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Abstract 
Normal lung CT texture features have been used for the prediction of radia-
tion-induced lung disease (RILD). For these features to be clinically useful, 
they should be robust to tumor size variations and not correlated with the 
normal lung volume of interest, i.e., the volume of the peri-tumoral region 
(PTR). CT images of 14 lung cancer patients were studied. Different sizes of 
gross tumor volumes (GTVs) were simulated and placed in the lung contrala-
teral to the tumor. 27 texture features [nine from intensity histogram, eight 
from the gray-level co-occurrence matrix (GLCM) and ten from the gray-level 
run-length matrix (GLRM)] were extracted from the PTR. The Bland-Altman 
analysis was applied to measure the normalized range of agreement (nRoA) 
for each feature when GTV size varied. A feature was considered as robust 
when its nRoA was less than the threshold (100%). Sixteen texture features 
were identified as robust. None of the robust features was correlated with the 
volume of the PTR. No feature showed statistically significant differences (P < 
0.05) on GTV locations. We identified 16 robust normal lung CT texture fea-
tures that can be further examined for the prediction of RILD. 
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1. Introduction 

Stereotactic body radiotherapy (SBRT) has emerged as a standard therapy for 
early-stage non-small cell lung cancer (NSCLC), especially in patients who are 

How to cite this paper: Choi, W., Riyahi, 
S., Kligerman, S.J., Liu, C.-J., Mechalakos, 
J.G. and Lu, W. (2018) Technical Note: 
Identification of CT Texture Features Ro-
bust to Tumor Size Variations for Normal 
Lung Texture Analysis. International Journal 
of Medical Physics, Clinical Engineering 
and Radiation Oncology, 7, 330-338. 
https://doi.org/10.4236/ijmpcero.2018.73027  
 
Received: June 12, 2018 
Accepted: August 4, 2018 
Published: August 7, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/ijmpcero
https://doi.org/10.4236/ijmpcero.2018.73027
http://www.scirp.org
https://doi.org/10.4236/ijmpcero.2018.73027
http://creativecommons.org/licenses/by/4.0/


W. Choi et al. 
 

 

DOI: 10.4236/ijmpcero.2018.73027 331 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

considered poor surgical candidates. Despite its excellent cure rate, radiation-induced 
lung disease (RILD) is a frequent dose-limiting complication of SBRT [1] [2] [3]. 
Predicting the risk of RILD is very helpful for treatment planning and disease 
management [4] [5] [6]. 

Normal tissue complication probability (NTCP) models were proposed to 
predict the possibility of toxicity according to the dose [7] [8]. Dosimetric and 
clinical risk factors have been well established for the NTCP models for RILD, 
but they are limited regarding performance and generalizability [5] [9]. Recently 
radiomics particularly computed tomography (CT) texture features have been 
used to improve the prediction accuracy [10] [11]. CT texture features quantify 
the spatial patterns of tissue density, such as homogeneity, coarseness, and cor-
relation of CT attenuation [12]. Therefore they can characterize the radiologic 
manifestations of RILD, which include ground-glass opacities, consolidation, 
and pleural effusions [4]. They have been used to predict radiation pneumonitis 
in the peri-tumoral region (PTR) [13]. 

It is important to identify which features are robust to assure the accuracy and 
generalizability of a prediction model. Previous robustness studies concerned 
about registration [10] [14] [15], test-retest [16] [17] [18], machine variability 
[17] [18] [19], and inter-observer variabilities on tumor delineation [16] [20]. 
For a feature to be clinically useful, it should also be robust (relatively invariant 
or unbiased) to tumor size variations and not correlated (non-redundant) with 
the normal lung volume of interest [21] [22]. We performed a simulation study 
to examine CT texture features extracted from the PTR in the lung. 

2. Methods 

We simulated different sizes of gross tumor volumes (GTVs) on free-breathing 
planning CT scans from 14 patients with lung cancer. This retrospective study 
was approved by our institutional review board. Fourteen patients treated with 
SBRT for non-small cell lung cancer were randomly identified. All CT scans 
were acquired with a Philips Big Bore Brilliance 16-slice CT scanner (Philips 
Healthcare; Andover, MA) using the same acquisition parameters: 120 kV, 400 
mAs, 16 × 1.5-mm collimation, 3-mm slice thickness, and approximately 1 × 1 × 
3-mm resolution. We excluded two patients who had multiple tumors on the 
right lung and the left lung. The remaining patients had a single primary lung 
tumor. We simulated various sizes of spherical GTVs in the normal lung con-
tralateral to the tumor. The peri-tumor regions of the simulated GTVs were 
analyzed for texture feature robustness. Figure 1 shows the flowchart of the fea-
ture robustness analysis and the details are given in the following sections. The 
following image analysis was implemented using the Insight Segmentation and 
Registration Toolkit (ITK, National Library of Medicine; Bethesda, MD) [23]. 

2.1. GTV Simulation 

For each patient, six spherical GTVs of various sizes (10, 20, 30, 40, 50, and 60  
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Figure 1. A flow chart for the robustness analysis of normal lung CT texture features ex-
tracted from the PTR (red contour excluding the simulated blue GTV). The mid-size (30 
mm) GTV was used as the reference tumor [ref]. 

 
mm diameters) were simulated in the contralateral lung. We placed all GTVs in 
the upper and lower lobes of the lung respectively, resulting in 12 GTVs for each 
patient and a total of 168 GTVs for all patients. The GTVs were placed to in-
clude homogeneous normal lung tissues at the same (upper or lower lobe) loca-
tion for each patient while trying to exclude large blood vessels and underlying 
diseases (such as emphysema).  

2.2. Texture Feature Extraction 

A total of 27 texture features were extracted from each normal lung volume of 
interest, i.e., the PTR [13], defined as a 30 mm 3D expansion around the GTV 
(not including the GTV itself) excluding the chest wall and mediastinum. The 
texture features included nine intensity-histogram-based features and 18 spa-
tial-frequency-based features (eight from the gray-level co-occurrence matrix 
[GLCM] [12] and ten from the gray-level run-length matrix [GLRM] [24] [25]).  

Intensity-histogram-based texture features quantify the level and distribution 
of CT attenuations. The features were obtained by statistical measures of CT 
attenuation for all voxels within each PTR. These intensity features include 
first-order statistical measures and higher-order statistical measures.  

Spatial gray-level co-occurrence and run-length matrixes estimate image prop-
erties related to higher-order statistics which consider the relationship among 

https://doi.org/10.4236/ijmpcero.2018.73027


W. Choi et al. 
 

 

DOI: 10.4236/ijmpcero.2018.73027 333 Int. J. Medical Physics, Clinical Engineering and Radiation Oncology 

 

voxels or groups of voxels. The CT attenuation within each PTR was first nor-
malized to the range from 0 to 255. The texture features were then computed on 
the GLCM and GLRM of the normalized volumes. The mean value of each fea-
ture was computed over all 13 directions to obtain rotationally invariant fea-
tures. 

2.3. Feature Robustness 

We chose the mid-size (30 mm diameter) GTV as the reference tumor [ref]. The 
robustness of a feature F when GTV size varied was assessed using the norma-
lized range of agreement (nRoA) with Bland-Altman method [14] [26] 
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where bias_ refi iF F F= −  was the difference of refF  (F calculated in the PTR of 
the [ref] tumor) and iF  (F calculated in the PTR of the ith GTV); 

biasFµ  and 

biasFσ  were the mean and the standard deviation of bias_iF  over all GTVs; and 
nGTVs and Fµ  were the total number of GTVs (168) and the mean F value 
across all patients, respectively. A smaller nRoA indicated smaller variation in F 
as GTV size changed, and thus higher robustness of a feature. A feature was 
considered as robust if its nRoA was less than a threshold chosen around the 
nRoA of the volume of the PTR [10]. Furthermore, a feature was regarded as not 
correlated with the volume of the PTR when their correlation was lower than 
0.70. 

3. Results 

We considered a feature as a robust feature if its nRoA was smaller than the 
nRoA of the volume of the PTR. However, as shown in Figure 2, although the 
nRoAs of three features (GNU, Sum, and Kurtosis, Feature #17-19) were smaller 
than the nRoA of the volume (#20), we considered them as unrobust features. 
Because (1) there was a large gap in nRoA between Inertia (#16, 83.6%, robust) 
and the three features, and (2) the nRoAs of the three features were very similar 
to the nROA of the volume (122.3%). Based on these observations, we chose an 
nRoA threshold of <100% to define a robust feature.  

We identified 16 robust normal lung CT texture features extracted from the 
PTR whose nRoA was smaller than the threshold (100%) as shown in Table 1. 
Most intensity histogram features were robust except maximum, sum and Kur-
tosis. All GLCM features were robust except cluster shade, cluster prominence, 
and Haralick’s correlation. Both run emphasis features (SRE and LRE), and all  
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Figure 2. The cumulative graph of features vs. nRoA. Blue diamonds: texture features, 
orange circle: volume of the PTR, and red line: the threshold for robustness. 

 
three high gray-level emphasis features (HGRE, SRHGE, and LRHGE) were ro-
bust. On the contrary, both nonuniformity features (GNU and RNU), and all 
three low gray-level emphasis features (LGRE, SRLGE, and LRLGE) were unro-
bust. Particularly, all three low gray-level emphasis features had large nRoAs 
(155% - 264%), indicating large variations when GTV size changed. 

None of the robust features was correlated with the volume of the PTR (Table 
1), suggesting that they can provide supplemental information to the volume. 
Two unrobust features (sum and RNU) were highly correlated with the volume 
of the PTR. No feature showed statistically significant differences (P < 0.05) on 
GTV location (upper vs. lower lobe).  

4. Discussion 

Lung texture contains a distribution of both low attenuation and high attenua-
tion tissues. Low attenuation predominates as a large portion of the lung volume 
consists of air within the airways and alveoli. However, a percentage of the lung 
is comprised of higher attenuation normal tissues including the vasculature and 
interstitium. Also, various pathologic states such as a tumor, pneumonia, he-
morrhage, edema, and fibrosis lead to increased lung attenuation.  

Most of the intensity and GLCM features are scale-invariant by definition, but 
some of them (e.g., maximum, kurtosis, CS, CP, and HC) were unrobust to GTV 
variations. Because, they were very sensitive to intensity variation affected by the 
volume change. 

Most of the runs (same intensity straight lines) in the normal lung tissue are 
short low gray-level runs due to the proximal airway and alveoli which have high 
attenuation boundaries such as airway wall and interstitium. There are some  
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Table 1. Normal lung CT texture features: normalized range of agreement (nRoA), cor-
relation with the volume of the PTR, and P-value of the correlation. 

 
nRoA (%) Correlation P-value 

Volume of the PTR 122.3 1.00 <0.05 

Robust Features    

Intensity    

Minimum 7.0 −0.32 <0.05 

Median 5.6 0.06 0.25 

Mean 8.5 0.09 0.10 

Variance 67.6 0.30 <0.05 

Standard deviation (SD) 35.6 0.33 <0.05 

Skewness 42.3 −0.36 <0.05 

GLCM    

Energy 72.6 −0.22 <0.05 

Entropy 11.6 −0.31 <0.05 

Correlation 69.5 −0.17 <0.05 

Inverse difference moment (IDM) 32.3 −0.08 0.13 

Inertia 83.6 0.03 0.57 

GLRM    

Short run emphasis (SRE) 1.5 0.25 <0.05 

Long run emphasis (LRE) 42.9 −0.63 <0.05 

High gray-level run emphasis (HGRE) 66.1 0.39 <0.05 

Short run high gray-level emphasis (SRHGE) 66.7 0.39 <0.05 

Long run high gray-level emphasis (LRHGE) 55.3 0.25 <0.05 

Mean of Robust Features 41.8 
 

 

Unrobust Features    

Intensity    

Maximum 125.0 −0.07 0.21 

Sum 119.9 −0.85 <0.05 

Kurtosis 120.1 −0.40 <0.05 

GLCM    

Cluster shade (CS) 139.5 0.09 0.09 

Cluster prominence (CP) 194.7 0.08 0.14 

Haralick’s correlation (HC) 130.9 0.38 <0.05 

GLRM    

Gray-level nonuniformity (GNU) 117.8 0.62 <0.05 

Run-length nonuniformity (RNU) 124.4 0.85 <0.05 

Low gray-level run emphasis (LGRE) 159.6 −0.24 <0.05 

Short run low gray-level emphasis (SRLGE) 155.0 −0.23 <0.05 

Long run low gray-level emphasis (LRLGE) 264.0 −0.32 <0.05 

Mean of unrobust features 150.1   
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short high gray-level runs from the vasculature, interstitium and various patho-
logic states as well as some long low gray-level runs from the distal airway. 
When the GTV size increased, long low gray-level runs within the PTRs were 
truncated into shorter runs. Therefore, all three low gray-level emphasis features 
(LRGE, SRLGE, and LRLGE) and both run-length distribution features (GNU 
and RNU) varied significantly due to different truncation effects of various-size 
GTVs. On the contrary, the high-attenuation tissues like small vasculature or 
interstitium had mainly short runs, the distribution of these short high gray- 
level runs was not significantly affected. Therefore, all three high gray-level em-
phasis features (HGRE, SRHGE, and LRHGE) had smaller variations (nRoAs = 
66.1%, 66.7%, and 55.3%). 

This study has a limited scope: examining the robustness of normal lung CT 
texture features when simulated tumor volume changes. As such it has several 
limitations: it was only a simulation study, the simulated spherical GTV were 
much simplified compared to the shapes of real tumors. In addition, no predic-
tion model was constructed, and no real RILD case was studied. In the future, we 
will feed the identified robust texture features along with the conventional dose 
and clinical risk factors [8] [9], to prediction models in real RILD datasets. 

5. Conclusion 

We identified 16 robust lung CT texture features which were relatively invariant 
to tumor size variations and not correlated with the volume of the PTR. Particu-
larly the three GLRM high gray-level emphasis features (HGRE, SRHGE, and 
LRHGE) can characterize the radiologic manifestations (increased lung attenua-
tion) of pulmonary abnormalities. Hence these features can be further examined 
for the prediction of the RILD. 
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