
Applied Mathematics, 2018, 9, 897-906 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2018.98062  Aug. 22, 2018 897 Applied Mathematics 
 

 
 
 

On the Dynamics of Transition of a Classical 
System to Equilibrium State 

Sami M. AL-Jaber 

Department of Physics, An-Najah National University, Nablus, Palestine 

 
 
 

Abstract 
In this work we consider a spring with one end is fixed and the other is con-
nected to a block of mass M located on a horizontal rough table. The other 
side of the block is connected to a massless rope that passes over a frictionless 
pulley at the end of the table and a second block of mass m is hanged at the 
rope’s other end. For this system, we analyze and discuss its dynamics of mo-
tion as function of time when the second block is released. In particular, the 
displacement of the system at the end of each half-cycle of motion, the total 
distance, and the work done against friction are derived. An interesting result 
is obtained for the case when the table is frictionless. It is found that there is 
still a work done by friction whose magnitude is exactly the same as the 
stored energy in the spring. 
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1. Introduction 

The problem of the transition of a physical system from a non-equilibrium state 
to a final permanent equilibrium state plays a central role in understanding the 
dynamics of the behavior of the system during this transition [1]-[8]. In such sys-
tems, energy dissipation or energy transfer is a crucial quantity for the system to be 
able to undergo a transition from non-equilibrium to final equilibrium state [9] 
[10] [11] [12] [13]. A well-known system which demonstrates the role and me-
chanisms of energy dissipation during its transition from a non-equilibrium to 
an equilibrium state is the two-capacitor problem which has been under investi-
gation by many authors [14]-[21]. Classical systems, which involve energy dissi-
pation in their transition from non-equilibrium to equilibrium state, have re-
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cently attracted much attention of many authors [22] [23] [24] [25] [26]. Stu-
dents usually have difficulty in understanding the dynamics involved in such sys-
tems during their transition from non-equilibrium to equilibrium state [27] and 
some activities and models have been proposed to overcome some of their main 
difficulties [28] [29]. A major difficulty for students arises when they deal with 
final equilibrium state for a spring-mass system. To be specific, we consider the 
following spring-mass system: A block of mass M, rests on a horizontal table, is 
attached to one end of a spring whose other end is fixed to a vertical fixed wall. 
The other side of the block is attached to a massless rope that passes over a fric-
tionless pulley and another block of mass m is attached to the other end of the 
rope and hanged vertically off the table. The aim of this paper is to study and 
analyze the dynamics and the behavior of this system during its transition to fi-
nal stable equilibrium state after the release of the hanged mass m. In this paper, 
we apply the Lagrangian method and solve Lagrange equations to determine the 
position of the hanged mass at any half-cycle n. Our results show the suitable n 
which is needed for the system to attain its final equilibrium state. It is also 
shown that one can get the total distance covered by the system. In addition, the 
dissipated energy in the process is analyzed and its relation to the energy stored 
in the spring is pointed out. It is remarkable to note that in the limit when the 
coefficient of friction goes to zero, our results show that the energy dissipated is 
exactly the same as the energy stored in the spring and so each is half the initial 
gravitational potential of the hanged mass. 

2. Spring-Mass System and Equation of Motion 

Our system consists of a spring (spring’s constant k), on a horizontal table with 
coefficient of kinetic friction µ , which is fixed at one end and the other end is 
attached to a block of mass M which is connected to a massless rope that passes 
over a frictionless pulley fixed (but free to rotate) at the end of the table and 
another block of mass m attached to the rope and hanged off the table (see Fig-
ure 1 below). 

Initially, the system is at rest and the zero reference is set at the position of m. 
After the system is released, the maximum downward distance, 0x  covered by 
m occurs when it comes momentarily to rest and this can be determined by re-
quiring that the work done by frictional force is equal to the change in the me-
chanical energy, with the result; 

( )0
2x mg Mg
k

µ= − .                       (1) 

This occurs when m reaches zero velocity and M reaches maximum displace-
ment to the right. In the second step m returns up and M moves to left until the 
system gets to zero velocity after which M moves to right and m moves down-
ward and the system repeats the motion with decreasing amplitude due to the 
work done by frictional force between M and the table. Finally the system comes 
to final stable equilibrium state and the final displacement fx  made by the sys-
tem is determined by balance of forces with the result; 
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Figure 1. Two masses connected to a spring. 

 

( )1
fx mg Mg

k
µ= − ,                     (2) 

which is exactly half x0. We must note that initially (just before the release) the 
system is in a non-equilibrium state and finally in an equilibrium state. The dy-
namics which controls the behavior of the system between these two states is 
undermined and the physics involved is not utilized. Our aim in this paper is to 
examine the behavior of the system during its transition between these two states. 
Specifically, we will find the position of m during any given half cycle n, its final 
position at the end of each half cycle and the number of half cycles made by the 
system before it comes to the final equilibrium state. 

Let x be a generalized coordinate, the Lagrangian of the system is 

( ) 2 21 1
2 2

L m M x kx mgx = + − − 
 

 ,                (3) 

where x and x  are the position and speed of m. The Lagrange’s equation of 
motion for the generalized coordinate x reads 

d
d

L L Q
t x x

∂ ∂  − = ∂ ∂ 
,                        (4) 

where Q is the frictional force between the surface and M and is given by 

( )1 nQ Mgµ= − ,                         (5) 

with n is the number of half-cycle of the motion. For odd n, M is moving to the 
right so that the frictional force is negative, while for even n, M is moving to the 
left so that the frictional force is positive. Inserting Equations (4) and (5) into 
Equation (3) gives 

( )( )2 1 1 nx x mg Mg
m M

ω µ+ = + −
+

 ,               (6) 

where ( )2 k m Mω = + . Equation (6) is an inhomogenous first order differen-
tial equation, whose solution after applying the initial condition 0nx =  for 
each half-cycle, is 

( ) ( )( )1cos 1 n
n nx A t mg Mg

k
ω µ= + + − .             (7) 
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The constant nA  can be found as follows: 
For the first half cycle, ( )0,π , i.e. 1n = , we have ( )1 0 0x =  so that equation (7)  

gives ( )1
1A mg Mg
k

µ= − + . For the second half cycle, ( )π, 2π , i.e. 2n = , we  

require that the final position of m at end of the first half cycle equals the initial 
position at the beginning of the second half cycle, which means the  

( ) ( )1 2π πx x= . This gives, ( )2
1 3A mg Mg
k

µ= = − + . In a similar way, for the nth  

half cycle, ( )( )1 π, πn n− , we require the position of m at end of the (n − 1) half 
cycle equals to its position at the beginning of the nth half cycle, which means 

( )( ) ( )( )1 1 π 1 πn nx n x n− − = − . One might expect that 

( )( )1 2 1nA mg n Mg
k

µ= − + − ,                   (8) 

d hence Equation (7) becomes 

( )( ) ( )( )1 12 1 cos 1 n
nx mg n Mg t mg Mg

k k
µ ω µ= − + − + + − ,        (9) 

which we prove by mathematical induction as follows: For 1n = , we already de-
rived 1A  which upon its substitution into Equation (7) gives 1x . We assume 
Equation (9) is true for any n, and we need to show that it is true for 1n + . For 
the ( )1 thn +  half cycle, ( )( )π, 1 πn n + , we require that ( ) ( )1π πn nx n x n+= . This 
means that, at πt nω = , the position of m at the end on the nth half cycle is equal 
to its position at the beginning of the ( )1 thn +  half cycle. Using Equations (7) 
and (9), we get 

( )( ) ( ) ( )( )
( ) ( )( )1

2 1 cos π 1

cos π 1

n

n
n

g gm n M n m M
k k

gA n m M
k

µ µ

µ+

− + − + + −

= + + −
 

The above equation immediately yields, for both case n = odd and n = even, 

1nA + , namely 

( )( )1
1 2 1nA mg n Mg
k

µ+ = − + + ,                 (10) 

which, upon its substitution into Equation (7), gives us 

( )( ) ( ) ( )( )1
1

1 12 1 cos 1 n
nx mg n Mg t mg Mg

k k
µ ω µ+

+ = − + + + + − .    (11) 

This is exactly nx  given in Equation (9) with 1n n→ + , and this completes 
the proof. 

Equation (9) yields for n = odd, with πt nω =  

( )2
nx mg n Mg

k
µ= −                      (12) 

which gives the lowest position of m and the maximum right displacement of M 
when they come momentarily to rest at the end of the nth half-odd cycle. For n = 
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even, Equation (9) yields, 

2
n

nx Mg
k
µ= ,                       (13) 

which gives the highest position of m and the maximum left displacement of M 
when they come momentarily to rest at the end of the nth half-even cycle. 

3. The Final Equilibrium State 

Now the question is where the system comes to equilibrium permanently? We 
claim that this occurs at a final position given by 

( )1
1
2f n nX x x += + .                       (14) 

Using Equation (9) for nx , Equation (14) gives, 

( )
f

mg Mg
X

k
µ±

= ,                      (15) 

where the signs + (−) are for n = odd (even). The result given in Equation (15) is 
expected, since for the n = odd case the motion is from odd n to even (n + 1) 
which means that mass m is moving upward and M is moving to the to the left 
and thus the balancing of forces gives fmg Mg kXµ+ =  which gives the result 
in Equation (15) with the plus sign. Similarly, for the n = even case, motion is 
from even n to odd (n + 1) which means that m is moving down and M is mov-
ing to the right and thus the balancing forces gives fmg Mg kXµ− =  which 
gives the result in Equation (15) with the negative sign. 

It is interesting to find the value of n at which the system reaches its final 
equilibrium state. This could be found by equating ( )πnx n  from Equation (9) 
with fX  for the two cases n = even and n = odd which is given by Equation 
(15). Straightforward calculations give, for both cases 

1 1
2

mn
Mµ

 
= − 

 
                        (16) 

To find the total distance covered by either m or M, one must notices that for 
the nth half-odd cycle m is moving down while for the nth half-even cycle it is 
moving up. Therefore, if we let N to be the integer part of Equation (16), we 
have for N = even, 

1
odd even2 2N N

tot n n fX x x X−= − +∑ ∑                 (17) 

The substitution of nx  for n = odd from Equation (12) and for n = even from 
Equation (13) we get 

( )

1 1

odd odd even

2

4 1

4 2
2 2 4

N N N

tot f

f

gX m M n M n X
k

g N N Nm M N X
k

µ µ

µ

− − = − − +  
  

= − + + +  
   

∑ ∑ ∑
          (18) 
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Substituting for fX  from Equation (15) with the negative sign, Equation (18) 
gives 

( ) ( )2 1tot
g gX N m M N m M

k k
µ µ= − + + −   .          (19) 

It is interesting to note that the substitution 
1 1
2

mN
Mµ

 
= − 

 
 enables us to 

write Equation (19) in terms of N or in terms of the original quantities as 

( ) ( )2 2 22 1
2tot

g gX MN N m M
k k M
µ µ

µ
= + = − .         (20) 

Similarly, the total distance for the case N = odd, we have 
2 1

odd even2 2N N
tot n n fX x x X− −= − +∑ ∑ .                  (21) 

Noting that the two sums are similar to those in Equation (17) but with 
1N N→ − , so using this and substituting for fX  from Equation (15) with the 

positive sign, we get 

( )( )2 1 1tot
g g mX N m M M

k k M
µ µ

µ
 

= − − + + 
 

,            (22) 

which upon using 2 1m N
Mµ

= + , the above equation can be written in terms of 

N or in terms of the original quantities as 

( ) ( )2 2 22 1
2tot

g gX MN N m M
k k M
µ µ

µ
= + = − .            (23) 

This is exactly the same as the total distance given by Equation (20) for the 
even N case. 

It is constructive to express the total distance totX  in terms of the final position 

fX . For N = even, Equation (15) gives ( ) ( )2f
g gX m M M N
k k

µ µ= − = , so that  

2 fXg M
k N
µ = . Substituting this in Equation (20) gives 

( )1tot fX N X= + .                        (24) 

while for N = odd, Equation (15) gives ( ) ( )2 1f
g g MX m M N
k k

µ
µ= + = + , so 

that 2
1

fXg M
k N
µ =

+
. Substituting this result into Equation (23) gives 

tot fX NX=                             (25) 

4. Energy Considerations 

Our result for the total distance covered by m or M can be checked from energy 
considerations. The gravitational potential energy of m is consumed by energy 
stored in the spring and a work done against friction between M and the surface. 
Namely, 
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21
2f f totmgX kX MgXµ= +                 (26) 

Using Equation (15) for fX , we get:  

For N = even, 
1 1 1( ) 1

2 2tot f f
mX X mg g m M X

Mg M
µ

µ µ
  = − − = +  

   
 and 

using 2 1m N
Mµ

= + , we recover our result given in Equation (24), namely 

( )1tot fX X N= + . 

For N = odd, the substitution for fX  from Equation (15) into Equation (26),  

w e  g e t  ( )1 1 1 1
2 2tot f f

mX X mg g m M X
Mg M

µ
µ µ

  = − + = −  
   

 a n d  u s i n g  

2 1m N
Mµ

= + , we recover our result given in Equation (24), namely, tot fX NX= . 

It is interesting to determine the energy stored in the spring, sU  and the 
work done against friction fW  and compare them with the initial gravitational 
potential energy, gU  of the hanged mass m relative to its final position. 

Using Equation (15) for fX  and Equation (20) for totX , we get 

( )
2

, eveng f
mgU mgX m M N

k
µ= = − =             (27) 

( )
2

, oddg
mgU m M N

k
µ= + =                 (28) 

( )

( )

2
22

2
2

,1 even
2 2

, odd
2

s f
gU kX m M N
k

g m M N
k

µ

µ

= = − =

= + =

            (29) 

( )
2

2 2 2 , even or odd
2f tot
gW MgX m M N
k

µ µ= = − =        (30) 

From the above equations, one can immediately find, 

1
2

s

g

U m M
U m

µ±
= ,                       (31) 

where the − (+) sign is for N = even (odd) 

1
2

f

g

W m M
U m

µ±
= ,                       (32) 

where the + (−) sign is for N = even (odd). 
It is constructive and interesting to consider the special case when the hori-

zontal surface is frictionless ( 0µ → ): Equations (27)-(29) give 
2 2

g
m gU

k
= , 

2 2

2s f
m gU W

k
= = ,                  (33) 

and therefore, 

1
2

fs

g g

WU
U U

= = .                          (34) 

https://doi.org/10.4236/am.2018.98062


S. M. AL-Jaber 
 

 

DOI: 10.4236/am.2018.98062 904 Applied Mathematics 
 

So we observe that even when the system is non-dissipative, half the initial 
gravitational potential energy will be stored in the spring while the other half is 
lost. 

5. Conclusion 

In this paper, we examined the dynamics of a classical system during its transi-
tion from a non-equilibrium state to a final equilibrium one. The position of the 
system at the end of the nth-half cycle was calculated. The even and odd half 
cycle was examined and our results for the final position are consistent with 
force balancing for each parity of n. The number of half cycles is determined by 
the masses of the connected blocks and the coefficient of kinetic friction. Fur-
thermore, the total distance covered by the system was determined. The energy 
involved during the system’s transition was calculated for the two parity cases of 
n. Our results show that in the limit of vanishing coefficient of friction the ener-
gy stored in the spring is exactly half the initial gravitational potential energy 
and the other half is an energy loss. This is in complete analogy with the energy 
loss in the two-capacitor problem. 
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