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Abstract 
The present paper solves the training problem that comprises the initial 
phases of the classification problem using the data matrix invariant method. 
The method is reduced to an approximate “slicing” of the information con-
tained in the problem, which leads to its structuring. According to this me-
thod, the values of each feature are divided into an equal number of intervals, 
and lists of objects falling into these intervals are constructed. Objects are 
identified by a set of numbers of intervals, i.e., indices, for each feature. As-
suming that the feature values within any interval are approximately the 
same, we calculate frequency features for objects of different classes that are 
equal to the frequencies of the corresponding indices. These features allow us 
to determine the frequency of any object class as the sum of the frequencies of 
the indices. For any number of intervals, the maximum frequency corres-
ponds to a class object. If the features do not contain repeated values, the er-
ror rate of training tends to zero for an infinite number of intervals. If this 
condition is not fulfilled, a preliminary randomization of the features should 
be carried out.  
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1. Introduction 

The classification problem addresses numerous questions in science and tech-
nology that involve the use of massive amounts of accumulated information in 
analyses of new data. These data play the role of incoming information in vari-
ous models of formalized complex systems. The accumulated information is 
represented by objects, and the features of objects are vectors, usually in Eucli-
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dean space [1] [2] [3].  
This representation of objects allows for the use of the powerful technique of 

linear algebra to study the properties of the corresponding samples. However, 
this method is based on a sufficiently strong assumption that does not take into 
account important features of the problem itself. In this problem, real objects are 
represented by information that describes quantitative images, patterns, and the 
values of randomly selected features include random errors derived from the 
measurements or observations. Uncertain data are organically inherent in such 
tasks relevant to the field of artificial intelligence, in which pragmatic informa-
tion is processed. A specific task is posed by some expert who, guided by profes-
sional expertise, classifies a set of real objects and describes their patterns that 
are obtained experimentally. Therefore, we here relate the sensory perception of 
a real object by an expert to the quantitative representation of that object. There 
clearly cannot be a one-to-one correspondence between the perception of the 
object and its measurement. 

Furthermore, existing methods assume the existence of metric space features 
and a smooth probability density function for objects of a certain class. Howev-
er, in a real problem, all objects have similar or identical feature values; thus, the 
object classes differ only in the probability densities of the features. However, 
only a generalized function can accurately consider the discontinuous densities 
of the features. Therefore, each of the existing methods is applied over a re-
stricted area whose boundaries can usually only be established experimentally. 

These considerations were taken into account when developing the data ma-
trix invariant method for solving the classification problem [4] [5]. According to 
this method, a given data matrix is one possible random realization of the set of 
matrices describing the properties of a sample. This set is here considered to be a 
set of invariants with respect to the class of objects. The method is based on a 
concept presented by L. Zadeh. This concept states that the solution of most 
problems does not require high accuracy because humans perceive only “a 
trickle of information” from the external world [6]. Moreover, in systems in 
which complexity exceeds a certain threshold, accuracy and practical sense are 
almost mutually exclusive. 

According to the method, solving the classification problem consists of two 
stages. In the “training phase” (following [1]), the method calculates a function 
that uses the simplest and most universal algorithm and establishes a rule ac-
cording to which the training sample is divided into classes. In the second stage, 
this function is used to classify new objects. 

This article presents a further development of the invariant method for use in 
the initial stage. A problem in which the properties of a multilevel system are 
largely independent of the characteristics of the system’s elements is examined 
here. This type of system can be structured expediently by coarsely “cutting” it 
into parts that represent information granules, the interactions of which can be 
described quite simply [7]. The role of such system is played by the aggregating 
information on the values of the features and the distribution of objects by 
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classes. Her work, which reduces to the interactions among granules, manifests 
itself in the frequencies of their appearance.  

2. Assumptions and Preliminary Observations 

The solution is sought in accordance with the following algorithm. The range of 
values of each feature is divided into an equal number of intervals and the num-
ber of each interval, called the index, in which the object feature falls is deter-
mined. The objects are then described by a set of indices, and the data matrix is 
transformed into an index matrix. For each feature, it is possible to find a subset 
of objects with the same index and these subsets are referred to as granules. The 
frequency of a certain object’s classes can then be calculated in terms of the 
composition of the granules. The sum of the frequencies of the granules that 
correspond to individual features is approximately equal to the frequency of oc-
currence of a certain class object. The maximum of this frequency gives an esti-
mate of the object class for any number of intervals.  

The proposed algorithm is conceptually based on the fact that the uncertain 
quantities are quantities that yield different quantitative information about a 
single entity. On this basis, the assumption is made here that the given values of 
the features are random and that values within a certain neighborhood are 
equally probable. According to this assumption, the probability distribution of 
features is piecewise constant. Therefore, each feature value of an object can be 
assigned an index, and for each class, the frequency of the teaching sample is 
calculated.  

The probability of a particular object class consists of a complete group of in-
dependent events of index appearance for all features in the same class. Then, 
the process of classification is reduced to a comparison of the frequencies of dif-
ferent class objects whose feature indices have the frequencies of the corres-
ponding classes. The formula of full probability allows estimating the probability 
of an object for each class, and its maximum defines an object class. 

In general, the compositions of granules (in terms of their feature values and 
object class) are highly uncertain, and it is advisable to reduce this uncertainty to 
eliminate possible classification errors. This objective can be partly achieved by 
increasing the number of intervals to infinity when the granules are composed 
only of objects with the same feature values. 

Since this level is measured by the amount of information entropy, the entro-
py of the information contained in the data matrix must also be increased. From 
the properties of entropy, it follows that such a result can be achieved by in-
creasing the number of options in each of the feature values. Practically, this 
means that it is advisable to reduce the number of equal values of each feature. 
This conclusion is consistent with the law of necessary diversity [8], which states 
that an organism’s assessment of its environmental impact and adaptation re-
quires the perception of the maximum number of variants of information values. 
Therefore, this study proposes randomizing the features by increasing their val-
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ues by a uniformly distributed random variable that is the same for all features of 
the object. All of the features then have different meanings, and the training will 
be asymptotically error-free. An analysis of the solutions for a variety of training 
sample models shows that this conclusion is valid for any real problem. 

The invariant method represents a model of processes in the sensory systems 
of animals and is intended to carry out class recognition by searching for proto-
type objects in the information stored in an animal’s brain [9]. A single algo-
rithm for implementing the method and model indicates the biological roots of 
the proposed approach and confirms its applicability. 

3. Features of the New Multidimensional Data Description  
System  

3.1. Statement of the Problem 

The basis of this work is the data matrix invariant method. This method allows 
the establishment of a function that divides the objects in a training sample into 
classes. The effectiveness of the method has been demonstrated using 9 databas-
es from a repository [10]. These databases cover a wide range of values in terms 
of the numbers of objects, features, and classes; the types of features; and the 
unevenness of the distribution of objects between classes. This article focuses on 
the limits of the application of the method for the first stage of the solution and 
the refinement of some features of the method. To this end, we consider the fol-
lowing training problem involving the application of models to sample data. 

Let ( ){ }| 1,sx s M= ∈X  be sample objects that describe feature vectors 

( )T

1 , ,s s s
Mkq q=q  . Additionally, Q  is a data matrix; iω  is a list of numbers of 

objects of class ( )1,i Mi∈ ; ,M Mi  and Mk  are the number of objects, classes 
and attributes, respectively, and there are no missing data. In the task, it is ne-
cessary to establish a function according to which objects are divided into classes 
and to assess the influence of various peculiarities of the data on the class recog-
nition accuracy. 

The properties of an object are determined by combining the values of its fea-
tures, and it can naturally be assumed that objects of different classes differ only 
in the probability distribution of the features. Therefore, each data set is created 
by the methods of statistical modeling as the union of sets of individual class ob-
jects with different feature densities. The values of each feature { }1 , , Mk

k k kq q q∈   
are generated by a mixture Mi  of normal distributions ( ), ,i i

k k kN q µ σ . Here, 
0i i

k kkµ µ µ= ∗  and 0i i
k kkσ σ σ= ∗  are the sample mean and sample standard 

deviation of the list of objects iω , respectively, and ,M kµ  and kσ  are model 
parameters. The values of 0i

kµ  and 0i
kσ  indicated in Table 1, where 3Mi =  

and 4Mk = , correspond to the Iris database [10]. The distribution of objects by 
class (5%, 35% and 60%) indicates that the data are “unbalanced”, which com-
plicates the classification problems [11]. 

Let us note the peculiarities of the models. Data sets are modeled with an ar-
bitrary combination ( ), 0.1,10M kµ∈  and ( )0.1,10kσ ∈ . By varying the  
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Table 1. Parameters of the initial distribution of features. 

Feature 
Sample mean Sample standard deviation 

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3 

k = 1 5.1 5.9 6.6 0.35 0.51 0.63 

k = 2 3.4 2.8 3 0.38 0.31 0,32 

k = 3 1.5 4.3 5.6 0.17 0.46 0.55 

k = 4 0.2 1.3 2.1 0.11 0.2 0.27 

 
rounding error, several new samples whose data matrices differ importantly are 
generated. The variance in several features of one of the classes can be zero. For 
the features of individual classes and the data set as a whole, the correlation de-
pendence varies widely, from very strong to very weak and from positive to neg-
ative. 

The sample models are identified by the character string a_b_c, where a and b 
are the values of kµ  and kσ , respectively, and c is the rounding parameter. 
For c, the values of 0, 1, 2 and 3 correspond to the rounding up of integers, 
tenths, hundredths and no rounding, respectively. The conclusions obtained in 
the work are based on an analysis of a large volume of calculated data, the cha-
racteristic features of which are illustrated in the figures cited in the paper. 

Within the framework of the method, we consider the vector of object features 
to be an ordered set of feature values to which the segments of the coordinate 
axes correspond. The object itself is considered to represent a certain point in 
the multidimensional coordinate system. The totality of such points for all sam-
pling objects determines the feature space. This space is not Euclidean, as is cus-
tomary in machine learning, because the additional assumption of the existence 
of the scalar product is not made. Here, we use only the structure of the space, 
the points of which differ in terms of their numbers and related information. 

3.2. Multidimensional Intervals 

Let us divide the objects into groups in which the values of each feature lie close 
to one another. For this purpose, we use multidimensional intervals that break 
the range of values of each feature into an equal number of intervals. For any k, 
we then obtain the intervals of values ), ,,k k m k m kq q q∈ + ∆  with the step 

( ) ( )max min 1k k kq q n∆ = − − , where 1n >  is the number of intervals; ( )1,m n∈  is 
the interval number; and min

kq  and max
kq  are the minimum and maximum 

values of the feature, respectively. We call m the feature’s index k of the object s 
if ), , 1,s

k k m k mq q q +∈  . 
There are two variants of indexation and of the corresponding function 

: s
kq mϕ → . The first variant realizes the dependence 

min

1
s
k k

k

q qm W
 −

= +  
∆ 

, 

where the function ( )W ⋅  calculates the integer part of the number. 

The second option assumes that s
kq  is renumbered and receives a number ( )t s  
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such that the value t
kq  is arranged in nondecreasing order: 1 2 M

k k kq q q≤ ≤ ≤ . 
The index m = 1 receives one or several objects (with numbers t) for which 

), ,,t
k k m k m kq q q∈ + ∆ , where min

,k m kq q= . If, with a further increase in t, this re-
lation is not satisfied for some 1t t= , we then take 1m m= +  and 1

,
t

k m kq q=  
and find the group of objects for which m = 2. In the same way, we successively 
determine the indices of all other values of the features. 

The indices computed in accordance with options 1 and 2 (hereinafter indices 
i1 and i2) may differ significantly. For example, under M = 100 and n = 1000, 
the values of [ ]1 1,1000i ∈ , and they are described by 100 different numbers, 
while the values of [ ]2 1,31i ∈ , and some numbers are repeated many times. The 
correlation coefficients of the feature vectors and their indices are equal to 1 for 
i1 and close to 1 for i2. 

The curves in Figure 1 illustrate the effects of the parameter n on the index 
values for the feature vector with M = 100 distributed according to the normal 
law. (For clarity, the curves are plotted for no decreasing feature values). The 
curves a1 and b1 correspond to the index i1 when n = 70 and 120, respectively, 
while similar curves a2 and b2 exist for index i2. Here and in the other figures, 
the identifiers of the curves are supplemented with identifiers of the variants of 
the indices. The graphs show that the indices i1 and i2 almost coincide for n < M 
and differ significantly for n > M. 

3.3. Granulation of the Given Data 

Given the uncertainty of the data, we introduce the assumption that all of the 
values of the features of the objects fall within a certain interval and include 
some random errors that are equal. For each indexing option, we find the data 
matrix mapping →Q D . Here, ( ),s kd=D  is the index matrix, and ,s kd  is 
the index feature k of the object s. The matrix D  has an important feature. Its 
elements do not characterize the meanings of the features of the objects; instead, 
these elements indicate the “locations” of their values in the structure of the ma-
trix Q . If we were to represent some feature value of the object in the form of a  
 

 
Figure 1. The index values for nondecreasing values of the feature vector with M = 100. 
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particle, it would be located in the element of the matrix D  that corresponds to 
the index for this feature. 

The matrix D  makes it easy to find subsets of objects ,k mZ  that have the 
same values of the ordered pair ( ) ( ), , s

kk m k d=  for any k and m. We call ,k mZ  
the information granule. 

Let ,k ml  be the number of objects in the granule ,k mZ , among which ,
i
k ml  

have class i. Thus, the frequency of objects in class i in this granule is 

, , ,
i i
k m k m k mg l l= . According to the accepted assumption, any object of class i in 

the granule ,k mZ  has the frequency ,
i
k mg  and therefore the sample probability 

( ) ,| s i
i k k mp s d m gω∈ = = . 

The event occurrence of vector sd  for objects of class i consists of the com-
plete group of independent events 1 , ,s s

Mkd d . It follows from the total proba-
bility formula that the probability estimate for this event is 

( ) , ,1

1| Mks i i
i k m k mkp s g g

Mk
ω

=
∈ = = =∑d d              (1) 

Here, ,
i
k mg  is the average frequency ,

i
k mg  for all k. The calculated class of 

object s corresponds to the maximum of this value for a given n:  

( )1arg max | s
n i Mi iI p s ω≤ ≤= ∈ =d d               (2) 

This formula establishes a rule for recognizing an object class as a result of 
training using the sample data. According to (2), the object class depends on the 
frequency ,

i
k mg , which serves as an objective measure of the membership of any 

object from the set X to a certain class based on separate features. The evaluation 
of the class is robust because the grouping of objects is performed in its calcula-
tion. This operation neutralizes the influence of sharply differing feature values. 

The accuracy of solving the training problem is determined by examining the 
fulfillment of the relation ( ) s

nI s i=  for each sample object. It is estimated by 
the frequency nγ , which is equal to the ratio of the total number of errors to the 
length of the sample. 

3.4. Influence of the Parameter n 

We are interested in the properties of the sequence { }nγ  where 2,3,n =  . 
For some k, let the granule ,k mZ  contain an object s of class i, as well as other 
objects, including the object w. Therefore, in any scheme, indexing is performed 
following the inequality 0 w s

k k kq q≤ − ≤ ∆ . 
Consider the limiting case of n →∞  corresponding to the step 0k∆ → . It 

follows from the above relation that w s
k kq q= . Since all of the values of the fea-

ture are different in statistical modeling and in the absence of rounding, this 
equality is satisfied only when w s= . The granule ,k mZ  then consists of a sin-
gle object s having class i, and the frequency , 1i

k mg =  for any ( )1,k Mk∈ . 
Hence, ( ) s

nI s i→  for all ( )1,s M∈ , and the sequence { }nγ  converges in 
probability to zero.  

Thus, Formulas (1) and (2) define a function that asymptotically error-free 
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calculates the class of any object of the training sample. 
The results of calculations of the function ( ) nf n γ=  for several samples ata 

value of n = 3000 are illustrated by the curves shown in Figure 2. For all of the 
curves, a notation system is adopted in which the symbol γ is followed by a 
string of characters that act as the identifier of the sample, and the indexing op-
tion i1 or i2 is then indicated. The graphs depict the sequence convergence 
process { }nγ . They show that the convergence rate for index i1 is higher than 
that for i2. 

The calculations show that the correlation coefficients of the features of indi-
vidual classes and the corresponding indices i1 and i2 do not differ significantly. 

3.5. Randomization of the Data 

The question of the limitations of the given data in solving the training problem 
using the method considered naturally arises. In connection, we note that the 
curves in Figure 2 are plotted for the samples in which all of the features have 
different values, as obtained directly by statistical modeling (for c = 3). In real 
machine learning tasks, objects often have repeated, identical values. This situa-
tion is not uncommon in the case of quantitative traits and is common in prob-
lems in which traits are not examined quantitatively, but are represented by, for 
example, nominal and ordinal features. Here, this situation is modeled by 
rounding the feature values because the number of different feature values in the 
matrix Q  can be significantly reduced by rounding. For example, if the value 
of c is decreased from 3 to 0 in sample 1_0.1_3, all of the values of 2q  will be 
equal to 3. 

The effect of rounding on the accuracy of training occurs via following me-
chanism. Consider a granule ,k mG  containing an object s of class i for some k in 
the case in which n →∞ . Suppose that there is a set of objects { }1 2, ,w w   of 
different classes in which 1 2w w s

k k kq q q= = = . For any other k, a similar ratio  
 

 
Figure 2. Influence of the parameter n on the accuracy of training. 
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can be constructed. However, it will concern an analogous set made up entirely 
or partially of other objects because two objects with the same characteristics 
cannot exist in the sample. All of the summands that determine the value of 

,
i
k mg  for the object s will be greater than zero. Since M n , most of the ana-

logous summands for the objects of the indicated sets will differ from zero only 
for some values of k and i. Therefore, given repeated values of the attributes, 
training errors occur. 

Figure 3 shows the results of calculations for the three samples before and af-
ter rounding to the nearest tenth (c = 3 and 1) for M = 200 and index i2. This 
figure shows that rounding leads to significant changes. A sequence { }nγ  does 
not converge in probability to zero; for sufficiently large values of n, there are 
portions with constant values nγ . 

This situation is explained by the fact that rounding changes the level of di-
versity in the data β , which is equal to the average number of different feature 
values in the sample. For example, for the sample 2_3_2 with M = 1000, a se-
quence of values { }3,2,1,0c =  corresponds to { }1000,478,87,11β = . Accord-
ing to the theory of K. Shannon, the amount of information per one feature val-
ue increases proportionally to ( ) ( )2 2log 1000 log β . In this case, this volume 
changes in the ratio 1:1.12 :1.55 : 2.88 . The corresponding increase in “infor-
mation overload” leads to a situation in which, for some objects, the values ,

i
k mg  

will be the same for different i given a sufficiently large n. Formula (2) will then 
not be able to correctly predict the class of objects. 

To avoid such errors, we use the idea of invariants and move from the data 
matrix to its invariant, in which features do not have repeating values. The inva-
riant of the data matrix is found by randomization according to the assumption 
that, for all ( )1,k Mk∈  and ( )1,s M∈ , we can replace s

kq  by s
k sq vα+ , where 

v is a random variable uniformly distributed on the segment [ ]0,1  and 0α ≥  
is a constant. Since the average values of each feature increase by 2α  with this 
transformation, the correlation dependence of the features will not change. 

The influence of the parameter α on the training accuracy is shown in the 
curves given in Figure 4. The curves represent the results of calculations for the 
sample 2_10_0 with M = 1000, the index i1 and the five values α = 0, 0.001,  
 

 
Figure 3. Effect of rounding on the accuracy of training. 
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Figure 4. The impact of randomization on the accuracy of training. 
 
0.1, 1 and 10. The curves show that the randomization effect occurs for any 

0α > . Since the values of the features are located on the segment [−7, 29], ran-
domization results in significant relative changes for some of these values. How-
ever, for all values of α, high-quality training is achieved; for these data sets, the 
influence of the parameter α is reflected only in the rate of convergence.  

Thus, due to randomization, we cannot completely neutralize the effects of 
low levels of diversity and achieve error-free training. 

3.6. Limitations of the Given Data 

In the initial stage of sample modeling, the objects of each class differed in the 
distribution of their features. Rounding violated this provision as columns of the 
data matrix ceased to represent the calculated distribution. Nevertheless, for all 
of the samples, error-free training was achieved. Below, we consider the question 
of whether error-free training will be achieved for any sample. 

Earlier, we examined samples that have equal values for some of the features 
and showed that the application of randomization enables the achievement of 
error-free training. It follows from computational experience that the case in 
which a relatively large number of objects have the same feature values requires 
special consideration. 

Let each value p of the feature occur pr  times and ( )1, ,p l l M∈ ≤ . In this 
case, the number of variants of the placement of the feature values is  

1 2

!
! ! !l

MK
r r r

=
∗ ∗ ∗

 

where 1
l

pp r M
=

=∑  [12]. For l M= , we obtain the limiting case in which all 
of the feature values differ from each other, for which 1 2 1Mr r r= = = =  and 

1 !K M= . 
If only v of M objects have different feature values, then 1r v=  and 

1 2 1v v Mr r r+ += = = = . The number of variants is then equal to 2
!

!
MK
v

= , and  

the attribute entropy decreases from ( )2 1log K  to ( )2 2log K . In another limit-
ing case in which all of the feature values are the same (as in the sample 
1_0.1_0)), we obtain v M=  and ( )2 2log 0K = . Here, the feature carries no 
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information and is not actually taken into account, although it is “claimed” to be 
one of the features. It is thus a “degenerate” feature. 

From the above dependences, it follows that the level of decrease in the en-
tropy of the feature and the information it contains depends on the ratio of M to 
v. If M = 100, then the maximum value of the entropy is ( )2log 100! 363=  bits 
due to the decrease in the repeated values of the features. Furthermore, for the 
sequence of values { }70,90,99v = , there will accordingly be 133, 45, 4.6 bits. 

As noted in the Introduction, the training problem, which is a stage of classi-
fication, is formulated by an expert. Only this expert can decide whether a ma-
trix carrying a limited amount of information can serve as a data matrix. For us, 
only the case v M=  is obvious. In this case, the “degenerate” feature will re-
ceive random information during the randomization stage, possibly distorting 
the essence of the problem. 

A similar situation occurs if the sample variance for the entire sample or one 
class (for example, sample 10_0.1_3) is close to zero. Most of the values of this 
attribute will then be concentrated near the mathematical expectation, and it 
may turn out that all of the other values are represented by an extremely limited 
number of indices. Note also that an uneven distribution of objects by class can 
enhance the effect of reducing the volume of information. In such cases, the se-
quence { }nγ  cannot converge to zero. If the resulting error is significant, the 
scheme for computing the invariants of the data matrix should then be changed 
by first converting the values of the corresponding feature. A similar transfor-
mation for the Adult database led to error-free training [5]. 

For real datasets, we can assume that the invariant method leads to practically 
error-free training. 

4. Conclusions 

This paper presents a solution to the problem of training sample models by em-
ploying the data matrix invariant method, which was developed to solve the 
classification problem. This solution is limited to finding a function according to 
that the objects in a training sample are divided into classes, studying the influ-
ence of various data features on the accuracy of training.  

The key idea of the method is structuring the information contained in the 
problem by introducing multidimensional intervals that allow us to roughly 
break up the given dataset into its component parts and to compute the infor-
mation granules for each feature. The granules possess an important property in 
that, given an infinite number of interval; each granule contains only the objects 
with the same feature value. 

The principle of the scheme of structuring information is reduced to dividing 
the whole, which is represented by multilevel data, into parts such that one can 
reproduce the whole from the lower levels to calculate the frequencies of these 
parts. This “whole” consistently represents the summary information of the 
sample, the classes, the objects, the features and the indices of the features. 
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Therefore, multidimensional intervals allow us to compare objects in a probabil-
ity space, and they play the role of the concept of distance in determining the 
positions of objects in Euclidean space. The advantage is that the evaluation of 
the probability of an object is incomparably closer to solving a problem than 
evaluating the position of an object in a metric space. 

In this paper, it is shown that the data matrix invariant method yields practically 
error-free training for any data matrix on the basis of a simple and universal algo-
rithm. This method has independent importance because it offers a new way of 
analyzing multidimensional data that do not rely on the concept of distance be-
tween objects.  
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