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Abstract 
 
A loop diagram approach to the nonlinear optical conductivity of an electron-phonon system is introduced. 
This approach can be categorized as another Feynman-like scheme because all contributions to the self-en- 
ergy terms can be grouped into topologically-distinct loop diagrams. The results for up to the first order 
nonlinear conductivity are identical to those derived using the KC reduction identity (KCRI) and the state- 
dependent projection operator (SDPO) introduced by the present authors. The result satisfies the “population 
criterion” in that the population of electrons and phonons appear independently or the Fermi distributions are 
multiplied by the Planck distributions in the formalism. Therefore it is possible, in an organized manner, to 
present the phonon emissions and absorptions as well as photon absorptions in all electron transition proc-
esses. In additions, the calculation needed to obtain the line shape function appearing in the energy denomi-
nator of the conductivity can be reduced using this diagram method. This method shall be called the “KC 
loop diagram method”, since it originates from proper application of KCRI’s and SDPO’s. 
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1. Introduction 
 
Studies of the optical transitions in electron systems are 
powerful for examining the electronic structure of solids, 
because the absorption lineshapes are quite sensitive to 
the type of scattering mechanism affecting the transport 
of electrons and to the interaction of electrons with in-
tense laser light. A general method for gaining knowl-
edge on the dynamics of a system is a perturbation-based 
study. This consists of dividing the Hamiltonian into an 
exactly soluble part and a nontrivial perturbativepart, the 
effect of which is studied in order. The most popular 
method for representing the terms in perturbative expres-
sions is Feynman diagram. This diagrammatic method 
can be used directly for reasoning and problem solving 
as well as for representing the perturbative expressions 
by drawings. The easily recognizable topology of the 
diagrams makes the diagrammatic method a powerful 
tool for constructing approximation schemes. Further-
more, the diagrammatic representation can be a sugges-
tive tool providing physical intuition to quantum dynam-
ics by increasing the diagrams to a representation method 
for possible alternative physical processes.  

On the other hand, the method, although invented origi-
nally for particle physics, has been adopted in solid-state 
physics, where the behavior of phonons may be ex-
pressed in analogy to that of photons, e.g. in the theory 
of superconductivity. An electron traveling in a solid 
distorts the lattice due to the Coulomb interactions with 
the ions. The lattice distortion in turn has a feedback on 
the electron dynamics, resulting in an increase in the 
electron mass and a shortening of the electron lifetime in 
a particular quasi-particle state. This effect is described 
in terms of the self-energy that the electron acquires due 
to the electron-phonon interaction. The real part of 
self-energy describes the change in electron energy, and 
the imaginary part provides information on the electron 
lifetime. The electron self-energy can be calculated using 
the standard Feynman diagram. 

The standard diagram method can represent the tra-
jectories of particles well in the intermediate states of the 
scattering processes. However, in the line shape (or self- 
energy) function for electron-phonon system, the Fermi 
distribution functions for electrons and the Planck dis-
tribution functions for phonons are simply added [1-7], 
which violates the “population criterion” in that the 
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population of electrons (fermions) and phonons (bosons) 
appear independently. In other words, a theory can be 
said to be proper if the Fermi distributions are multiplied 
by the Planck distributions in the formalism. 

The present authors have developed some projection 
methods for the optical transitionsin electron-phonon 
systems and used them to calculate the linewidths in 
semiconductors [8,9]. Normally, the resolvent factor 
contained in the conductivity tensor is expanded using 
projectors, and various formulae can be obtained. Re-
cently, the formalism was improved with the inclusion of 
nonlinear terms near the resonance points and suggested 
a meaningful result including the Fermi and Planck dis-
tribution functions properly with the proper use of the 
SDPO and KCRI [10-13]. This paper introduces a 
method for the nonlinear optical conductivity and line 
shape functions to represent them in loop diagrams. It 
can be categorized as another Feynman-like scheme be-
cause all the contributions to the line shape functions (or 
self-energy terms) can be grouped into topologically- 
distinct diagrams.  

The diagram approach to the nonlinear phenomena is 
based on the following methods. 
 
2. Methods 
 
For diagrammatic representation of the line shape func-
tions,    , we consider the form 

 
1

E   
               (1) 

where E E E   
1) Let an implicit state 

. 
  exist between state   

andstate  . 
2) There is a diagram (Figure 1) connecting the initial 

state   to the implicit state   with a dotted line and 
connecting the implicit state   to a state   with 
aclockwise loop. The dotted line and the clockwise loop 
correspond to  and  C q  , P   , respectively. 

Here   called the C-factor and  qC  ,P    
called the P-factor are defined as follows: 

   expqC q V iq r             (2) 

      , 1 1 1q qP N f f N f f            (3) 

where q  is the coupling factor that depends on the 
mode of the phonons and  is the Planck distribution 
function for phonons. 

V

qN
 C q  means that the state   

is coupled with the state   by a phonon with wave 
vector q and  ,P    means an electron transition 
from a state (distribution function:  ) to a state f  
(distribution function: 1 f

qN
) with a phonon emission 

(distribution function: ) minus a transition from a 

state 

1

 f  to a state 1 f   with a phonon ab-
sorption  qN . There is an another diagram connecting 
with a counterclockwise loop,  , P   , which is de-
fined  

     1f , 1 1P N N f fq qf           (4) 

In a loop, the upper and lower half circles correspond to 
phonon emission ( 1qN  ) and phonon absorption ( ). qN

3) There are diagrams connecting the final state   to 
the implicit state   with dotted line and connecting the 
implicit state   to a state   with a clockwise (or 
counterclockwise) loop. Figure 2 corresponds to clock-
wise loop. 

4) Assign  qG    for the clockwise loop  
 ,P   , and assign  qG    for the counter-

clockwise loop  ,P   . Here  qG   called the 
G-factors are defined as follows: 

    1
.G E  


  q qE           (5) 

By  qG  
E E 

, the energy conservation is satisfied, 
i.e., q     .  

5) Let the states connected to the dotted line involve 
no loops. 

6) a) Multiply  C q , , and P  q G    for the 
clockwise loop. b) Multiply  C q , , and P  qG    
for the counterclockwise loop. 

7) Finally, sum all the diagrams after summing each-
diagram over all q and   values for the line shape func-
tion. 
 
3. Linear Optical Conductivity 
 
When an electromagnetic wave of frequency   is ap-
plied to a system along the l (x, y, z) direction, the linear 
optical conductivity is given by the following: [10-12] 

 
   

 

 
0

k lj r

E,

e
( )

f f
kl

 

 




 

   



            (6) 

where  X X   for electron states   and  , 
jk is the k component of the single electron current op-  
 

 



 

Figure 1. The dotted line and the clockwise loop correspond 
to  αλC q  and  ,P λ ε , respectively.  

 
 


 

 

Figure 2. The dotted line and the clockwise loop correspond 
to  λβC q  and  ,P γ λ , respectively.  
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tering, the line shape would be like a delta function. 
However, as the electrons are scattered by phonons, the 
shape is broadened, so the line shape function    0

   
is involved.  

erator, rl is the l component of the electron position vec-
tor, f  is the Fermi distribution function for an electron 
with energy E , and E E E    . Equation (6) can 
be represented by the diagram in Figure 3. 

In Equation (6), there is no intermediate state between 
the initial state   and final state  , so the line shape 
function   0

   is represented by four loop diagrams 
in Figure 4. 

The energy term in Equation (6),  
   

10E 


    
 , represents the transition from  

the initial state   to the final state   with a photon 
absorption of frequency  . If there was no phonon scat From Figure 4,    0

   is obtained as 
 

              

         

20

,

2

,

, ,

, ,

q q
q

q q
q

f f C q G P G P

C q G P G P

     


  


        

       

 

 

      

     




              (7) 

 
which is identical to the line shape function given by 
Equation (4.8) in [11].  

The physical meaning of the first term in Equation (7) 
is as follows (see the first term in Figure 5). Since the 
absorption power delivered to the system is proportional 
to the real part of the conductivity [10,11],  qG    

c’s delta, i.e.,  becomes Dira
E  ~q qG E            , since   can be 

replaced by ia  0a  ( ) in the response scheme.  

Note that    1 1
πx ia P i x

x
     

 
 where P means  

principal value. Therefore,  qG    means that the 
implicit state   is determined by the energy of the final 
state, photon energy, and phonon energy, so that energy 
conservation can be satisfied, i.e. qE E      . 

  2
C q  means that the implicit state   is coupled 

with the initial state   by a phonon with wave vector q. 
 ,P    means that the reverse implicit transition 

from the final state   to the intermediate state   
with phonon absorption should be subtracted from the 
forward implicit transition from the intermediate state 
  to the final state   with a phonon emission. This 
means that when an electron-phonon interaction is in-
volved in the electron transition, there are local fluctua-
tions, i.e. a transition occurs via implicit states. In other 
words, an electron undergoes a transition from the im-
plicit state, which is coupled with the initial state, to the 
final state (or vice versa) with phonon emission (or ab-
sorption). The transition forms a loop because the ab-
sorption process maintains a balance with the emission 
process. Although  is called the line shape function, 
the line shape must be calculated from Equation (6) not 
directly from Equation (7). Therefore, all the states given 
by 



  are called the implicit states because they are in-
cluded only in . Therefore, the transition from the 
initial state 


  to the final state   occurs via two im-

plicit transitions, and the implicit state is connected to 

the initial state by  C q  and to the final state by 
 ,P   .  

Although the implicit transitions are not measured di-
rectly, they should be considered in the calculations. 
Note that the other theories [1-7] cannot provide any 
diagram representation because they contain the sums of  

two distribution functions, such as 
1 1

.
2 2qN f

   
 

   

 0
  The other three terms in   can be represented in 

a similar manner.  
In Figure 4 or Equation (7), the first two terms are  

 
  0

  

 

  

Figure 3. The transition from an initial state  to a final 
state 

α
β  with a photon absorption of frequency  and a 

line shape function 
ω

   0
βα ω . 

 

 




 
 



 







  

Figure 4. The dotted straight line means that the implicit 
state λ is coupled with the initial state α by a phonon in the 
first diagram. Two implicit transitions occur between the 
implicit state λ and final state β, which forms a loop. The 
other three diagrams can be interpreted in a similar man-
ner. 
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topologically equivalent because the absorption of pho-
tons appears while phonons can be both absorbed and 
emitted in the transitions. The absorption (emission) of a 
photon or a phonon in the forward transitions is identical 
to the emission (absorption) in the reverse transitions, 
with negative contributions (minus signs) assigned to the 
reverse transitions. The final two terms are also topo-
logically equivalent for the same reason. A net transition 
is possible because the implicit states are determined 

variously according to the energies of the final (or initial) 
state, photon energies, and phonon energies. 
 
4. First-Order Nonlinear Optical  

Conductivity 
 
The first-order nonlinear optical conductivity for two 
incident electromagnetic waves of frequencies 1  and 

2  is given by the following [10-12] 
 

 
     

   
 

   
     

   
 

   

2
1 2 0 11

, 1 1 12 1

0 12
1 1 12 1

,
,

,

k l m

klm

k l m

j r r f f
e

E E

j r r f f

E E

   

      

   

   

  
   

   

 
 

   

 

    


 

 

2

2





                  (8) 

 
where 12 1 2    . For the two photon process, there 
is an intermediate state   between the initial state   
and final state  . The first term in Equation (8) means 
thatthere is an intermediate transition from the interme-
diatestate   to the final state   with photon ( 1 ) ab-
sorption and line shape function    0

1   and the direct 
transition from the initial state   to the final state   
with two photons ( 1 , 2 ) absorption and line shape 
function   11

1, 2   (Figure 5). Note that  

12 1 2E E

  is called the intermediate state to be discerned from 
the implicit state because it is explicitly included in the 
conductivity but not in the line shape function. 

Four loop diagrams exist because there is an implicit 
state   between state   and state   through E  in 
the first term in Equation (8) (Figure 5). The first two 
terms involve 1  in the    transition of Figure 6, 
considering   as a pseudo-   state through  C q  
and other two terms involve 12  in the    transi-
tion of Figure 5.  

E           . Therefore   11
1 2,    can be expressed as follows: 

 

              

       

        

211
1 2 1 1

,

2

12

2

12

, ,

, ,

, ,

q q
q

q

q

f f C q G P G P

C q G P P

C q G P P

     


 

 

,         

     

     

 

 

 

       

     

     



             (9) 

 
which is identical to the line shape function given by 
Equation (5.7) in [11]. The physical meaning of the third 
term in Equation (9) is as follows:  12 qG

5. Concluding Remarks  

   
means that the implicit state   is determined by the en- 
ergy of the final state  , two photon energies, and pho-
non energy; and   2

C q  means that the implicit state 
  is coupledwith the initial state   by a phonon with a 
wave vector q. There are two forward implicit transitions 
and two reverse implicit transitions with a center on the 
implicit state  . All the implicit states and types of pho- 
nons are included in the processes by the sums in Equa-
tion (9). The other three terms in 1 2

 11  , 
   12

1 2,

  can be in- 
terpreted in a similar manner. Similarly,    
can be obtained. In Figure 6 or Equation (9), the first 
two terms and last two terms are topologically equivalent 
pairs for the same reason as in Figure 5 or Equation (7).  

 
In conclusion, this paper introduced a loop diagram ap-
proach to the nonlinear optical conductivity formula for 
an electron-phonon system. It was possible to explain the 
phonon emissions and absorptions in all electron transi-
tion processes in an organized manner because the line 
shape functions include the electron distribution func-
tions properly as well as the phonon distribution func-
tions. Since the present diagram method is not the one 
representing the trajectories of particles in the intermedi-
ate stages of scattering processes, these diagrams should 
not be confused with the time-ordered diagrams in the 
Feynman scheme [14] or with the temperature diagrams 
in the Feynman-like scheme [15,16]. However, this 
method can be classified as another Feynman-like scheme,  
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   0

1 

 

12

   11

1 2,  

 

Figure 5. Two transition processes included in the first order 
nonlinear optical conductivity: 1) the intermediate transition 
from the intermediate state γ to the final state β with a pho-
ton ( 1 ) absorption and the line shape function ω    0

1βγ ω  2) 
the transition from the initial state α to the final state β with 
two photons ( 1, 2) absorption and the line shape function ω ω

   ,11
1 2βγα ω ω . 

 
 

 

 

 

 
 



1

112 2  

Figure 6. The dotted straight line means that the implicit 
state λ is coupled with the initial state α by a phonon in the 
third diagram. There are two forward implicit transitions 
and two reverse implicit transitions centered on the implicit 
state λ, which form loops. The other three diagrams can be 
interpreted in a similar manner. 
 
and shall be called the “KC loop diagrams” because all 
the contributions to the self-energy terms can be grouped 
into topologically-distinct loop diagrams based on the 
electron-phonon population topology originated by 
proper applications of KCRI’s and SDPO’s. This method 
can be applied further to other electron transition phe-
nomena.  
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