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Abstract 
Quasi-periodic responses can appear in a wide variety of nonlinear dynamical 
systems. To the best of our knowledge, it has been a tough job for years to 
solve quasi-periodic solutions, even by numerical algorithms. Here in this 
paper, we will present effective and accurate algorithms for quasi-periodic 
solutions by improving Wilson-θ and Newmark-β methods, respectively. In 
both the two methods, routinely, the considered equations are re-arranged in 
the form of incremental equilibrium equations with the coefficient matrixes 
being updated in each time step. In this study, the two methods are improved 
via a predictor-corrector algorithm without updating the coefficient matrixes, 
in which the predicted solution at one time point can be corrected to the true 
one at the next. Numerical examples show that, both the improved Wilson-θ 
and Newmark-β methods can provide much more accurate quasi-periodic 
solutions with a smaller amount of computational resources. With a simple 
way to adjust the convergence of the iterations, the improved methods can 
even solve some quasi-periodic systems effectively, for which the original 
methods cease to be valid. 
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1. Introduction 

Both Wilson-θ and Newmark-β methods are generally used approaches for 
solving numerical solutions of dynamical systems [1]-[6]. As we know, a funda-
mental assumption of the Wilson-θ method lies in that, the acceleration changes 

How to cite this paper: Liu, G., Lv, Z.R. 
and Chen, Y.M. (2018) Improving Wil-
son-θ and Newmark-β Methods for Qua-
si-Periodic Solutions of Nonlinear Dynam-
ical Systems. Journal of Applied Mathe-
matics and Physics, 6, 1625-1635. 
https://doi.org/10.4236/jamp.2018.68138  
 
Received: May 24, 2018 
Accepted: August 6, 2018 
Published: August 9, 2018 

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.68138
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.68138


G. Liu et al. 
 

 

DOI: 10.4236/***.2018.***** 1626 Journal of Applied Mathematics and Physics 
 

linearly in a single time step [7]. For this reason, the Wilson-θ is considered to 
be one of linear acceleration methods. One of the best merits of this method is 
that its result is unconditionally stable when the internal parameter θ is chosen 
to be larger than 1.37 [8]. The Newmark-β method is in essence an extension of 
linear acceleration method [9]. When solving linear problems, both the two me-
thods can provide accurate results by adjusting the internal parameters. 

For some nonlinear problems, sometimes the two methods would provide 
false results, especially when there are quasi-periodic or chaotic responses [10]. 
Even worse, the methods may even cease to be valid for some cases, for instance 
leading to numerical divergence as shown later. Fu et al. [11] proposed an ap-
proximate method to linearize a quasi-periodic nonlinear equation, and suggested 
a gradual integration process based on the Wilson-θ method. To the best of our 
knowledge, it is tough to make such a linearization to complex quasi-periodic sys-
tems especially when strongly nonlinearities are taken into account. Even though 
the linearization is done successfully, it will pose restriction to the computational 
accuracy [12] [13]. 

In this paper, both the Wilson-θ and Newmark-β methods will be improved 
with the help of a predictor-corrector algorithm. This algorithm is based on the 
incremental process which makes Wilson-θ and Newmark-β methods free of 
repeated linearizations of the nonlinear terms. The initial solution is predicted at 
the previous time point and corrected recursively to be the true one at the next 
point. Numerical solutions have been successfully obtained for quasi-periodic 
responses of both autonomous and non-autonomous nonlinear dynamical sys-
tems. Interestingly, the results show that the iterative correction of the predicted 
solution can converge within two iterations, which ensures the improved me-
thods with high computational efficiency. Most importantly, the improved me-
thods can directly deal with a variety of quasi-periodic dynamical systems with 
even strong nonlinearities, as there is no requirement of linearizing the consi-
dered equations. 

2. Classical Wilson-θ and Newmark-β Methods 
2.1. Linearization 

The nonlinear dynamical system is expressed as the following form 

( ) ( ) ( ) ( ), ,P x t x t x t Q t=   

                    
(1) 

where ( ) ( ) ( ), ,x t x t x t   represent the generalized acceleration, velocity and dis-
placement, respectively. After a step length t∆ , the following equation will be 
obtained as 

( ) ( ) ( ) ( ), ,P x t t x t t x t t Q t t+ ∆ + ∆ + ∆ = + ∆   

            
(2) 

The incremental balance equation can be obtained by subtracting Equations 
((1) from (2)). In practice, the linearization equation can also be obtained by 
expanding the incremental equilibrium equation as Taylor series at time t with 
the higher order terms being neglected 
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( ) ( ) ( ) ( ) ( ), , , , , ,

t t t

P x x x P x x x P x x x
x x x Q t t Q t

x x x
∂ ∂ ∂

∆ + ∆ + ∆ = + ∆ −
∂ ∂ ∂

     

 

 

   
(3) 

which can be expressed in matrix form as 

M x C x K x Q∆ + ∆ + ∆ = ∆ 

                       (4) 

with coefficient matrixes as 

( ) ( ) ( ) ( ) ( ), , , , , ,
, , ,

t t t

P x x x P x x x P x x x
M C K P Q t t Q t

x x x
∂ ∂ ∂

= = = ∆ = + ∆ −
∂ ∂ ∂

     

 

 

 

At the beginning of each time step, one should calculate the coefficient ma-
trixes. One possible way is to substitute into Equation (4) the velocity, accelera-
tion and displacement of the previous time step, i.e., ( ) ( ), ,x x t x t  . It is worth 
noting that, however, this treatment will bring serious numerical errors as the 
higher-order terms are all removed from the Taylor expansion. On the other 
hand, Equation (1) will be unbalanced if we substitute  
( ) ( ) ( ), ,x t t x t t x t t+ ∆ + ∆ + ∆   into the coefficient matrixes. Denote the unba-

lanced term as 

( ) ( ) ( ) ( ), ,R P x t t x t t x t t Q t t= + ∆ + ∆ + ∆ − + ∆   

          
(5) 

where R is also the truncation error for each calculation. The precision of the 
computing result can be controlled by adjusting R to a relatively low magnitude 
[14]. 

2.2. Solving Incremental Equation 

A basic assumption of the Wilson-θ method is that the acceleration varies li-
nearly between time [ ],t t tθ+ ∆ , so that the velocity and displacement can be 
expressed as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2

2

2
6

tx t t x t x t t x t

t
x t t x t tx t x t t x t

θ

θ
θ θ

∆ + ∆ = + + ∆ +  


∆ + ∆ = + ∆ + + ∆ +  

   

  

        

(6) 

Rewrite Equation (6) equivalently in the incremental form and substitute it 
into (4), we can deduce the incremental displacement equation at [ ],t t tθ+ ∆  

  tK x Qθ∆ = ∆                           (7) 

in which 

( )

( ) ( ) ( ) ( )

2

3 6 ,

63 3
2

K K C M
t t

tQ Q x t x t C x t x t M
t

θ θ

θ
θ

= + +
∆ ∆

∆   ∆ = ∆ + + + +   ∆   

 

  

   
        

(8) 

With txθ∆  being obtained, we can update the velocity, acceleration, and dis-
placement as 
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0 1 2

3 4 5

6 7 8

t

t

t

x a x a x a x
x a x a x a x
x a x a x a x

θ

θ

θ

∆ = ∆ + +

∆ = ∆ + +

∆ = ∆ + +

  

  

                       

(9) 

where the coefficients , 0,1, ,8ia i =   are all listed in Appendix. And, the sys-
tem response at time t t+ ∆  could be finally obtained as 

( ) ( )
( ) ( )
( ) ( )

x t t x t x

x t t x t x

x t t x t x

+ ∆ = + ∆

+ ∆ = + ∆

+ ∆ = + ∆

  

  

                     

(10) 

Similar to Equation (6), when the Newmark-β method is employed we can 
obtain 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

1 1 11
2

1

x t t x t t x t x t x t
tt

x t t x t tx t tx t t
α αα

δ δ

  + ∆ = + ∆ − − + −     ∆∆  
 + ∆ = + − ∆ + ∆ + ∆

  

   

    

(11) 

with α  and δ  are priorly given parameters. Also, rewrite Equation (11) in 
the incremental form and substitute it into (4), then we can obtain 

0 1 2

3 4 5

x b x b x b x
x b x b x b x

∆ = ∆ + +

∆ = ∆ + +

  

                        
(12) 

with the expressions of , 0,1, ,5ib i =   in Appendix. Substituting Equation (12) 
into (10) yields the response at time t t+ ∆ . 

3. Improving Wilson-θ and Newmark-β Methods 

To elucidate the improved methods, we consider the following dynamic equa-
tion 

( ) ( ) ( ) ( ) ( ), ,Mx t Cx t K x x t F x x t+ + =                 (13) 

If Equation (13) is linear such that ( ), ,F x x t  is independent upon either dis-
placement x or velocity x , the Wilson-θ method can also be straightforwardly 
implemented by carrying out the following procedures 

Step 1a: Given any initial conditions ( 0 0,x x   and 0x ), time step t∆  as well 
as 1.37θ ≥ , calculate the integral constants 0 8~c c  shown in Appendix. 

Step 2a: Compute the payload, t tF θ+ ∆
 , at time t t+ ∆  

( ) ( )
( )

0 2

1 3

2

            2
t t t t t t t t t

t t t

F F F F M c x c x x

C c x x c x
θ θ+ ∆ +∆= + − + + +

+ + +



 

 

          (14) 

Step 3a: Solve the displacement at time t tθ+ ∆  according to the following 
equation 

*
t t t tK x Fθ θ+ ∆ + ∆=                         (15) 

where *
0 1K K c M c C= + + . 

Step 4a: Finally, calculate the displacement, velocity and acceleration at time 
t t+ ∆  according to the rules 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

4 5 6

7

8 2

x t t c x t t x t c x t c x t

x t t x t c x t t x t

x t t x t tx t c x t t x t

θ + ∆ = + ∆ − + +   + ∆ = + + ∆ +   


+ ∆ = + ∆ + + ∆ +   

  

   

  

         

(16) 

Then go to Step 1a to calculate the responses at the next time step. 
Also, the Newmark-β method is capable of solving Equation (13) as long as it 

is linear, by employing the following procedures 
Step 1b: Given any initial conditions ( 0 0,x x   and 0x ), time step t∆  as well 

as 0.50δ ≥ , ( )20.25 0.5α δ≥ + , compute the constants 0 7~d d  as shown in 
Appendix. 

Step 2b: Compute the payload, t tF θ+ ∆
 , at time t t+ ∆  

( ) ( )0 2 3 1 4 5t t t t t t t t t tF F M d x d x d x C d x d x d x+∆ +∆= + + + + + +

   

      (17) 

Step 3b: Solve the displacement at time t t+ ∆  according to the following 
equation 

*
t t t tK x F+∆ +∆=                          (18) 

where *
0 1K K d M d C= + + . 

Step 4b: Finally, calculate the displacement, velocity and acceleration at time 
t t+ ∆  according to the rules 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

0 2 3

6 7

*/t t

x t t d x t t x t d x t d x t

x t t x t d x t d x t t

x t t F K+∆

 + ∆ = + ∆ − − −   + ∆ = + ⋅ + ⋅ + ∆


+ ∆ =

  

   



         

(19) 

Then go to Step 1b to calculate the responses at the next time step. 
Note that, the above two methods are designed to solve linear systems. For 

nonlinear systems such as a cubic stiffness being included [15], the payload 
cannot be directly determined using either Step 2a or Step 2b, because the term 

t tF +∆  in both Equations (14) and (17) is a function of the responses (i.e., 
, ,t t t t t tx x x+∆ +∆ +∆  ), which are to be determined at the next time step. For this rea-

son, Fu et al. [11] suggested an approximate method by transforming the nonli-
near problem into linear one during one time step. As will be shown in the nu-
merical examples, this method requires a large amount of computational re-
sources. Even worse, it ceases to be valid in some cases possibly because of large 
errors accumulation in the procedure of linearization. 

The key procedure of the improved methods is to calculate the responses by a 
predictor-corrector algorithm, without transforming the nonlinearities into li-
near ones. 

Denote the state responses of the system at time t as 

{ } ( ) ( ) ( ){ }, ,tu x t x t x t=  

                    
(20) 

After the time t∆ , the state responses are rewritten as 

{ } ( ) ( ) ( ){ }, ,t tu x t t x t t x t t
+∆

= + ∆ + ∆ + ∆ 

             
(21) 

In both the improved Wilson-θ and Newmark-β methods, specifically, the 
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second steps (Step 2a and Step 2b) which aim at calculating the payload are re-
placed by the following predictor-corrector algorithm 

Step A: Predict the solution { }t tu
+∆

′  at t t+ ∆  according to priorly given 
responses { }tu  with a small increment u∆ . 

Step B: Compute the payload t tF θ+ ∆′  by applying the predicted solution 
{ }t tu

+∆
′  to Equation (14) or (17). 
Step C: Obtain a new solution { }t tu

+∆
′′  at t t+ ∆  by applying t tF θ+ ∆′  to Eqs. 

(15-16) or (18-19); 
Step D: Correct { }t tu

+∆
′′  by proceeding Steps B-C-D if necessary, until the 

residual ( ) ( ) ( ) ( ) ( )Re | , , |Mx t Cx t K x x t F x x t= + + −    is smaller than a given 
tolerance Tol . 

For more details, Step 2a and Step 2b will be realized by the procedures dis-
played in Figure 1. 

In real practice, there are two key variables to be elaborately chosen such as 
the initial increment u∆  and the tolerance Tol . In principle, a small value of 

u∆  is helpful to the convergence of the predictor-corrector algorithm. In our  
 

 
Figure 1. A predictor-corrector algorithm for realizing the second steps in the improved Wilson-θ and Newmark-β 
methods, respectively. 
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numerical study, u∆  is chosen randomly chosen to be at the order of 10-6. 
Differently, the value of Tol  should be chosen to be relatively large to guaran-
tee the convergence. In this paper, Tol  is chosen as 2( )Tol O t= ∆  because 
both the Wilson-θ and Newmark-β methods generally have a precision of the 
second order. 

4. Numerical Examples 

In this section, a nonlinear dynamical system will be presented as numerical 
examples to validate the presented methods for solving quasi-periodic solutions. 

It should be pointed out that, both the classical Wilson-θ and Newmark-β 
methods are incapable of solving nonlinear dynamical systems. As mentioned 
above, Fu et al. [11] suggested an approximate approach to enable Wilson-θ be 
capable of doing a nonlinear problem. The Wilson-θ modified by Fu et al. [11] 
will also be employed in all the following numerical studies, for the purpose of 
comparing the effectiveness and precision of the presented improved methods. 

Considering the forced system is subjected to external excitations varying over 
time domain such as [16] 

( )( )3
1Mx Cx K K x x F+ + + = 

                 
(22) 

where 1

2

x
x

x
 

=  
 

, 
1    0
0    1

M  
=  
 

, 
    0

0    
c

C
c

 
=  
 

, 1

  1     
   1

K
δ

δ
 

=  − 
, 

( ) ( )
2 2

1 1 2 1 2 3 1 2 4 23
2 2

1 1 2 1 2 3 1 2 4 2

,

,

a x a x x a x x a x
K x

b x b x x b x x b x

 + +
=  

+ +  
, 1

2

cos
sin

f t
F

f t
ω
ω

 
=  
 

 with the constants  

2.3112ω = , 0.12c = , 0.1299δ = , 1 2 0.1587f f= = , 2 4 0a a= = , 1 3 0b b= = , 

1 3 2 4 1a a b b= = = = . 

Also, the time step is chosen as 0.01t∆ =  in this example. Figure 2 shows 
the comparisons of the displacement obtained by RK and the Wilson-θ methods, 
respectively. There is a slight discrepancy even at the early stage of the solution 
domain. As t increases further, the errors accumulate gradually resulting into 
noticeable differences. For quasi-periodic solutions, the coefficient matrix of the 
incremental balance equation should be corrected at every iteration step during 
calculation [17], which is possibly responsible for the rapid growing errors. The 
quasi-periodic solutions obtained by the improved methods are shown in Figure 
3, also compared with the RK results. Nice agreement between the obtained sol-
tuions domenstrate that both the improved Wilson-θ and Newmark-β methods 
can provide much more accurate quasi-periodic solutions. 

To further check the computaion accuracy, the error curves provided by the 
obtained results are shown in Figure 4. The error of the classical Wilson-θ is 
nearly of the same magnitue of the quasi-periodic responses, whereas the errors 
of the improved methods are at a much lower level. 

Figure 5 shows the CPU running times for different methods, versus the 
number of time steps. The improved methods are more computational efficient 
than the classical Wilson-θ method. The reason consists in that the iteration of  

https://doi.org/10.4236/***.2018.*****


G. Liu et al. 
 

 

DOI: 10.4236/***.2018.***** 1632 Journal of Applied Mathematics and Physics 
 

 
Figure 2. Displacement of Equation (23) obtained by RK and classical Wilson-θ methods 
[11], respectively. 

 

 
Figure 3. Displacement of Equation (23) obtained by RK, improved Wilson-θ and im-
proved Newmark-β methods, respectively. 

 
classical method requires more iterations during Step 2a for convergence, that is 
designed to approximate the preload associated with nonlinearities. Interestingly, 
in most cases only two iterations are needed for the convergence of the second 
steps of the improved methods. 
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Figure 4. Error curves of the obtained results for Equation (23) with RK results as the 
references. 

 

 
Figure 5. CPU running time versus the number of time steps for the classical Wilson-θ, 
improved Wilson-θ and improved Newmark-β methods, respectively. 

5. Conclusions 

Two improved methods have been proposed based on Wilson-θ and Newmark-β 
methods, respectively, for solving quasi-periodic responses of nonlinear dynam-
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ical systems. In order to avoid the same linearization procedure of Wilson-θ and 
Newmark-β methods, an improved fast algorithm is proposed in this paper, 
which enables both the two methods be capable of solving the quasi-periodic 
responses of nonlinear dynamical systems. In this algorithm, the solution at the 
next time step is first predicted according to the known one at the present time. 
And the predicted solution is corrected by iterative manner, which together pro-
vides us with a predictor-corrector algorithm. 

Numerical examples have showed that, compared with the classical method, 
the improved methods can provide much more accurate quasi-periodic res-
ponses with less computational resources. Moreover, the improved methods are 
sometimes valid for systems for which the classical method is not. In addition, 
the convergence criterion is simple and effective for the presented methods, 
which guarantees both the computation accuracy and efficiency. 
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Appendix 

Coefficients for Wilson-θ method based on the incremental equation 
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Coefficients for Newmark-β method based on the incremental equation 
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Integral constants in classical Newmark-β method 
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