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Abstract 

Total of 1072 Asian seabass or barramundi (Lates calcarifer) were harvested 
at two different locations in Queensland, Australia. Each fish was digitally 
photographed and weighed. A subsample of 200 images (100 from each loca-
tion) were manually segmented to extract the fish-body area (S in cm2), ex-
cluding all fins. After scaling the segmented images to 1mm per pixel, the fish 
mass values (M in grams) were fitted by a single-factor model ( 1.5M aS= , 

0.1695a = ) achieving the coefficient of determination (R2) and the Mean 
Absolute Relative Error (MARE) of 2 0.9819R =  and 5.1%MARE = , re-
spectively. A segmentation Convolutional Neural Network (CNN) was 
trained on the 200 hand-segmented images, and then applied to the rest of 
the available images. The CNN predicted fish-body areas were used to fit the 
mass-area estimation models: the single-factor model, 1.5M aS= , 0.170a = , 

2 0.9819R = , 5.1%MARE = ; and the two-factor model, bM aS= , 
0.124a = , 0.155b = , 2 0.9834R = , 4.5%MARE = . 
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1. Introduction 

In aquaculture, the economic value of a particular fish species is primarily de-
termined by its mass (M). However, weight measurement usually involves ma-
nual handling, whilst length can easily be estimated from digital images through 
identifying the nose and tail of the fish. Therefore mathematical models were 
developed to estimate fish mass from its length (L). For example, the length- 
mass power model, 
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bM aL= ,                           (1) 

was commonly used, where a and b were empirically-fitted species-dependent 
parameters [1] [2]. 

With the advances in image processing and the widespread availability of 
low-cost high-definition digital cameras, not only the length, but also other fish 
shape features could be collected automatically and used to estimate the mass. In 
particular, it was found that the fish image area (S) could be used to estimate the 
fish mass (M) via the linear model, 

M a bS= + ,                          (2) 

for grey mullet (Mugil cephalus), St. Peter’s fish (Sarotherodon galilaeus) and 
common carp (Cyprinus carpio) [3]. The same area-mass linear model (Equa-
tion (20) was confirmed to be more accurate than the length-mass power model 
(Equation (1)) for Jade perch (Scortum barcoo) [4], obtaining the coefficient of 
determination (R2) and the mean absolute relative error (MARE) of 2 0.99R =  
and 6%MARE = , respectively. Even though the linear model (Equation (2)) 
appeared to perform better than Equation (1) [3] [4], Equation (2) is limited to 
the range of sufficiently large fish for any non-zero fitted parameter a. On the 
other hand, the area-mass power model, 

bM aS= ,                          (3) 

does not exhibit the applicability limitations of Equation (2) and achieved the fit 
of 2 0.99R =  for Alaskan Pollock (Theragra chalcogramma) [5]. Furthermore, 
the fitted models had 1.5b ≈  [5], which was consistent with the proportional 
relationships between the fish length ( L S∝ ), width (W S∝ ) and height 
( H S∝ ), and between the fish volume (V LWH∝ ) and fish mass (M), ob-
taining 

1.5M aS= ,                           (4) 

from 1.5M LWH S∝ ∝ . For Atlantic salmon (Salmo salar), a similar area-mass 
power model was fitted as 0.61S M∝  (or 1.64M aS∝ ) with 2 0.97R =  by [6], 
and 0.629S M∝  (or 1.59M S∝ ) with 2 0.998R =  by [7]. 

Based on the preceding discussion, the first goal of this work was to establish 
the area-mass power model for the industrial scale harvesting of Asian seabass or 
barramundi (Lates calcarifer) in Queensland, Australia. The goal was successful-
ly accomplished by fitting Equations (3) and (4), as displayed in Figure 3. The 
second goal of this study was to design a practical image-processing method to 
extract fish-body area while excluding the fins for enhanced accuracy and also 
for possible applications in industrial-scale modern selective breeding programs 
[8] [9]. That goal was achieved by training a segmentation neural network in 
Section 2.2. 

2. Materials and Methods 

2.1. Datasets 

Two datasets were used in this study. The first was the Barra-Ruler-445 (BR445) 
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dataset used in [10] [11], and publically available via [12] originated from the [9] 
study. The second dataset was the Barra-Area-600 (BA600) dataset and released 
to public domain on publication of this work via [13]. In both datasets, each 
harvested barramundi fish (Asian seabass, Lates calcarifer) was digitally photo-
graphed and its weight was measured and recorded against the image file name. 
All images had a millimeter-graded ruler placed next to the fish, see Figure 1 for 
examples. The weights ranged 0.2 kg - 1 kg in BR445, and 1 kg - 2.5 kg in BA600. 
The image scales (in millimeters per pixel) were determined manually by mea-
suring the number of pixels between the end points of the 300 mm ruler present 
in each image. The BR445 image scales were checked by the automatic ru-
ler-scaling (RS2) algorithm [11]. The BA600 images were taken from the same 
distance hence they had the same scale. 

2.2. Automatic Fish-Body Segmentation 

The fins of the fish can contribute significantly to the total fish image area, see 
typical examples in Figure 1. At the same time the fins’ contribution to the fish 
mass is negligible. Therefore, ideally, only the fish-body area should be used to 
estimate the fish mass. For example, using the fish area without considering the 
fin tail was found to be more accurate when predicting the mass of Jade perch 
Scortum barcoo [4]. Furthermore, the fins are highly flexible and are more likely 
to change shape during harvesting, or be damaged and/or erode during the 
production growth cycle. 

Segmentation of 200 images (100 from each dataset) into fish-body and back-
ground was done manually using the GIMP open-source software program. The 
 

 
Figure 1. Examples of images from the BR445 (left column) and BA600 (right column) 
datasets. 

https://doi.org/10.4236/wjet.2018.63B003


D. A. Konovalov et al. 
 

 

DOI: 10.4236/wjet.2018.63B003 18 World Journal of Engineering and Technology 

 

resulting fish-body binary masks were individually scaled to have the same scale 
of 1 mm per pixel. In this study all custom computer programs were written in 
Python programming language, which was also used to calculate the fish-body 
pixel areas. The obtained fish areas and the corresponding measured mass values 
were fitted via Equation (4) and results displayed in Figure 2. The fit achieved 
highly accurate 2 0.9819R = , and 5.1%MARE = , which were comparable to 
the corresponding results obtained on other fish species [4] [5] [6] [7]. Figure 2 
clearly illustrated how the weight of the harvested Asian seabass Lates calcarifer 
could be estimated from the fish area with high accuracy. However, before such 
estimation method could be deployed in the aquaculture production environ-
ment, a robust automatic body-area extraction algorithm would be required, 
which was the focus for the rest of this section. 

The recently developed semantic-segmentation Convolutional Neural Net-
works (CNN) [14] were highly successful in solving challenges where the seg-
mentation of an image into per-pixel classes was required [11] [14] [15]. As dis-
cussed in the introduction, the second primary goal of this study was to design a 
practical Computer Vision algorithm to extract fish-body area from images. The 
Deep Learning neural networks [16] have revolutionized modern Machine 
Learning including the field of Computer Vision, and a large number of seg-
mentation Deep Learning CNN models have been proposed. Comparing even 
the most popular segmentation CNN models was outside the scope of this work. 
Instead, the most accurate Fully Convolutional Network from [14], FCN-8s, was 
used. FCN-8s could be viewed as the modern baseline segmentation CNN model 
due to its highest citation rate out of all available segmentation CNNs (more 
than 4000 Google Scholar citations at the time of writing). 

The FCN-8s model was implemented [17] in Python utilizing the high-level 
neural networks Application Programming Interface (API) Keras [18] together 
 

 
Figure 2. Relation between the measured fish weight ( M  in g) and the seg-
mented-by-hand fish-body image area ( S  in cm2) fitted by: Equation (4) as 

1.50.1695M S= × , 2 0.9819R = , 5.13%MARE = ; and Equation (3) as  
1.50730.1622M S= × , 2 0.9819R = , 5.06%MARE = . Higher density of data points were 

denoted by lighter color. 
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with the machine-learning Python package TensorFlow [19]. The FCN-8s model 
is a general features-to-segmentation decoder CNN, which required an im-
age-to-features CNN encoder. The original FCN-8s [14] was built with the 
VGG16 [20] convolutional layers as the encoder. The VGG16 model within Ke-
ras was trained to recognize 1000 different ImageNet [21] object classes and 
commonly referred to as ImageNet-trained. The ImageNet-trained CNN models 
were often more accurate than randomly initialized CNN models when they 
were further trained to recognize new object classes [22]. Therefore the convolu-
tional layers of the ImageNet-trained VGG16 model were used to build our ver-
sion of the FCN-8s model referred at the Fish Area Segmentation (FAS) model 
hereafter. 

The FAS model was loaded with the relevant VGG16 weights facilitating the 
knowledge transfer [22], where the remaining convolutional as well as 
de-convolutional FCN-8s layers were initialized by the uniform distribution as 
per [23]. Furthermore, the first two FCN-8s decoder layers had their number of 
neurons reduced to 512 comparing to the 4096 neurons of the original FCN-8s 
in [14]. Such drastic reduction was justified by the requirement to recognize and 
segment only the single class of objects, i.e. fish body. The sigmoid activation 
function was used in the last layer. 

The described 200 images together with the corresponding hand-segmented 
body masks were used to train the FAS. The 200 image-mask pairs were ran-
domly split 80% - 20%, where the 80% of pairs were used as the actual training 
set and the remaining 20% were used as the validation set to assess the training 
process. Since the training set had such small number of images, the encoding 
VGG16 layers in FAS were fixed and excluded from training. The remaining 
trainable weights (excluding biases) were regularized by a weight decay set to 

41 10−× . The training and validation images as well as the masks were rescaled to 
1mm per pixel. Then each image-mask pair was extensively augmented for each 
epoch of training, i.e. one pass through all available training and validation im-
ages. Specifically, the python-opencv package was used to perform augmenta-
tions, where each image and if applicable the corresponding binary mask were: 
• randomly rotated in the range of [−180, +180] degrees; 
• randomly scaled vertically in the range of [0.8, 1] and independently hori-

zontally within the same range; 
• randomly cropped to retain 480 × 480 pixels; 
• each color channel was ±12.5 range randomly shifted; 
• randomly flipped horizontally and vertically; 
• ImageNet color mean values were subtracted as required when working with 

the VGG16 model. 
To assist better segmentation, the following loss function was adopted, 

( ) ( ) ( ), 1 , ,gt pred gt pred gt predloss Y Y dice Y Y bc Y Y= − + ,           (5) 

where: predY  and gtY  were the predicted and ground truth (i.e. seg-
mented-by-hand) 480 × 480 masks; ( , )gt predbc Y Y  was the standard binary 

https://doi.org/10.4236/wjet.2018.63B003


D. A. Konovalov et al. 
 

 

DOI: 10.4236/wjet.2018.63B003 20 World Journal of Engineering and Technology 

 

cross-entropy; and where ( ),gt preddice Y Y  was the Dice coefficient [24] ranged 
between zero and 1 (for identical predY  and gtY ). Since the sigmoid function 
was used as the last activation, the per-pixel predictions predY  ranged between 0 
and 1. The ground-truth gtY  was per-pixel encoded as zeros for the back-
ground pixels and ones for the body pixels. The training and validation losses 
were averaged over all pixels and all corresponding images obtaining the total 
training and validation losses for each epoch. 

Keras implementation of Adam [25] was used as the training optimizer. The 
Adam learning-rate (lr) was set to 0.001lr = , where the rate was halved every 
time the total epoch validation loss did not decrease after 16 epochs. The train-
ing was done in batches of 8 images, and was aborted if the validation loss did 
not decrease after 32 epochs, where the validation loss was calculated from the 
validation set of images and masks, which were not used by the optimizer for 
training the FAS model. While training, the FAS model with smallest running 
validation loss was continuously saved. Furthermore, if the training was aborted, 
it was restarted (from the previously saved FAS model) two more times with the 
initial learning rates 30.5 10lr −= ×  and 30.25 10lr −= × , respectively. Note that 
both the validation images were also augmented by the preceding augmentation 
pre-processing steps in order to prevent the indirect fitting of the validation im-
ages. 

3. Results and Discussion 

Multiple training sessions with different random train/validation split produced 
very similar results. The FAS model and its training procedure exhibited negligi-
ble over-fitting as demonstrated by the comparable final training and validation 
loss values (mean of Equation (5)) of 0.063 ± 0.001 and 0.072 ± 0.003, respec-
tively. The training and validation per-pixel accuracies were 0.9945 ± 0.0005 and 
0.9935 ± 0.0005, respectively. The trained FAS model was applied to all available 
(scaled to 1mm per pixel) images including the 200 images used for training. By 
its design FAS could be applied to images of any size. However in practice, it was 
significantly faster to pad available images by zero values to fill the fixed 640 × 
640 shape and then feed them into FAS for prediction, where the 640 × 640 
square was large enough to fit all available scaled images. For each image, the 
prediction heat-map of [0, 1] range pixel values were further processed by set-
ting values above 0.51 to ones (i.e. predicted as the body pixels) and the rest to 
zeros (i.e. the background pixels). The largest connected non-zero region in each 
image was accepted as the final fish body segmentation, and its area in pixel2 (i.e. 
mm2) was calculated. Overlapping fish and/or multiple fish per image were out-
side the scope of this work. 

It took 2 - 3 hours to train FAS on Nvidia GTX 1080Ti GPU. However, once 
trained the FAS model was fast enough to process 640 × 640 images at a rate of 
30 images per second on the same GPU, and therefore it could even be deployed 
in the aquaculture production processing video feed in real time. All predicted 
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areas were plotted against the measured weights in Figure 3. The results were 
fitted by Equations (3) and (4) to minimize the mean squared error (MSE) be-
tween the predicted and measured weights. Quite a few points (Figure 3) could 
be viewed as outliers, e.g. due to human errors in the recorded weights, or due to 
fish having an expected odd shape due to malnourishment, disease or deformity. 
When the automatic image scaling method [11] was applied to the BR445 set, in 
the order of 1% human errors were found and corrected. Therefore it was feasi-
ble to assume that the comparable human error rate of 1% could be present in 
the weights values, which unfortunately could not be checked or corrected due 
to the fish having been sold. Therefore an important practical quality assurance 
recommendation naturally follows: if possible, the digital weight display should 
be visible in the same image together with the measuring ruler. 

The difference in the Equations (3) and (4) fitting results (Figure 3) was open 
for interpretation. A better fit does not necessarily yield better predictive accu-
racy on future unseen samples; see detailed discussion in [26]. Therefore, Equa-
tion (4) was arguably more robust to errors since it has only one fitting parame-
ter. Furthermore, the stability of Equation (4) was confirmed by its application 
to the training set of hand-segmented images (Figure 2) and to more than 1000 
automatically segmented images (Figure 3), yielding essentially identical results 
of 1.50.1695M S= ×  and 1.50.170M S= × , respectively. 

4. Conclusion 

The trained on 200 images Segmentation Convolutional Neural Network was 
used to automatically segment fish-body from background in all of this study’s 
1072 digital images of Asian seabass (barramundi, Lates calcarifer). The auto-
matically extracted fish-body areas and the corresponding manually measured 
weights were fitted to yield highly accurate single- and two-factor mass-from- 
 

 
Figure 3. Relation between the measured fish weight ( M  in g) and the automatically 
segmented fish-body image area ( S  in cm2) fitted as red line by Equation (4), 

1.50.1702M S= × , 2 0.9828R = , 5.58%MARE = . Dotted line is the fitted Equation (3), 
1.550.1239M S= × , 2 0.9834R = , 4.53%MARE = . Lighter color denoted higher density 

of the area-weight data points. 
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area estimation models, see Figure 3. The presented automatic segmentation 
approach together with the previously reported automatic scaling of fish images 
method [11] could potentially reduce cost and time of fish mass-estimation on 
industrial scale. 
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