and (i)rﬁ. It can be

shown that with some assumptions relaxation moduli can be derived from these.
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When comparing with classical continuum theories for polymers, we find addi-
tional mechanisms of dissipation and rheology in the non-classical thermovis-
coelastic fluids.

7) As shown in this paper, the constitutive theories based on integrity are al-
most always nonlinear in their argument tensors. Their linearizations are per-
fectly valid if limited physics is of interest, however the conclusions that may be
drawn from the superposition of linear constitutive theories are obviously
invalid for the constitutive theories based on integrity. An example would be li-
near constitutive theories for (?l)ﬁ and @ﬁ , suggesting a constitutive theory
for (@ﬁ + (?l)ﬁ) , a non-symmetric tensor in terms of non-symmetric argument
tensors is obviously invalid.

8) Simplified form of the rate constitutive theories are derived to show that
currently used Maxwell, Oldroyd-B, and Giesekus constitutive theories in clas-
sical continuum mechanics are in fact a subset of the more general non-classical
theories presented in this paper.

In conclusion the work presented in this paper utilizes a consistent thermo-
dynamic framework for non-classical fluent continua and presents derivations of
constitutive theories for thermoviscoelastic fluids with memory, compressible
and incompressible, by incorporating internal rotation rates due to the velocity
gradient tensor at a material point. The paper contains thermodynamically con-
sistent derivations of constitutive theories in which all possible mechanisms of
energy storage, dissipation, and rheology are considered. Memory (or rheology)
mechanism is incorporated by considering rate constitutive theories in terms of

the rates of constitutive variables.
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