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Abstract

We study the approximation properties of the extremal polynomials in A,-norm and C-norm. We prove esti-
mates for the rate of such convergence of the sequence of the extremal polynomials on domains with corners

and special cusps.
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1. Introduction and Main Results

1.1. Statement of Problem and Some Definitions

Let G c C be a finite domain bounded by Jordan curve
L:=0G and {,eG be an arbitrary fixed point. Let
W= ¢(z) be conformal mapping of G onto the disk
D(0,r)):= W:|W|<r0} with normalization
¢(§O)=0, q)'(g”o):l , where r, is a conformal
radius of G with respect to ¢, and let w:=¢ ' be
an inverse mapping.

Let p>0. We denote by A (G) the set of
functions f(z) analytic in G and normalized by
f(£,)=0, f'(£,)=1 such that

||f||A1p(G) :=(jej|f' (Z)|pdasz <o,

where do, is a two-dimensional Lebesque measure on
G.
We denote by ¢, of all algebraic polynomials
P,(z).degP, <n satisfying P,(&,)=0, P/({,)=1.
Let us consider following extremal problem:

{";D—Pn"Alp(G) P, egon}—>min (1.1)

Using a method similar to the one given in ([1], p.
137), it is seen that there exists an extremal polynomial
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P’ (z) furnishing to the problem (1.1), these polyno-

mials P, (Z) are determined uniquely in case of p>1
([1], p. 142). This extremal problem was first considered
by Kucukaslan M. and Abdullayev F.G. and they were
called the p-Bieberbach polynomial of degree n for the
pair (G,¢,) in[2], and denoted by B, ,(z).

The main goal of this paper is to investigate the
approximation rate of convergence B (Z) to the
function ¢ in uniform norm for some domains when
has some certain singularity, i.e.

|c<6) = nzlﬁaaxﬂga(z)— Bip (Z)|} Sn%, (1.2)

where y:=y(p,G)>0, the constant ¢ is independent
of n.

In case of p =2, the solution of (1.1) coincides with
the well known n-th Bieberbach polynomial
B,(z)=B,,(z) (see, for example, [3,4] ). The appro-
ximation properties in the uniform norm of B, (z) on
G first was observed by Keldysh in 1939 [3] for the
domains with sufficiently smooth boundary. A consi-
derable progress in this area has been achieved by
Mergelyan [5], Suetin [4], Simonenko [6], Andrievskii
[7,8] Gaier [9,10], Abdullayev [11-13], Israfilov [14,15]
and the others.

In this paper, we are going to consider the case p >1
the problem in (1.2). First, we will investigate the
approximation rate of B, (z) to the function ¢ in

"‘p_ Bop
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AL- norm and using well known Simonenko and
Andrievskii method (see, for example, [6,7]), the appro-
ximation rate of B, (z) to the function ¢ in uniform
norm will be obtained.

Now we need some definitions:

Definition 1.1. ([16], p. 97)The Jordan arc or a curve

L is called a K- quasiconformal (K >1) arc or curve
if there is a K- quasiconformal mapping f of a region
D containing L such that f(L) is line segment or
circle.

Let F(L) denote the set of all sense-preserving
plane homeomorphisms f of regions D> L such
that f(L) isa line segment or circle and let

K(L)=inf{K(f): feF(L)},
where K (f) is the maximal dilatation of such a map-
ping f. Then L is K-quasiconformal if and only if
K(L)<o. If L isa K-quasiconformal, then
K(L)<K.

D=C gives the global definition of a K- qua-
siconformal arc or curve consequently. This definition is
common in the literature. At the same time, we can
consider the domain D > L as the neighborhood of the
curve L. In this case, Definition 1.1 will be called local
definition of quasiconformal arc or curve. Through this
work we consider the local definition. The local defi-
nition has an advantage in determining the coefficients of
quasiconformality for some simple arcs or curves.

Let us denote z=2(s), se[0,mesL] natural repre-
sentation of L :=0G.

Definition 1.2. ([4]) We say that GeC, if 0G has
a continuous tangent H(S) = H(Z(S)) for every points
z(s).

Corollary 1.1. ([17]) If GeC,, then K=1+¢ for
all £>0.

Definition 1.3. ([12]) We say that
GeCy(Aa),0<A<2,a20, ifL:=0G is expressed
as a union of a finite number of C,- arcs, connecting at
the points 2, z,,-+-,z,,, suchthat L is locally smooth at
z, and in the local coordinate system (X,y) with origin
at z;, 1<j<m, the following conditions are satisfied:

1) For every z;, 1<j<p<m, the domain G has
ljn, 0< /lj <2, exterior angle at the corner Z;,
min{ij} = A

2) For every z;, p+I<j<m, in (Xy) coor-
dinate system with origin at z; we have

{z = X+iy:EXT <y <EXT,0<x< 51} cG,
{z=x+iy:|y|2£x,0<x< g} =CG,

for some constants —o <€ <C, <o, & >0, i=1,2.
It is clear from the definition that each domain

G eC,(A;) may have exterior A;m angles,

0</1j <2, at the points z;, 1< j<p, and interior
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zero angles at which the boundary arcs are touching with
X""“-speed at the points z;, p+l<j<m.If a=0
then the domain G does not has interior zero angles
and GeC,(4),0<A<2,ie, C,(40)=C,(4).

If A=1 then the domain G has piecewise smooth
boundary with only interior zero angles. We denote the

class of domains by C,(1;c).
1.2. New Results

We introduce the following notation. For any 1< p <2
and 0<A<2weset a,(p,4),/;(p.4) and

n;(p,A) as follows:
-1

i—1,
P J

, 0<i<i,
2
4—(p+2)2

2(2-p)+(3p-2)2

a;(p,2)=

Bi(p.2):=

p—l+/p2+4+2p§5%, j=4.

A 22

2-4 p
L_Fl_l’ j=2,
2-1 p 2

A, =1

ni(p’/l)ZZ 1 ]
R J:37
p

1 (2 a-1) .
— | ==, j=4.
1+a[p 2—1}

Throughout this paper, c,C,,C,,--- are positive and
£,6,,&,,+, sufficiently small positive constants which
in general depend on G.

Theorem 1.2. Let 1< p <2 and assume that

GeC,(4;x) for some 0</1£% and

0<a< min{oe1 ( p,l),ﬂl ( p,l)}.
Then the p- Bieberbach polynomial B, (z) satisfies
||¢)— B.., <c¢n”’

|c(€)

for each y with O<y<771—£(2+2a—p).
p
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Theorem 1.3. Let < p<2 and assume that

6(2- 1)
62

GeC,(Aa) forsome %</1§§ and

0<a< min{oc2 (p.2).5( p,/l)}. Then the
berbach polynomial B, (z) satisfies

||¢— B, <c,n”’

p- Bie-

|c(6)

foreach y with 0<y<n, —£(2+2a—p).
p

3
Theorem 1.4. Let 3 < p<2 and assume that

GeC,(A;a) forsome §</1<2 and

2p—3}
REE
Then the p- Bieberbach polynomial B, (z) satisfies

||go— B, <cn™”

0<a <min{a3(p,i),

e

for each y with O<;/<773—%(2+2a—p).
For 0< 4 <1we obtain

max {e; (p,2),j=1,2,3} =, (p,A) =

have the following theorem.

(1-447)(2-4)
Theorem 1.5. Let max{1,~———~t<p<2
2447 =24 +2)

1-4

and so, we
A

and assume that G € C,(4;x) for some % <A<1 and

% <a<p,(p,A). Then the p-Bieberbach poly-

nomial B, (z) satisfies

"(0_ Bn,p

_ <c,f|Inn|n~”

|c(G)
. 2

foreach y with 0<y<n, ——(2+2a— p).
p

Analogously result can be written for case 1< A4 <2.

2
Theorem 1.6. Let 2<p<2 +m and assume that

GeC,(A;a) for some 0<A<2, and a>0. Then,
forany n>3 and arbitrary small £>0.

||go— B, <cn”’

|c(6)

for each y with 0<;/<l, if0<A<1 and
p

0<y<l—(£—lj(ﬂ—l), if 1<A<2.
PP
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Corollary 1.7. Let p=2 and assume that
GeC,(A;a) forsome 0<A<2 and

0<a< lmin l,i . Then the Bieberbach polyno-
2 2 2-4

mial B, ,(z) satisfies

||¢_ Bn,z

@) < cé\/@ n’

foreach y with 0 <y <min l,i -2a.
2°2-4

Remark 1.1. 1) Theorems 1.2-1.2, extend the cor-
responding results in [3-5, 10,12,13]tocase p#2.

2) Corollary 1.2 is extending the one result [10] to
domains bounded by a piecewise smooth curve with
interior zero angles and in « =0 coincides with the
corresponding result of this work.

2. Some Auxiliary Results

The notation “a<b ”, we mean that a<ch for a
constant C,, which doesn’t depend on a and b. The
relation “axb” indicates that c,b<a<c,b, where
C,,C; areindependent of a and b.

Let GcC be finite domain bounded by Jordan
curve L and let w=®(z) (w=¢(z)) be the con-
formal mapping of Q:=extG (G) onto

A= {W | > 1} ({W |w| < 1}), normalized by
D (o) =00, ®'(20) >0 (H(,)=0.9'(£y)>0):

The level curve (exterior or interior) can be defined for
t>0 as

L ={z:]p(z)| = tift <L|o(z)| = tift > 1}, L, = L.

Letus denote G, :=intl,, €, :=extl, and
d(zL):= inf{|g—z| ce L}.

Let L be a K-quasiconformal curve and DcC.
Then the region D can be chosen to be the region

Gg, \G,,» for a certain number 1<R, <2 depending
on @,®,f and r,=R,". In this case, it is known that

the function a"(.)=f" {[f_()Jl} is a K’- quasi-

conformal reflection across L as shown in ([18], p. 28)
by analogously in ([19], p. 75), thatis, a"(.) isa K-
quasiconformal mapping leaving points on L fixed and

satisfying the conditions « (GN \6] cG \ar0 ,
R

#(G\Gr ) =Gy \G for some 1<R<R,, f,<F<l,

By using the facts in ([16], p. 97) and ([19], p. 76, [20], p.
26) we can find a C(K)- quasiconformal reflection
a(.) across L such that it satisfies the following
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|z1 —a(z)| =|z,-17],7 e Lie <]z <l,
&

1
|a2|x|az|x1,g<|z|<;, .1

x|z|72, z

=la[ ~Jes| of a() satisfied

1
£

2
<o f <.

and Jacobian J,
J, =<1

Therefore, by means of the extension theorem of a
quasiconformal mapping, without loss of generality we
may assume that

a’(z)=

Lemma 2.1. ([18
curve;

a(z),zeD.

) Let L be a K-quasiconformal

2, el;z,,z, eGm{z:|z—zl|s01d(zl,LR0)},
w; =o(z;)

(orzz,z3 eGm{z:|z—zl|s02 (zl,Lp )}, w, =cD(zj))

j=1,2,3.

Then,

1) The statements |Z 2| |Z | and
W W, | < |w, - W3| are equivalent. So are

2,-2,|<|z,-z,| and |w, —w,|=<|w, —w]
2)If |Z |<|Z 3| then
2
|W1_W3| _\<|21_Z3|_\<|W1_W3|K
|W1—W2| |Zl_22| WI—W2|

and, consequently, for any z; € Lg, (23 el po)

= ws] < <2~ 2] < —wy[<

where 1<R, <2 and p,=R," are fixed constants.

Lemma 2.2. ([21]) Let L:=0G be a quasiconformal
curve. Then, For every zelL there exists an arc
B(&,2) in G joining ¢, to z with following
properties:

1) d(&,L) |§—z| forevery &€ B(¢,.2)

2) If B(&.&) is the subarc of S(,,z) joining
& to &, then mesB(&.5)< |& —&| for every pair
1% eﬂ(é’o,z).

Lemma 23. ([7]) Let L:=0G be a K- qua-
siconformal curve. Then mes (= mesa(¢), for every
rectifiable arc ¢ cG.

Let G be arbitrary Jordan domain and
[:=T(z,,£)eQ,z,eL,£eQ an rectifiable arc except
for one of its endpoints of its z, € L which satisfies the
following conditions:

1) mes F ffl,fz |§1 &\, forall &,¢&, el
2) There exists a monotone increasing function g(t)
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such that d(&,L) = g(|&—2z,|) forall £eT.
Lemma 2.4. ([22]) Let G eC,(4;a) for some

0<A<2, >0 andonthearc I" a measurable func-
1
tion f(&) be given such that | f (§)| < |e§— zo|ﬁ for

all £el'.Thenforall z¢T .

;2,200
f |1nf|5ep“ 1<p<2,
- =
r Ao (G) 14 2Sp<2+|/1_1|.

3. Approximation in the A:) (G ) -Norm

Suppose that GeC,(4;a) for some 0<A<2 and
a >0 is given. For the sake of simplicity, but without
loss of generality, we assume that m=2, z =1,
z,=-1; (-1,1)=G and let the local coordinate axes
be parallel to OX and OY in the coordinate system;
LU'={z:zel,Imz>0}, I’:=={z:zeL,Imz<0}. Then
z, is taken as an arbitrary point on L’ (or on L'
subject to the chosen direction).

We recall that the domain G €C,(4;a) has exterior
An (0<A<2) non zero angle and X"“ type interior
zero angle in the neighborhood of the points z, =-1
and z, =1, respectively.

We can say that the function w=¢(z) for the
domain G eC,(4;) satisfies the conditions described
in Lemma 2 in the neighborhood of point z, =-1. So,
we can easily get from Lemma 2

d(z,L)<(|¢(z)|-)l“ 1)<

forall zeM ::{ZeG :|Z+l|>gl}.

On the other hand, using properties of the function
W=¢(z) in the neigbourhood of the point z, =-1
(see, [7,23]) we obtain

-
|z+1]<[~In|p(2)-p(-1)] (3.2)

Because each L', j=1,2 is a (l+¢)- quasi-
conformal arc, «;(.) must be the quasiconformal
reflection across L’'. Let us consider the curve

2€¢, +¢, l+a
X+1 ;
6 )

}’12 = az{z =X+iy:y= G +32C2 (X+1)1+a};

(1+2)72

E

3.1)

)-9(1)

7 :—al{z—x+iy:y—

1

7y =1=x+iy:y=¢6(x-1);
73 =z=x+iy:y=0¢,(x—1);
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for some —oo <€, <C; <o, where a constants ¢, and
¢, from Definition 1.3.
It is easy to check from Lemma 2.2 that

<|&6 -4l

mes 7} (&, &) <

forall &,¢& € ;/}, i,j=1,2

Let N=N (RO) sufficiently large natural number.
For n> N and arbitrary 0<eg <1, letus choose
R=r,+cn"" suchthat r, <R <R, and points

iJ, i,j=1,2 such that they are in the intersection of
L; and 7/

These points divide Ly into four parts:

Ly = Lo (2.2)). G = Ly (21, 27),

zj),L‘;2 = LR(zf,z;)

are traversed in the positive direction (counterclockwise).
Ly =L UlaUla ULy and y|(R) are subarcs of |
joining points —1,1 with z . Let us denote

e =7 (R)ULyUn(R)uy (R)ULy Uy (R),
U :=int(T;) and Ug:=U\G.

=L (7

We can extend the function ¢(z) to U in the
following way

9(2). zeG,

~ — 2

o2): N seui=12  GY
o(a(z

Then,
0, 2eG,

CZ’E(Z)Z {(p’(ai (z))aii(z), zeUg,i=1,2.

From the Cauchy-Pompeiu formula ([16], p. 148), we
get

(3.4)

e e

Then, using the above notations we obtain

1 f

0(2)= 55 —g(f?dé‘
Lo #(9)-e((-1))
1 %:(6)
o

where
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(/3(5) Eelhoréels,
t&)=10(-1) Sels,
o(1) Eelt.

Since the first part of right hand side in (3.5) is
analytic function in G , there exists a polynomial

P_.(z), where degP,  (z)<n-1 ([24], p. 142), such
that
1 f(¢) c
z—miwdg-al(z) < (3.6)
Let Q, ( jP _,(t)dt. Then, Q,(,)=0 and from

<o
(3.5) and (3.6) we have

and let us take integrals over G of the p-th power of
each side we obtain

J;.Hq)'(z)—Qé (Z)|p do,

From the Calderon-Zygmund inequality ([19], p. 98),
we obtain

il % dcré do, <jj|¢ (&) do.. i=1.2.
R

(3.8)
So, (3.7) and (3.8) give us
il o <L 5|  20l0)
A Ap(©) TP A o (5_2)2

, Ay (6)
+J”(”,(“i (ég))| do
(3.9)
APM
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Let us consider two case of p in the last double

If 1< p<2, then, using Holder Inequality ([25], p.
integral in (3.9)as: 1< p<2 and p=>2.

105) we obtain

_p

[lo(a (@) do: < (H (@ () do ]2 [ I do-fJ 2

P -
4[ H|¢T@rd%} [f dGJ (3.10)
a(UR) ai(Ug)

w|o

Thus, (3.9) and (3.10) give us

’ r||P 1 2
"(/J _Qﬂ"Ap(G) St

—d¢
"o AR) £-2) Ay(6)
g (3.11)
mes ¢ (a, (U > mes (a; (U 1_§’ 1<p<2,i=1,2,
(mes (i (Uy)))? (mes (e (U )))
+
!H¢(adénrda¢ p22,i=1,2

Now, we need some technical estimates to attack the Lemma 3.1. Let GeC,(4;a) for some
problem in (3.11).

0<i<2,
a>0. Thenforall £>0
bz A
Wﬂﬁ(lyth%]’ 1<p<2,j=1,
n
1 (2 A-1
_ 113&53}8 y<p<or_ 2 il
(ﬁ(é:)—(ﬂ((—l)J) E s p +—|ﬂ,—1|’ 1=1
| Wd‘f < 2.2
i — e
o Ap(G) |lnn|% (lJ P , 1<p<2,j=2,
n
2 A-1
1[??ﬂ* 2 .
— 2 24—, ] =2.
Proof. Let us choose f(&):= @(5)—(0((—1)j ), j=1,2,in Lemma 2.4, we obtain
1 2,471
#(2)-o((-1)") ey 1<ps2,
I T d¢ S 2,0 (3.12)
L (f—Z E+ﬁ 2< 2 2
7j(R) A (©) 0T, p +|/1_1 R

where ¢, :=mesy}(R). On the other hand, according

d(zij,l_i)< n°"'. Then, from (2.1), (3.1) and (3.2), for
to Lemma 2.1 and Corollary 1.1, we have

all £>0, weget

Copyright © 2011 SciRes. APM
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o (l}”“ i=1
@), = ) T

f <[5 -] o 1 (3.13)
(k12 (1
Then, the following inequalities are obtained from (3.12) and (3.13)
1 (2 A-1
i (ljw(pll]g 1<p<2,
p(&)— 1 n
w((iz f(z )d§ < o, (3.14)
7(R) Ay (G) [ljlw Y p<2+ 2
n |2-1|
and
2 -1
g [Bﬁj
~ |Innf2 (—j Jd<p<2,
#(£)-o(1) n
J (é-z) a s (Aﬂ}g G.13)
72 Ap(©) [lj N P S
n |2-1]

Combining (3.14) and (3.15) the proof is completed. [
Now, for sufficiently small 0<g, <g, we are going
to use following notations:
Ugp =V, UV OV, UV, UV UV, where

V) =UenD((-1),5 )nfz:1mz> 0}, j=1,2
V7 =UgnD((-1),5 ) {z:imz <0}, j=1,2
V) =[Ugn{z:Imz>0} |\[D(-1,5,)uD(L.5,)].
V) =[Upyn{z:Imz <0} ]\[D(-1,¢,)UD(l,5,)].

Lemma 3.2. ([26], p. 10) Let GeC,(4;a) for some
0<A<2, a=>0. Thenforall £€>0

mes (o(ai (v )) < (%)ls , mes q)(ai (V4 )) < (%)15 ,

and

meSgo(ai (Vz' )) < (%juf ,i=1,2

. A1
where 4 :=min ,— -
2-42
Lemma 3.3. Let GeC,(4;ar) for some 0<A<2,
a>0.Then forall £>0

1 min{24,1}-¢
mesai(UR)ﬁ(Hj ,i=1,2.

Proof. We have

o, (UR)=

M

[mes o (V') +mes (V, UV, )]

1

Copyright © 2011 SciRes.

Now, let us estimate mes ¢, (V' ) by choosing
K=1+¢,¢6>0 and from Lemma 2.1 we have

l-¢
e ) <[ o <[
1-¢
oo ) <. o <[]

On the other hand if we use the method of Gaier in [9]
but except the conformal mapping ¢ in method, then

we obtain
) 1 min{24,1}-¢
mes (Vz' ) < (H) .

After then using the second and third inequality in the
first one we obtain the desired proof. [

Lemma 3.4. Let GeC,(A;a) for some 0<A<2,
a>0.Then forall £>0

b 1 1-(2-p)(1-6,)-¢ .
JI|§0,(ai (‘f))| do, < [Hj ,1=1,2

where 2 < p<2—|—1 !

and 6, = min{A,Z —/1}.
Proof. Let zeG, z°—the point of L:=8G nearest

to z. Then we have

o,

1
-2 <fote)-ofe'] <fe-+

and from ([18], Lemma 3)

APM
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dly(w).L) _w(w)-v(w
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I

O,—¢

L T
After this estimation, we get
Jfle' (e () do < I o) ¢or = IJ
UR

II )r—|w| e

where 1, := min {|(p(ai (Z))| ze LR} and
.U

2< p<2+1

¢

2

(e
W

4, (p,A)=

Lemma 3.5. Let 1< p <2 and assume that
GeC,(4a) for some 0<A<2, a>0. Then, for
any n>3 and arbitrary small &> 0

Ap(0)

Lemma 3.6. Let 2<p<2+ and assume that

2
21
GeC,(4a) for some 0<A<2, a>0. Then, for
any n>3 and arbitrary small £>0

ai(UR))

V( 1 )1:9*4“9
= r —|W| .

=W

By using Lemma 3.1, 3.2, 3.3, 3.4 and (3.11) we get
the following results. We need this notation:

aZmaX{ai (p,/l)}, i=1,2,3.
a<al(p,/1), 0</1£%.
1 2
< ,A), —<A<—.
2
a<ay(p,4), §</1<2.
1,
(ly . 0<A<l,
n
lo-8,., I R (3.17)
P 1<A<2.

g
n
Proof. The proof of Lemma 3.5-3.6 is similar. So, we

give them together. From (3.11) and Lemma 3.1-3.4 we
obtain

Mz e=ie
|1nn|z(—j'+a P 1<p<2, i=1,
1 n
"(0 Q "A H 1 (2 i-1
(ljlm[f”]_g
— 2<p<2+—— =
n |A-1’
- an
|lnn|;(ljp“ l<p<2, i=2, (l} R I<p<2
n n
e e
[HJP 2<p<2+|_1| =2, [%) ", 2<p<2+
APM
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. A 1
where g :=miny——,—¢,
2-12

A, =min{24;1}, 6, =min{1,2- 1}
Case 1. Let 1< p <2. In this case from (3.18) we get

el (1
’ ’ 5 talp 2- p
o=l ey < (1] (1]
<94 (p,2).
Case 2. Let
. 2 1 o 3
2< p<m1n{2+m,2+—1_0*},0*. mln{l,Z /1}.

In this case from (3.18) we have

lo-G,

<
AbG)

So, if we consider the extremal property of the
polynomials B, , € ,, then we obtain (3.16) and (3.17)
respectively. [

To prove Theorem 1.2-1.6 and Corollary 1.7, we use a
similar method to the one of Andrievskii and Simonenko
employed in the proofs of analogous theorems for

p=2 (see[6,8,10]).

Lemma 3.7. [2] Let Gc C be a simply connected
domain so that

<n™*

"“’_ Bop

|A})(G)

foreach xe(0,1), n=2,3,---, and

1 p>27

"PHHC(G) < "Pn "A}J(G) Jlogn, p=2,

n’, 0<p<2,n>0

for all polynomials P,(z) of deg P,<n and
normalized with P, (¢,)=0. Then,

lo-B,, |C@ <N’ (3.19)

It is enough replacing x# by 4 in (3.16) and (3.17)
respectively and 7 = z(205 +2- p) in ([22], Corollary
p

Copyright © 2011 SciRes.

A

Now, let us consider the polynomial
Q.(z)=Q, (Z)+[1—Qr§ ((0)](2 ~¢,). Itisclear
Q, €, that Q,(z,)=0,Q;(z,)=1.So, we have

1<p<2,

0<A<1,2< p<2+i,
[2-1]

1<A<2,2<p<24—2
[2-1]

4.1) in (3.19) to prove Theorems 1.2-1.6.
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