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Abstract 
 
It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- 
mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-
tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-
ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. 
We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and 
received intense attention motivated by problems in quantum field theory and molecular physics. By appeal 
to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving 
Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-
sent procedure does not involve free fitting parameters. 
 
Keywords: Information Theory, Fisher’s Information Measure, Legendre Transform, Quartic Anharmonic 

Oscillator 

1. Introduction 
 
It is well-known that a strong link exists between Fisher’ 
information measure (FIM) I [1] and Schrödinger wave 
equation (SE) [2-7]. In a nutshell, this connection is 
based upon the fact that a constrained Fisher-minimize- 
tion leads to a SE-like equation [1-7]. In turn, this im-
plies the existence of intriguing relationships between 
various SE-facets, and Jaynes’s maximum entropy prin-
ciple. In particular, basic SE-consequences such as the 
Hellmann-Feynman and the Virial theorems can be re- 
interpreted in terms of a special kind of reciprocity rela-
tions between relevant physical quantities, similar to the 
ones exhibited by the thermodynamics’ formalism via its 
Legendre-invariance property [5,6]. This fact demon-
strates that a Legendre-transform structure underlies the 
non-relativistic Schrödinger equation. As a consequence, 
the possible energy-eigenvalues are now seen to be con-
strained by such structure in a rather unsuspected way 

[5-7], a fact that allows one to obtain a first-order differ-
ential equation, unrelated to Schroedinger’s equation [7], 
that energy eigenvalues must necessarily satisfy. The 
predictive power of this new equation will be explored 
here. 

We will apply our formalism here to the quantum an-
harmonic oscillator, which is the paradigmatic testing- 
ground for new approaches to Schroedinger eigenvalue 
equation. Besides their intrinsic conceptual and mathe-
matical interest, anharmonic oscillators have received 
considerable attention over the years due to their practi-
cal relevance in connection with several areas of physics, 
such as quantum field theory and molecular physics, 
among others. In this kind of systems, the most intense 
focus has been traditionally concentrated upon the quar-
tic oscillator. General accounts containing illuminating 
references on this problem may be found, for instance, in 
[8]. Note that a perturbation series solution to this prob-
lem in powers of the anharmonicity-parameter   is 
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divergent-asymptotic for all > 0  [9]. Specifically, we 
will apply our procedure to treat the quartic anharmonic 
oscillator. By appeal to the Cramer Rao bound we obtain 
the particular solution that leads to the system’s eigen-
values without need of explicitly solving Schrödinger’s 
equation. More importantly, we do not need to appeal to 
any arbitrary or empirical parameter, as is common prac-
tice in other treatments [10]. The parameter-free nature 
of our treatment is evidence of the structural physical 
information that we incorporate to the theory via Fisher's 
information measure. 
 
2. Basic Ideas 
 
Let x be a stochastic variable and  , f x   the probabil-
ity density function (PDF) for this variable, which de-
pends on the parameter  . If an observer were to make 
a measurement of x and had to best infer   from such 
measurement, calling the resulting estimate  x   , 
one might ask how well could   be determined. Esti-
mation theory [1] tells us that the best possible estimator 
 x , after a very large number of x-samples is exam-

ined, suffers a mean-square error x  from   obeying 
the rule , where I is an information quantifier 
called the Fisher information measure (FIM), a non lin-
ear functional of the PDF that reads  

 2
 I x 1

   
2

 
 d  ,  ln , .I x f x f x 


              (1) 

Any other estimator must have a larger mean-square 
error (all estimators must be unbiased, i.e., satisfy 

 x  ). Thus, FIM has a lower bound. No matter 
what the parameter   might be, I has to obey   

 I x 2
1,                 (2) 

the celebrated Cramer-Rao bound [1]. 
In the case of physical Fisher applications, the par-

ticular instance of translational families has received a 
great deal of attention in the literature [1]. These are 
mono-parametric distribution families of the form 
   ,f x f x ,    known up to the shift parameter 

 . All family members exhibit identical shape. For such 
families one gets   

    2
ln f x

d .I f x x
 

 
 

 x





         (3) 

Focus attention now a system that is specified by a set 
of M physical parameters k . We can write ,k kA   
with  .k kA A x  The set of k -values is to be re-
garded as our prior knowledge. It represents our avail-
able empirical information. Let the pertinent probability 
distribution function (PDF) be  f x . Then,  

   d , 1,k k , .A xA x f x k M           (4) 

In this context it can be shown (see for example [2,3]) 
that the physically relevant PDF  f x

dxf

 minimizes FIM 
subject to the prior conditions and the normalization 
condition. Normalization entails , and, con-
sequently, our Fisher-based extremization problem adopts 
the appearance   

 x 1

0,     
1

d  d  
M

k k
k

I xf x xA x f x  


    
 

    (5) 

where we have introduced the  Lagrange mul-
tipliers 

 1M  
 0k   . In Ref. [2] on can find the details of 

how to go from (5) to a Schrödinger’s equation (SE) that 
yields the desired PDF in terms of the amplitude  x  

d by  define  2
f x   is of the form  x . This SE

 

   

2

2

1

1  
    ,

2 8

1
 ,

8

M

k k
k

U x
x

U x A x

 




 
    

  
         (6) 

and can be formally interpreted as the (real) Schrödinger 
equation (SE) for a particle of unit mass ( = 1 ) moving 
in the effective, “information-related pse potential” udo-
 U x  [2] in which the normalization-Lagrange multi-

plier ( 8 ) plays the role of an energy eigenvalue. The 

k  are ed, of course, by recourse to the available 
or information. In the case of one-dimensional sce-

narios, 

 fix
pri

 x  is real [11] and   
22ln

2
2

2

2

d 4 d

 
4 d

I x x
x x

x
x



 

        


 


 



       (7) 

so that using the SE (6) we obtain  

   

1

 .
M

I k k
k

A 


                (8) 

 
egendre Structure 

een the variational solutions f and 
th

L
The connection betw
ermodynamics was established in Refs. [2] and [4] in 

the guise of reciprocity relations that express the Legen-
dre-transform structure of thermodynamics. They con-
stitute its essential formal ingredient [12] and were re- 
derived à la Fisher in [2] by recasting (8) in a fashion 
that emphasizes the role of the relevant independent 
variables,   

 1
1

, ,  .
M

M k
k

kI A A A 


         (9) 

Obviously, the Legendre transform main goal is that of 
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anging the identity of our relevant variables. As for I 
we have   

 1
1

, ,  ,
M

M k
k

kI A   


          (10) 

so that we encounter the three reciprocity relations 
(proved in [2])  

 ; ;
M

k
k k k

kk k i

,
i

AI I
A

A

  
  

 
   

     (11) 

the last one being a generalized Fisher-Euler theorem. 

. Fisher Measure and Quantum Mechanical 

 
ince  belongs to and thus admits of a series 

 
3

Connection 

S  U x
ion in t

2  
-xexpans he powers-of -basis x, 2 3x x , etc.  [13]. 

Of course, the  kA x  themselves also belong to 2 . 
They can thus b ies-expanded in similar fashio
which enables one to base future considerations on the 
hypothesis that the prior-knowledge refers to powers k

e ser n, 

x , 
i.e.,   k

kA x . Assume then that one has gathe  
infor erning M moments 

red
mation conc kx . The “infor-

mation” potential U acquires the aspect  

  1 k ,
8 k

k

U x x             (12) 

and we consider that the first M summands suffice to 
obtain a satisfactory representation of  U x . Of course, 
our Lagrange multipliers are now to ntified with 


be ide
U x ’s series-expansion’s coefficients. 
 such Schrödinger-platform the viriFor al theorem reads 

[5]  

2

2
1

  1
  ( )    ,

8

M
k

k
k

x U x k x
xx




 
  

    (13) 

and thus, from (7) and (13) a virial-related expression for 
Fisher’s information measure can be obtained [5] in the 
fashion 

1

  ,
2

M
k

k
k

k
I x



              (14) 

Now, substituting such I-form into (8) and solving for 
  we find   

1

1  .
2

M
k

k
k

k
x 



    
 

          (15) 

 I  
— U

is explicit function of the M Lagrange multipliers 
x ’s series-expansion coefficients k  (the physi-

cal meters  para kx ). Equations (14) and (15) encode in 
adequate fashion the information provided by the virial 
theorem [5,6]. 

3.1. Fisher-Schröedinger Legendre Structure 

terestingly enough, the reciprocity relations (RR) (11) 

theorem [which leads to Equa-
tio

 by the quantum Hellmann- 
Fe

 that a Legendre structure underlays 
th

 
In
can be re-derived on a strictly pure quantum mechanical 
basis [5], starting from  

1) the quantum Virial 
ns (14) and (15)] plus  
2) information provided
ynman theorem.  
This fact indicates
e one-dimensional Schröedinger equation [5]. Thus, 

with   k
kA x , our “new” reciprocity relations are 

given by   

;  ;
k

M
k

k kk
kk i

,
i

xI I
x

x

  
 

  
   

 
 

  (16) 

FIM expresses a relation between the independent vari-

 
ables or control variables (the prior information) and I. 
Such information is encoded into the functional form 

 1 , , MI I x x  . For later convenience, we will also 

denote such a relation or encoding as  , kI x . We see 

that the Legendre transform FIM-stru olves ei-

 

cture inv
genvalues of the “information-Hamiltonian” and La-
grange multipliers. Information is encoded in I via these 
Lagrange multipliers, i.e.,  1, , ,M      together 

with a bigection 

 

   , kI x , .k   

.2. Two Scenarios 

n a



 
3
 

I   , kI x —scenario, the k  are functions depend-  

 theent on  kx -values. As sh wn in [6], substituting o
 by the RR given (16) in (14) one is led to a linear, partial 

differential equations (PDE) for I,   

1

  
2

.k
k k k

k

MI k I
I x

x x




   
 

       (17) 

and a complete solution is given by   

 

  2/
1

1

, ,   ,
M

M k
k

k
k

I x x C x




      (18) 

where are positive real numbers (integration con-kC  
stants). The I - domain is  

    1= , , M k
I o . Equation (18) states  

that for 

D x x x

> 0kx , I is a monotonically decreasing func-
tion of kx , and as one expects from a “good” informa-
tion measure [1], I is a convex function. We may obtain 

k  from the reciprocity relations (16). For > 0 kx  one 
ts,  ge
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  22
0 .

k kk
k kk

I
C x

kx


 
   


     (19) 

and then, using (8), we obtain the —normalization 

does exist and its 
Lagrange multiplier. 

The general solution for the I—PDE 
uniqueness has been demonstrated via an analysis of the 
associated Cauchy problem [6]. Thus, Equation (18) im-
plies what seems to be a kind of “universal” prescription, 
a linear PDE that any variationally (with constraints) 
obtained FIM must necessarily comply with. 

In the  , kα λ  scenario, the kx  are functions 
that depend  k on the  -values. As w owed in [7], an 
analog 

e h s
 -PDE exists. Substituting the RR given by (16) 

in (15) we are led to   

1

 1 .
2

M
kx k

kk k

k  
 

     
      (20) 

and a complete solution is given by  


  

   2 2

1
1

, , ,
M

D     k

M k k
k

 



       (21) 

where the s are positive real numbers (integration kD  
heconstants). T   -domain is  

  1, ,   M
M kD       . Also, Equation (21) 

states that for 0k  ,   is a monotonically decreasing 
function of the k , and as one expect from the Legendre 
transform of I,  end up with a concave function. We 
may obtain the 

we
kx ’s from the reciprocity relations 

(16). For   0k   one gets   

 
  22

 0.
2

k kk
k k

k

x D
k




   
 

   (22) 

and then, using (8) one us able to build up I. 
The general solution for   - PDE exists.

is
 Uniqueness 

, again, proved from an analysis of the associated 
Cauchy problem [7]. Thus, Equation (18) implies once 
more a kind of “universal” prescription, a linear PDE 
that all SE-eigenvalues must necessarily comply with. 

The mathematical structure of the Legendre transform 
leads to a relation between the integration constants kC  
and kD  pertaining to the I and   expressions, resp
tively iven by (18) and (21). In [7] we studied with 
some detail this relation. In our two scenarios, 

ec-
, g

 , kI x  
and  , k  , we have [7]  

 2  22
  , , with .

2 2
k k

k k k k k k k

k k
C C D D D C F     (23) 

Consequently, expressions (18) and (21) take the form, 

 

2/k

M M 
2 2

1 1

2
 ,  .

2 2

kk
k kk

k k

Fk k
I F

x
 



 

       
 

   (24) 

The reciprocity relations (19) and (22) can thus be 
economically summarized in the fashion   

 2
2 .

kk k
k kF x


            (25) 

 
4.1. The Reference Quantities Fk 

ure is undoubtedly its being an 
stimation measure known to obey the Cramer Rao (CR) 

, since our partial 
ifferential equation has multiple solutions, it is natural 

 
4. Present Results 

 
The essential FIM feat
e
bound of Equation (2) [1]. Accordingly
d
to follow Jaynes’s MaxEnt ideas and select amongst 
them the one that optimizes the CR bound, that consti-
tutes the informational operative constraint in Fisher’s 
instance. Of course, Jaynes needs to maximize the en-
tropy instead. We will also, without loss of generality, 
renormalize the reference quantities kF . This procedure 
is convenient because it allows us to regard these quanti-
ties as statistical weights that optimize the CR-bound. In 
other words, our procedure entails that we extremize   

   

 

22
1

2

22

, ,  

.

M

k

M
k

f F F I x x

Fk
x x

 

 
  



   (26) 

1 2 k
k x  

 

with the constraint  

  2/
1

1

, ,  1.
M

k
M k

k

F F F


            (27) 

pply now the preceding considera-
tions so as to obtain the eigenvalues of the quartic an-
harmonic oscillator. 
 
4.

ation for a particle of unit mass in a 
uartic anharmonic potential reads,  

We are going to a

2. Quartic Anharmonic Oscillator 
 
The Schrödinger equ
q

21  1 12 4     .kx x E
22 2 2x

             (28) 
 

 

where   is the anharmonicity constant. According to 
[7], cribe to (28) a Fisher measure and make 
then t llowing identifications: 

we can as
he fo  8E  , 2 4k   , 

4 4   . Accordingly, we have, in the  , k  —sce-
nario [C  (24)],  f.

1/2 1/31/2 1/3
2 2 42 3 .F F            (29) 

nctions f and 

4

The fu   defined by (26) 7), re-
spectively, can here 

 and (2
be recast [using (25)] as   
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  1/2 1/3

4  ,  1/2 1/3
2 4 2 2 4 2, 2f F F F F F   

After these preparatory moves we can recast our meth-
odology in a convenient specialized fashion, suitable for 
the task at hand. We just face the simple two-equations 
system: 

  1/2
2 4 2 4,  .F F F F    

   
 

2 4 2 4

2 4

, ,

,   1

f F F F F

F F

 



  



         (30) 

where  2 4
,F F   . Straightforward solution of it 

yields 

   
 

1/2 1/31/31/2
2 2 2 2 4

2

4 2

1 7 3  3 

1  ,

F F F

F F

     

 

 ,

hich we obtain 

  (31) 

from w 2F  and 4F . Substituting them 
into (29) we determine   and, of se, the eigenvalue  cour

8E  . Consider now SE ( aking 
given value of

 our 28), t = 1k  and a 
   (0. 000001 100  ). Th ction e fun

[Cf. Equation (26)]   2
4,  2f F

ts

d-

F x  exhibits, as a 
function of its argumen , a unique “critical” point that 

 (31). Using criticalf f , that optimi e CR- 
bound, we find a ou e that is in good 
agreement the literature. esting results in 
Table 1.  

In this way, after p aling with (24), with the 

k

I

n state eigenvalu
satisfies

See some inter

roperly de

zes th
gr

F  regarded as “FIM statistical weights” that optimize 
the Cramer Rao inequalities, we determine   as a func-
tion of the k  without passing first through a Schrödinger 

pro
r

di

formation measure, free of adjustable parameters, we 
Schrödinger energy-eigenvalues for

he quartic anharmonic oscillator

operators, whose use seems to constitute a promising

equation, which is a notable aspect of the present ap-
ach. Interestingly enough, the Cramer-Rao inequality 

us equivalent to the quantum uncertainty p inciple (see 
the Appen x for details and references). Thus, our 
methodology actually employs Heisenberg’s celebrated 
principle to pick up just one solution among the several 
ones that our partial differential equation possesses. 
 
5. Conclusions 
 
On the basis of a variational principle based on Fisher’s 

 
 

in
have obtained the 

e fundamental state of tth
(for several anharmoniticy-values). Our theoretical results, 
obtained without passing first through a Schrödinger 
equation, are in a good agreement with those of the lit-
erature. This constitutes an illustration of the power of 
information-related tools in analyzing physical problems. 

Thus, we have in this communication introduced a 
new general technique for eigenvalue-problems of linear 

Table 1. Ground-state eigenvalues of the SE (28) for k = 1 
and several values of the anharmonicity constant λ. The 
va

  

lues of the second column correspond to those one finds 
in the literature, obtained via a numerical approach to the 
SE. These results, in turn, are nicely reproduced by some 
interesting theoretical approaches that, however, need to 
introduce and adjust some empirical constants [9]. Our 
values, in the third column, are obtained by means the pre-
sent theoretical, parameter-free procedure. The fourth 
column displays the associated Cramer-Rao bound.  

  numE  8E   2 f I x  

0.0001 1.000074 1.000074 1.000059 

0.001 1.000748 1.000739 1.000591 

0.01 1.007373 1.007263 1.005824 

0.1 1.065285 1.063047 1.051255 

1 1.392351 1.353533 1.296590 

10 2.449174 2.213973 2.040974 

100 4.999417 4.212932 3.782394 

1000 10.639788 8.587748 7.599439 

 
venue,  the r re dis
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Appendix: Cramer-Rao and Uncertainty 
Principle 

 
It is well known that the Cramer-Rao inequality may be 
regarded as an expression of Heisenberg’s Uncertainty 
Principle (See, for instance, [1]). Remember that a pre-
cise statement of the position-momentum uncertainty 
principe reads [14]   

      
2

2 2
or ,

2 4
x p x p     

 
      (32) 

where 

   2 22 2x x x x x            (33) 

   2 22 2 .p p p p p          (34) 

In a one-dimensional configuration-space, if   is a 
normalizable real wave function,  

2

  
d

 
d 0 ,

2

p i i
x x

i x
x

 



 
   

 


  






 



2 2
2 2 2

2 2

  
d  .p x

x x
  

   
       (36) 

Substituting (35) and (36) in (34) and using (7) leads 
to the above mentioned connection between the uncer-
tainty in momentum p  and the Fisher’s measure I, 
i.e., 

 
2 2

2 2
2

 
d  

4
p x

x
 

   


 .I       (37) 

If this relation is substituted into (32) we immediately 
arrive to the the CR-bound,   

     
2

2 2 2
1.

4
x p I x     


      (38) 

Coming now back to the  , k  -scenario, one easily 
ascertains that Equation (26) can be given a clear 
“Heisenberg’s aspect” 

   

 

2 2

1
1

1/2 2/31/2 4/3
2 2 1 1

, ,   
2
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M k

M k k
k

k
f F F F

F F



 





 

   




 

x
       (35) 
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