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Abstract 

The multidimensional potential surface of a few (2 - 4)-electron atom shows 
near equilibrium configurations ridge structures. The electron wave diffrac-
tion from such a ridge is shown to induce a novel fictitious force which 
manifests itself as temporary electron-electron attraction. In contrast to a 
Cooper pair our pair does not need a lattice vibration and may be regarded as 
elementary prototype pair in an isolated atom. Also electron triples and 
quadruples are discussed. 
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1. Introduction 

Electronic structure of atoms and molecules is often well understood within the 
shell model. Each electron moves in a potential field generated by all other elec-
trons. Principal quantum numbers and angular momentum quantum numbers 
describe approximately the state of individual electrons. 

That traditional picture, however, breaks down at high multiple excitation, 
particularly near thresholds of multiple escape. The reason for that breakdown is 
that the electrons move no longer in potential valleys. This may be seen in the 
following simple model. 

To this end, we consider a two-electron-atom in a collinear configuration, the 
nucleus located between the electrons. The electron-electron distance may be 

1 2r rρ = +                             (1) 

the ir , i = 1, 2, being the electron-nucleus separations. The condition (1) may be 
satisfied by the parametrization 
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1

2 1
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ρ ε

=

= −
                          (2) 

with 0 < ε < 1. The electrostatic potential of this atom with nuclear charge Z  

1 2

1Z ZV
r r ρ

= − − +                         (3) 

reads then as function of the parameters ε and ρ 

1 1
1

Z ZV
ρ ε ε
 = − − + − 

                     (4) 

As long as 0ε ≈  or 1ε ≈  one electron is close the nucleus and experiences 
a Coulomb field. The electrons experience however no hydrogen-like force at all 
if  

d 0
d
V
ε
=                           (5) 

which has the solution 1 2ε = . At that ε-value the electrons have equal dis-
tances from the nucleus and are trapped in an equilibrium configuration. The 
Taylor expansion of (4) at 1 2ε =  reads 

24 1 16 1
2

Z ZV ε
ρ ρ
−  ≈ − − − 

 
                  (6) 

Equation (6) identifies this equilibrium as unstable because 
2

2 0V
ε
∂

<
∂

. Along  

the coordinate ε the potential shows an antioscillator, in the (ρ, ε)-scattering 
plane (6) represents a ridge. The importance of potential ridges for electronic 
excitation has been stressed recently [1]. 

The above model of a synthetic atom is not entirely unrealistic. Wannier [2] 
has studied the threshold ionization of H by electron impact. His model has been 
as follows. He assumes that the projectile electron transfers its kinetic energy 
onto the target electron. We are then confronted with two extremely slow elec-
trons in the field of the nucleus. We meet here exactly the situation described 
above; the projectile electron moves near a potential ridge. Within the frame-
work of classical Lagrange equations Wannier extracted from the decay of this 
negative complex the slope of the total ionization cross section. He found a 
power law with fractional exponent, 

( )1.127
0E Eσ ∝ − �

                     (7) 

where the fractional exponent stems from the curvature of the potential surface 
along the unstable equilibrium. 

The present paper goes fare beyond the classical Wannier work, and also be-
yond synthetic models. We correctly employ quantum theory to a real atom, and 
intend to investigate the electrons motion near unstable equilibria.  

The paper is organized as follows. In Section 2, we discuss the choice of suit-
able coordinates for two active electrons. Coordinates are suitable if the ridge 
structure of the potential can easily be described, and if the expression of the ki-
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netic energy is not too difficult. We have here to fight against two mathematical 
problems. 1) In consequence of correlation three/more-body Coulomb problems 
are not separable in any coordinate system. 2) Even if correlation is properly 
taken into account by suitable coordinates we arrive at non-adiabatic couplings 
[3] [4]. The present paper presents a coordinate frame which treats properly 
correlation near thresholds for multiple ionization, and eliminates at least in 
first-order non-adiabatic coupling. This repairs a fundamental short-coming of 
the familiar Born-Oppenheimer method. 

The method mentioned above has been recently outlined in a broader context 
[1]. Section 3 presents a detailed description in the example of two active elec-
trons. Section 4 compares our quantum treatment with the corresponding clas-
sical one. It is usually believed that Wannier’s cross section Formula (7) is an 
exact result although Wannier’s paper has nothing to do with quantum theory. 
Section 5 finally shows that the phenomenon of wave diffraction from a ridge is 
a classical as well as a quantum effect. Section 6 discusses the formation of 
few-electron complexes like pairs and triples. Section 7 stresses breathing mo-
tions of electron charge clouds in contrast to Bohr orbits in an atom. 

2. Alternative Coordinates for 2-Electron Atoms 

Single electron coordinates are certainly not suitable in the spectral range of high 
multiple excitation where correlation is dominant. We start with the trivial re-
mark that a three-body system (nucleus + 2 electrons) needs in the centre-of 
mass system 6 space coordinates. We do only a small mistake if we put the cen-
tre of mass into the nucleus. Three of the six coordinates may be used to describe 
the orientation of the whole atom in space. Euler angles serve for that. We put 
therefore 

( ), ,i iD α β γ=r b                         (8) 

i = 1, 2. Here the vectors ir  are space-fixed electron positions, the ib  are the 
body-fixed coordinates, and the D(…) is an orthogonal rotation matrix depend-
ing on Euler angles. For S-states treated below we have i i=r b . 

Hyperspherical coordinates are most convenient in situations where correla-
tion is important or even dominant. One coordinate is the hyperradius given by 

2 2
1 2R r r= +                          (9) 

where ir  (i = 1, 2) are the electron nucleus separations.. Two body-fixed hy-
perspherical angles may be expressed in terms of moments of inertia. We denote 
the principal axes by X, Y ynd Z such that X and Y ly in the particles plane. Pre-
vious papers by the author [3] have employed the inertia asymmetry given by 

11 cos
2

yy xx

zz

I I
I

ψ − −
=                     (10) 

as one angle where the principal axes system has been oriented according to 

xx zzI I I≤ ≤  for the principal moments. The value 0ψ =  describes then all col-
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linear particle configurations. Radial correlation we describe following Sommer-
feld [5] by the angle  

2 2
1 1 2

1 2

tan
4
r r

ϕ − −
=

⋅r r
                        (11) 

which basically is the difference of single electron moments of inertia. 
The key point is now that the inertia sphere is spanned by the vector 

cos 2 cos
cos 2 sin

sin 2
R

ψ ϕ
ψ ϕ
ψ

 
 =  
 
 

c                       (12) 

i.e. the angle ψ  ( )0 π 4ψ≤ ≤  is a latitude spherical angle1 and ϕ   
( )0 2πϕ≤ ≤  is the corresponding azimuth. In consequence of that, ϕ  is a cy-
clic coordinate in the kinetic energy which makes the integration of the wave 
equation relatively simple. Alternative hyperspherical angles like  

1 1

2

tan r
r

α −=  

do not show that convenient property. In terms of our inertia coordinates the 
study of radial correlation in the collinear configuration reduces exactly to a 
2-dimensional problem in the equatorial plane of the inertia sphere. 

The electrostatic potential of the system electron-nucleus-electron 

1 2 12

1Z ZV
r r r

= − − +                        (13) 

where 12r  is the electron-electron separation and Z being the nuclear charge 
shows a saddle point located at 0ψ =  and πϕ = . The potential (13) has in 
that saddle point the following Taylor expansion 

( )221 2
0

1 π
2 2

C CV C
R

ψ ϕ = − + − −  
                (14) 

the coefficients given by 

0

1

2

4 1
2

1
2

12 1
4 2

ZC

C

ZC

−
=

=

−
=

                        (15) 

We fall to the collinear configuration by fixing 0ψ = . 
The expansion (14) has been obtained as follows. We express the potential 

(13) in terms of the coordinates given in (18) and perform a Taylor expansion in 
the two variables φ and ψ. 

The Laplacian reads in our coordinates 
2

5 5
2R R

R R R
− ∂ ∂ Λ

∆ = −
∂ ∂

                     (16) 

 

 

1Mathematians usually count the latitude by the angle π 2 2ϑ ψ= − . 
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with the grand angular momentum in the collinear configuration given by 
2

2
24

ϕ
∂

Λ =
∂

                         (17) 

Equation (17) confirms that ϕ  is a cyclic coordinate. 
These coordinates (R, ψ, φ) are fare from new. They were already used long 

ago by Sommerfeld [5], see also [6]. The single electron positions read in these 
body-fixed inertia coordinates  

1

2

1 3cos cos
2 2
1 3sin sin
2 2
0

1 3πcos cos
2 2
1 3πsin sin
2 2
0

R

R

π
ψ ϕ

π
ψ κ

ψ ϕ

ψ ϕ

  +  
  

  = +  
  

 
  
 
  −  

  
  = −  

  
 
  
 

b

b

                  (18) 

We are now arrived probably at the most convenient way to study an electron 
motion near a potential ridge. The ridge occurs in the ( ),R ϕ  plane. The cur-
vature across the ridge is 2 2C R− . The potential on the top of the ridge reads 

0C R− . In the ridge region we arrive at the following reduced stationary wave 
equation. 

( )
52 2

20 2 2
2 2 2 2

1 4 15 π 0
2 22 8

C C E R
R RR R R

ϕ
ϕ

−  ∂ ∂
− − + − − − − Ψ =    ∂ ∂   

    (19) 

where the centrifugal term emerges from the elimination of the first derivative  

R
∂
∂

. 

This is a convenient way to start the diffraction study of an electron from a 
potential ridge. (19) describes a two-dimensional wave propagation in the (R, φ) 
plane. Geometrically we are confronted with the diffraction of an electron from 
a potential ridge. Correlation has been properly taken into account by the use of 
the above inertia coordinates. But we have paid a high price for that achievement 
since (19) is not separable. 

3. Non-Adiabatic Solution of the Wave Equation (19) 

The wave equation for two-electron atoms in hyperspherical coordinates has 
been investigated using an adiabatic approach by Macek [3] and by Klar et al. 
[4], i.e. we treat at first the angular motion at fixed values of R. That step gene-
rates a potential which controls the radial motion. Macek [3] has used these an-
gles ( ),α Θ  for that, Klar et al. [4] did it using the convenient angles ( ).ψ ϕ . 
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Although the latter method has led to some computational advantages, but both 
methods failed at high double excitation where correlation becomes dominant. 

Nevertheless, these methods are in principle exact provided we could go 
beyond the adiabatic approximation. That would however require the treatment 
of an infinity of coupled differential equations. A truncated set would not solve 
the problem. 

For the less experienced reader we demonstrate how an adiabatic solution of 
(19) looks like. We determine at first a socalled channel function, i.e. the angular 
eigenfunction at constant values of R. The channel equation 

( )
2

22
2 2

2 π
2
C U

RR
ϕ

ϕ
∂ Φ

− − − Φ = Φ
∂

                 (20) 

has the eigenfunction 

( )( )2
adiabatic exp πiκ ϕΦ = −                   (21) 

to which belongs the wave number  

adiabatic 2
1
4

C Rκ =                        (22) 

and the eigenvalue 
3 2

adiabatic 2U iR C−−                      (23) 

It is evident that (20) is not Hermitian, and has therefore no real eigenvalues. 
Equation (22) indicates where the difficulty is located. We observe that the wave 
number κ depends explicitely on the coordinate R. Therefore the derivative of  

the channel function 
R

∂Φ
∂

 must be taken into account in the radial wave equa-

tion. 
A recent paper [1] has shown how to go beyond the above shortly outlined 

adiabatic approach. We still rely on a product form of the wave function,  

( ) ( ) ( )5 2, ;r R F R Rϕ ϕΨ = Φ                  (24) 

Because all potential terms, see (14), scale smoothly with 1/R, and also because 
Wannier’s threshold ionization law is a classical result, we employ for the radial 
function an Eikonal Ansatz. An improved channel function may still have the 
structure (21) except thar the wavenumber must be properly determined. It was 
pointed out by Wannier [2] that near threshold E = 0 we have to distinguish two 
different regions of the hyperradius R. The Coulomb zone extends from the core 
radius R0 to infinity and the reaction zone with 0 ≤ R ≤ R0 where the core is li-
mited by the centrifugal barrier, see (19). 

To this end we try to find an improved solution of (19) with help of the An-
satz 

( ) ( )( )25 2 exp d exp π
R

R i K R R iκ ϕ−  
′ ′Ψ = × − 

 
∫           (25) 

We take powers of φ up to the quadratic term ( )2πϕ −  into account but dis-
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regard higher order power terms. To this end we arrive at two conditions for the 
wave numbers  

2 0
2 2

15 d 42
2 d8

C i K iK E
R RR R

κ = − + + + 
 

               (26) 

2
2 2

2 2

8 d d
2 d 2 d
C iK

R RR R
κ κ

κ = − +                   (27) 

Equations (26) and (27) constitute a set of two coupled Riccati equations. This 
is an exact result within our frame of taking into account terms up to 2ϕ  in the 
wave equation. We stress that we have taken into account the first and the 
second derivative with respect to R of the angular function ( )( )2exp πiκ ϕ − .  

Near threshold ( 0E ≅ ) we can do a big simplification. Since all potential 
terms scale as 1/R we are close to the classical limit of quantum mechanics. For 
that reason we had already employed an Eikonal approach in (25). Remember 
that the Eikonal approximation is exact for Coulomb potentials. Within a WKB  

spirit we are then allowed to omit the derivative 
d
d
K
R

 in (26). Finally, for our  

purpose (27) must be solved only in the Coulomb zone which extends at thre-
shold to infinity R = ∞ . Then we are allowed to omit the second derivative of 
κ  in (27). 

To this end we arrive at the simpler equations 

2 0
2 2

15 42
8

C iK E
RR R

κ = − + + 
 

                 (28) 

2
2

2

8 d
2 d
C K

R RR
κ κ

= −                      (29) 

recently presented in [1]. 

4. Comparison with Classical Mechanics 

We investigate here the corresponding stationary Hamilton-Jacobi-equation for 
the same problem, i.e. 

( )
22

20 2
2

1 d 1 d π
2 d d 22

C CS S E
R R RR

ϕ
ϕ

   + − − − =  
   

          (30) 

and put for the action 

( )2πS KR κ ϕ= + −                       (31) 

As above we allow the wave numbers K and κ  to depend on the coordinate  

R, i.e. ( )K K R=  and ( )Rκ κ= ; but we disregard the derivative 
d
d
K
R

 and  

reject powers higher than ( )2πϕ − . That leads us to the simple equation  

2 02 0
CK E
R

 = + = 
 

                    (32) 

being different from the above (28). We conclude that both the centrifugal bar-
rier and the imaginary part in (28) are manifestly quantum contributions. In 
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contrast to that observation the classical equation for the wavenumber κ  is the 
same as above (29). 

The derivation of Wannier’s threshold ionization law has used the quantum 
Equations (28) and (29) in the Coulomb zone, i.e. it was sufficient to take into 
account contributions of the order 1/R. Therefore the centrifugal term 21 R∝
did not contribute. The Appendix of this paper shows Rκ ∝ ; therefore in the  

Coulomb zone we get 3
2

2

1
R R

κ
∝ , again negligible in the fare Coulomb zone. We  

conclude that Wannier has been correctly employed classical mechanics for the 
threshold law. However, the above conclusions are not suffficient for the forma-
tion and decay of electron pairs. The quantum terms play then key roles as will 
be shown in Section 5. 

5. Formation and Decay of Electron Pairs 

Our development given in Section 3 deserves several comments regarding the 
pair production of electrons. We start our analysis with Equation (29). Multip-
lied with the angular term ( )2πϕ −  we observe that the Coulomb potential 
term [see (14)] has been replaced according to 

( ) ( ) ( )2 2 22 2 dπ π π
2 2 d
C C K

R R R
κ

ϕ ϕ ϕ− ⇒ − − −              (33) 

Equation (33) may be regarded as gap in the potential energy, i.e. the potential 
ridge has been pressed down. An alternative statement claims that the static po-
tential surface has been deformed. Note that the potential deformation causes a 
force given by  

( )2d π
d

K
R
κ

κ = − 
 

F ∇                      (34) 

whose radial component reads 

( )2d π
dRF K

R R
κ

ϕ
∂  = − ∂  

                    (35) 

and its angular component is given by 

( ) ( )21 d 2 dπ π
d d

F K K
R R R Rϕ

κ κ
ϕ ϕ

ϕ
∂  = − = − ∂  

              (36) 

That angular force, obviously a momentum dependent fictitious force, is di-
rected across the ridge, and resembles formally to a Lorentz force for a charged 
particle in a magnetic field given by  

[ ]Q= ×F v B                           (37) 

The similarity becomes immediately visible because (36) may be rewritten in 
the vectorial form 

( ) ||
2 d π

d
n

R Rϕ
κ

ϕ  = − × F K �                     (38) 

where ||K  is the component of the radial pair momentum parallel to the ridge 
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and n�  is a unit vector orthogonal to the scattering plane. Thus, our radial pair 
momentum corresponds to the single particle velocity in (37), the normal vector 
n�  corresponds to the magnetic field B , and the factor in front of the vector 
product in (38) corresponds to the charge Q in (37).  

From (38) it is evident that the fictitious force changes sign if the radial mo-
mentum ||K  does. In consequence of that an incoming wave front is directed 
towards to the top of the ridge, whereas an outgoing wave mode is turned away 
from the ridge top. This compares favorably with Wannier’s [2] finding of two 
classical trajectories, a converging one and a diverging one. He did not pay fur-
ther attention to the converging one because he needed only the diverging one 
for his threshold law. We conclude that the angular force component is the key 
tool for electronic excitation, in the present study for the pair production. 

We are now able to describe the whole process of pair production. When the 
incoming electron experiences the ridge its curvature is reduced according the 
Riccati Equation (29). The target electron as well as the projectile electron are 
pushed towards the top of the ridge, i.e. the electron-electron attraction due to 
the fictitious force works. Arrived on the top of the ridge the static attraction 
given by the potential on the ridge 0C R−  attracts the pair as a whole towards 
the nucleus. The pair runs against the centrifugal barrier given by 215 8R , see 
(19) or (26), where reflection occurs, and a collaps of the negative ion has been 
avoided. The pair is now reflected into the outgoing wave mode. The fictitious 
force has now changed sign, i.e. the electron-electron interaction has now be-
come repulsive. The pair decays, one electron falls back to a Rydberg orbital 
whereas the other one escapes. Above threshold both electrons escape. This lat-
ter case was treated by Wannier [2]. From highly accurate experimental data we 
know that the range of validity of the threshold ionization law is a few eV. From 
that we conclude a lifetime of the pair of the order of 1510 secτ −≈ . 

6. Outlook 

We have investigated also other atoms with more than two active electrons for 
equilibrium configurations. To this end we generalize the hyperradius to more 
than two electrons,  

2
iR r= ∑                         (39) 

and study the total electrostatic potential restricted to a hypersphere of radius R 
for stationary points, i.e.  

2 21
i

i i j ii ij

ZW R r
r r

λ
<

 = − + + − 
 

∑ ∑ ∑               (40) 

must become stationary. 
Above the indice [ ], 1, ,i j N∈ � ; N being the number of active electrons. We 

have found the following configurations [7]: 
1) N = 2 corresponds to the pair formation treated above. The electrons sit the 

ends of a dumbbell. 
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2) N = 3. The electrons sit in the corners of an equilateral triangle,; the nuc-
leus is located at the electronic centre of charge [7]. 

3) N = 4. The electrons sit at the corners of a tetrahedron; the nucleus is again 
in the centre of electronic charge [8]. 

4) N > 4. No equilibrium configurations seem to be known. 
Analogous to the above treatment of two electrons we can find hypersherical 

coordinates such that one angle describes the fragmentation symbolically re-
ferred to as ( )1 1N N→ − + , and with help of an eventual rotation we can arrive 
at a cyclic angle in the Laplacian along the hyperspherical equator. We arrive 
then at a wave equation like (19) except that the constants 0C  and 2C  depend 
on the number of equilibrium electrons. 

Applied to the example of three or four active electrons we predict beyond 
pairs now triples and quadruples. A prototype of a triple configuration may be 
generated for instance from an alkali earth atom with two valence electrons in a 

( )2ns S  state. We hit that target with an electron to the threshold of double es-
cape of the target (usually a few eV). In that energy range the projectile electron 
is attracted by the target electron pair; the three electrons enter into the equila-
teral triangle configuration. We stress that the electrons do not move on Bohr 
orbits but the triangle shrinking in size is electrostatically attracted by the nuc-
leus. That motion occurs on the top of the generalized ridge due to the Coulomb 
potential - 0C R . The triple runs now against the generalized centrifugal barrier 
now given by 26 R , see [1]. The triple returns now under the influence of the 
repulsive fictitious force, and decays. One electron escapes whereas the other 
two electrons become trapped into a double Rydberg state of the target atom. 

In both cases of complexes, pair or triple, the emitted electron from the com-
plex decay may hit another target atom and creates there a further complex. In 
this way a complex may travel through a solid without suffering from inelastic 
collisions; i.e. the complex transports a current without any resistance. 

The description of small complexes runs quite generally along the same lines 
outlined above except that the constants 0C  and 2C  have different numerical 
values for pairs, triples and quadruples. Note however, one difference may not 
be overlooked: complexes with an odd number of electrons are fermions whe-
reas an even number of electrons allows only for bosons. 

7. Conclusions 

Atomic structure has been traditionally described within the shell model, i.e. 
each electron moves in a static potential generated by all other electrons moving 
on circular orbits. The motion takes place in attractive potential valleys. Each 
electron can be described by a principal quantum number and angular momen-
tum quantum numbers. 

That model based on hydrogen-like atoms becomes shaky at multiple excita-
tion and breaks entirely down near thresholds of multiple escape. In that spectral 
range several electrons move dominantly correlated, and form pairs, triples 
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and/or quadruples as we have seen in this paper. The electrons move no longer 
on approximately circular orbits, but a cloud of highly excited electrons per-
forms a breathing motion caused by diffraction of an electron wave from a po-
tential ridge. The breathing is an entirely novel and unexpected electron motion 
in an atom. In the spectral range near a threshold of multiple escape a resonance 
would be located due to the long-range Coulomb interaction in an infinity of 
one-electron continua. The Fano resonance theory [9] does not apply to that 
crucial situation. Actually the embedding into a huge number of continua pro-
duces the new kind of motion as described here. The main result of the present 
study has been that quite generally the particle wave diffraction from a potential 
ridge induces a fictitious force between the constituents of the system under 
consideration. Moreover, that force may be attractive or repulsive depending on 
the mode of motion. A few-electron atom is perhaps one of the simplest exam-
ples for that situation. We believe that potential surfaces of big molecules show 
multidimensional ridge structures leading to similar surprising effects. 
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Appendix 

We show here how to solve Equations (28) and (29) at threshold E = 0. 
We need a solution only in the Coulomb zone which extends at zero energy 

up to infinity R = ∞ . To this end we get from (28) 

0CK
R

=                          (A1) 

To solve (29) we put Rκ κ=  and get after multiplication with R the alge-
braic equation 

02 28
2 2

CC
κ κ= −                      (A2) 

with the solutions 

0 0 2
1,2

64
32 32
C C C

κ
+

= − ±                  (A3) 

This solution justifies that we have disregarded the imaginary portions in (27) 

and (28) since 
2

3 2
2

d
d

R
R
κ −∝  and 3 2

2 R
R
κ −∝  are negligible in the fare Coulomb 

zone.  
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