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Abstract 

A new knowledge measure with parameter of intuitionistic fuzzy sets (IFSs) is 
presented based on the membership degree and the non-membership degree 
of IFSs, which complies with the extended form of Szmidt-Kacprzyk axioms 
for intuitionistic fuzzy entropy. And a sufficient and necessary condition of 
order property in the Szmidt-Kacprzyk axioms is discussed. Additionally, 
some numerical examples are given to illustrate the applications of the pro-
posed knowledge measure and some conventional entropies and knowledge 
measures of IFSs. The experimental results show that the results of the para-
metric model proposed in this paper are more accurate than those of most of 
the classic models. 
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1. Introduction 

Entropy is a basic parameter that characterizes the state of matter launched by 
Shannon [1], which is used to characterize the degree of disorder in the system, 
the uncertainty of the system structure and movement, and the degree of irregu-
larity. In 1965, Zadeh launched fuzzy sets (FS) [2], and Atanassov proposed in-
tuitionistic fuzzy sets (IFS) in 1986 by introducing the degree of hesitation, 
which means that the research of intuitionistic fuzzy sets is more complex than 
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that of fuzzy sets [3]. Fuzzy entropy is one of the most important methods to 
measure the degree of disorder in fuzzy sets, and knowledge measure is one of 
the most important bases for measuring the degree of order between fuzzy sets 
[4] [5] [6]. In 1972, De Luca and Termini put forward an axiom system of fuzzy 
entropy in terms of Shannon’s entropy function [4] [6]; Yager proposed some 
fuzzy entropy formulas according to fuzzy distance measure [5]. Since then, 
many scholars began to use various methods to study fuzzy entropy and intui-
tionistic fuzzy entropy [6]-[11]. Because intuitionistic fuzzy sets are an extension 
of ordinary fuzzy sets, many scholars focus on entropy and knowledge measure 
of intuitionistic fuzzy sets [7]-[16]. In the past 20 years, based on the study of 
fuzzy sets, many scholars have proposed a variety of methods to calculate intui-
tionistic fuzzy entropy and knowledge measure [7]-[16]. Based on the axioms of 
intuitionistic fuzzy entropy [10] [11], Szmidt and Kacprzyk presented a standard 
judgment of intuitionistic fuzzy knowledge measure with a relatively wide ap-
plication [12]: non-negative boundedness, symmetry and order. Some research-
ers also studied Szmidt and Kacprzyk’s axiom system and introduced some clas-
sic knowledge measure formulas [13] [14] [15]. According to the order property, 
Guo put forward a new knowledge measure with order [13], Nguyen presented a 
model from a classic distance measure [14], and Das et al. proposed a new model 
based on a series of similarity measures [15]. However, most of the existing re-
search only focused on knowledge measure based on membership degree and 
non-membership, lack of the research of the known extent for information 
amount. In order to make full use of intuitionistic fuzzy information to con-
struct information measurement tools, this paper studies a fractional knowledge 
measure. 

Taking into account the extensive application and its rationality of the axiom 
system by Szmidt and Kacprzyk [12], we first put forward a simple necessary & 
sufficient condition of order property in Section 2. And then, we comprehen-
sively analyze the differences among some classic models of intuitionistic fuzzy 
knowledge measure. Hence, in Section 3, we bring about a new construction 
method consisting of the decision-making advantages and the known extent and 
theoretically prove that this knowledge measure satisfies all the conditions of 
Szmidt & Kacprzyk’s axiom system. It is proved theoretically that the operators 
with the order condition in Szmidt & Kacprzyk axiom system will be better than 
those without the order condition. In Section 4, combined with the research re-
sults of De et al. [17], an experimental case construction and empirical test 
scheme are put forward. Experimental results show that the performance of the 
presented model with parameters is better than that of the majority of classical 
operators, and the operators with the order condition will be more accurate than 
those without the order condition. 

2. Intuitionistic Fuzzy Sets 

Definition 1 An fuzzy sets (FS) A in a finite set X is an object with the following 
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form: 

( ){ } ( ) [ ], | , 0,1 .A AA x x x X xµ µ= ∈ ∈  

where ( ) [ ]: 0,1A x Xµ → , ( )Ax xµ→ . 

( ){ } ( ){ }, | ,1 | ,C
C

AA
A x x x X x x x Xµ µ= ∈ = − ∈

 

where ( ) [ ] ( ): 0,1 , 1C AA
x X x xµ µ→ → − . 

Definition 2 An intuitionistic fuzzy sets (IFS) A in a finite set X is an object 
with the following form: 

( ) ( ){ }, , |A AA x x x x Xµ ν= ∈  

( ) [ ] ( ) ( ) [ ] ( )
( ) ( ) [ ]

: 0,1 , ; : 0,1 , ,

0,1 .
A A A A

A A

x X x x x X x x

x x

µ µ ν ν

µ ν

→ → → →

+ ∈
 

( )A xµ  and ( )A xν  are the degree of membership and non-membership, re-
spectively. ( ) ( ) ( ) [ ]1 0,1A A Ax x xπ µ ν= − − ∈ , ( )A xπ  is the degree of hesitancy. 

Definition 3 Let A and B be two IFSs, then we have: 
1) A B=  if and only if ( ) ( ) ( ) ( ),A B A Bx x x xµ µ ν ν= = . 
2) A B⊆  if ( ) ( )A Bx xµ µ≤  and ( ) ( )A Bx xν ν≥ . 

3) ( ) ( ){ } ( ) ( ){ }, , | , , |C C
C

A AA A
A x x x x X x x x x Xµ ν ν µ= ∈ ∈ . 

3. Entropy and Knowledge Measure of IFS 

Claudius’s entropy is one of the important parameters in physics that character-
ize the state of matter. It is a measure of the degree of chaos in the physical sense 
and describes the disorder degree of matter in an isolated system. In 1948 Shan-
non first launched entropy into information theory in the “Mathematical Prin-
ciples of Communication”, which characterize the degree of disorder, and un-
certainty and irregularity of system structure and motion [1]. After the creation 
of fuzzy sets, many scholars proposed a series of fuzzy entropies and its formulas, 
which are used to express fuzzy uncertainty. Since Atanassov proposed intuitio-
nistic fuzzy sets [3], many scholars presented many intuitionistic fuzzy entropy 
formulas and knowledge measures [7]-[16]. Next some classic entropy formulas 
and their knowledge measures will be introduced. 

Fuzzy entropy is defined as follows [4] [5] [6]: 
Definition 4 A fuzzy set A in the domain X, for each x X∈ , ( ) ( )E AE A f µ=  

is the entropy of A with the following properties: 
(EP1) ( ) ( )0 0AE A xµ= ⇔ =  or ( ) 1A xµ = . 
(EP2) ( ) ( )1 0.5AE A xµ= ⇔ = . 

(EP3) ( ) ( )CE A E A= . 
(EP4) For another fuzzy set B, ( ) ( )E BE B f µ=  denotes the entropy of B, and 

then we have: If ( ) 0.5B xµ ≤  and A B⊆ , ( ) ( )E A E B≤ ; If ( ) 0.5B xµ ≥  and 
B A⊆ , ( ) ( )E A E B≤ . 

where ( )A A xµ µ=  and ( )B B xµ µ=  are the degree of membership of fuzzy 
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sets A and B, respectively. EP1 and EP2 denote the property of non-negative 
boundedness, EP3 is the property of symmetry, and EP4 is the property of order. 

Intuitionistic fuzzy entropy is defined as follow [7]-[11]: 
Definition 5 For IFS A in the domain X, ( ) ( ), ,E A A AE A f µ ν π=  is the en-

tropy of A with the following properties for x X∈ : 
(EP1) ( ) ( ) ( )0 0 & 1A AE A x xµ ν= ⇔ = =  or ( ) ( )1& 0A Ax xµ ν= = . 
(EP2) ( ) ( ) ( )0 1A Ax x E Aµ ν= = ⇒ = . 
(EP3) ( ) ( )CE A E A= . 
(EP4) For another IFS B, ( ) ( ), ,E B B BE B f µ ν π=  denotes the entropy of B, 

and we have: If ( ) ( )B Bx xµ ν≤  and A B⊆ , ( ) ( )E A E B≤ ; If 
( ) ( )B Bx xµ ν≥  and B A⊆ , ( ) ( )E A E B≤ . 

Where , ,A A Aµ ν π  are the degree of membership, non-membership and hesi-
tancy of IFS, respectively. 

EP1 and EP2 are the property of non-negative boundedness, EP3 is the prop-
erty of symmetry, and EP4 is the property of order. 

In terms of EP4, we obtain the following necessary and sufficient conditions: 
(EP4I) 
If ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤  or ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≥ ≥ ≥ , then 

we have ( ) ( )E A E B≤ . 

Proof. ( ) ( )
( ) ( )

A B

B A

x x
A B

x x

µ µ

ν ν

≤⊆ ⇔ 
≤

, and ( ) ( )B Bx xµ ν≤ , then  

( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ . 

And if ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , then we have: 

( ) ( ) ( ) ( ) ( ) ( )& &B B A B B Ax x x x x xµ ν µ µ ν ν≤ ≤ ≤ , 

and then we get ( ) ( )B Bx xµ ν≤  and A B⊆ . 

Similarly, ( ) ( )
( ) ( )

A B

B A

x x
B A

x x

µ µ

ν ν

≥⊆ ⇔ 
≥

, and ( ) ( )B Bx xµ ν≥ , then 

( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≥ ≥ ≥ . 

And if ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≥ ≥ ≥ , then we have:  

( ) ( ) ( ) ( ) ( ) ( )& &B B A B B Ax x x x x xµ ν µ µ ν ν≥ ≥ ≥ , and then we have  

( ) ( )B Bx xµ ν≥  and B A⊆ . 

EP4 is equivalent to EP4I, thus we obtain ( ) ( )E A E B≤ . 
According to Definition 5, intuitionistic fuzzy knowledge measure can be de-

fined as follows [12] [13]: 
Definition 6 For IFS A, ( ) ( ), ,K A A AK A f µ ν π=  is an intuitionistic fuzzy 

knowledge measure of A if ( )K A  have the following properties: 
(KP1) ( ) ( ) ( )0 0A Ax x K Aµ ν= = ⇒ = . 
(KP2) ( ) ( ) ( )1 0 & 1A AK A x xµ ν= ⇔ = =  or ( ) ( )1& 0A Ax xµ ν= = . 

(KP3) ( ) ( )CK A K A= . 
(KP4) If B is also an IFS, and ( ) ( ), ,K B B BK B f µ ν π=  is the intuitionistic 

fuzzy knowledge measure of B, then we have: If ( ) ( )B Bx xµ ν≤  and A B⊆ , 
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( ) ( )K A K B≥ ; If ( ) ( )B Bx xµ ν≥  and B A⊆ , ( ) ( )K A K B≥ . 
KP1 and KP2 are the property of non-negative boundedness, KP3 is the prop-

erty of symmetry, and KP4 is the property of order. 
In terms of EP4, we obtain the following necessary and sufficient conditions 

KP4I: 
(KP4I) 
If ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤  or ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≥ ≥ ≥ , then 

we have ( ) ( )K A K B≥ . 

Obviously, KP4Ⅰmeans that for ( ) ( ) ( ) ( )A A B Bx x x xµ ν µ ν− ≥ − , we infer 

( ) ( )K A K B≥ . Hence, knowledge measure ( )K A  can be considered to be a 

positive relation to ( ) ( )A Ax xµ ν− . 

From the concept of entropy and knowledge measure above, we can define the 
knowledge measure of IFS A by: 

( ) ( )1K A E A= −                         (1) 

Some intuitionistic fuzzy knowledge measure formulas can be defined ac-
cording to some classic intuitionistic fuzzy entropy formulas as follows: 

( ) ( )
1

1 n

BB A i
i

E A x
n

π
=

= ∑                       (2) 

( )
( ) ( ){ } ( )
( ) ( ){ } ( )

( )
1

min ,1
2 max ,

n
A i A i A i

SKB A i
i A i A i A i

x x x
E A x

n x x x

µ ν π
π

µ ν π=

 +
 = +
 + 

∑        (3) 

( ) ( ) ( )( ) ( )( )
1

1 1 1
2

n

G A i A i A i
i

E A x x x
n

µ ν π
=

= − − +∑            (4) 

( )

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )( )(
( ) ( )( ))

1

1

1
, 1 0

1
1 log log

log , 1

n
A i A i A i

i

n
HC

A i A i A i A i
i

A i A i

x x x
n

E A
x x x x

n

x x

α α α

α

µ ν π
α α

α

µ µ ν ν

π π α

=

=

 − − −
 ≠ >

−
= − +

 + =

∑

∑
      (5) 

( )
( ) ( ) ( )( )

1

log1 ,0 1
1

n A i A i A i

R
i

x x x
E A

n

β β β

β
µ ν π

β
β=

+ +
= < <

−∑        (6) 

( ) ( )
1

11
n

BB A i
i

K A x
n

π
=

= − ∑                     (7) 

( ) ( )
( ) ( ){ } ( )
( ) ( ){ } ( )

( )

1

1

,

min ,11
2 max ,

SKB DGM

n
A i A i A i

A i
i A i A i A i

K A S U V

x x x
x

n x x x

µ ν π
π

µ ν π=

=

 +
 = − +
 + 

∑
     (8) 

( ) ( ) ( )( ) ( )( )
1

11 1 1
2

n

G A i A i A i
i

K A x x x
n

µ ν π
=

= − − − +∑          (9) 
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( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )( )(
( ) ( )( ))

1

1

1

1
1 , 1 0

1
11 log log

log , 1

HC HC

n
A i A i A i

i

n

A i A i A i A i
i

A i A i

K A E A

x x x
n

x x x x
n

x x

α α

α α αµ ν π
α α

α

µ µ ν ν

π π α

=

=

= −

 − − −
 − ≠ >

−
=  + +

 + =

∑

∑
    (10) 

( ) ( )
( ) ( ) ( )( )

1

log11 1 ,0 1
1

n A i A i A i

R R
i

x x x
K A E A

n

β β β

β β
µ ν π

β
β=

+ +
= − = − < <

−∑  (11) 

( )
( ) ( ) ( )( )22 2

1

11
2

n
A i A i A i

N
i

x x x
K A

n
µ ν π

=

+ + −
= ∑          (12) 

( ) ( ) ( ) ( ) ( )( ){ }2
1

1, max , , 1
n p p p

SK DGM A i A i A i
i

K A S U V x x x
n

µ ν π
=

= = −∑   (13) 

In 1996, Bustince and Burillo proposed an entropy formula ( )BBE A  [7]. In 
2014, Szmidt and Kacprzyk introduced an improved knowledge measure for-
mula ( )SKBK A , which is derived from the entropy ( )SKBE A  [12]. In terms of 
the Szmidt and Kacprzyk’s axiom system [10] [11] [12], in 2016 Guo put for-
ward ( )GK A , which is the basis of ( )GE A  [13]. Moreover, Huang and Yang 
presented ( )HCE Aα

 and ( )RE Aβ

 
in 2006 [9]. In [14], Nguyen introduced a 

knowledge measure formula ( )NK A  according to distance measure proposed 
by Szmidt and Kacprzyk [18], and Szmidt and Kacprzyk presented a knowledge 
measure ( )SKK A  from similarity measure [16]. Both ( )NK A  and ( )SKK A  
are proved to be equivalent to knowledge measure ( ),DGMS U V  introduced by 
Das, Guha, and Mesiar [15]. 

It is easy to prove that the classic knowledge measure formulas above meet the 
property of non-negative boundedness and symmetry. For the property of order, 
we have the following Lemma 2. 

Lemma 2 ( )GK A  meet the property of order KP4I, while  
( ) ( ) ( ) ( ) ( ) ( ), , , , ,BB SKB HC R N SKK A K A K A K A K A K Aα β

 and ( ),S U V  don’t meet 
KP4I. 

Proof: According to KP4I, ( )GK A  meet the property of order. 

( )( )
2 2

2 2

3 , ,1 1 21
2 3 , .

2

GK

µ µ ν ν
µ νµ ν π

µ µ ν ν
µ ν

 − − +
≤− − + = − = 

− + + − ≥
 

For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , according to 
( ) ( )0 1A Ax xµ ν≤ + ≤ , ( ) ( )0 1B Bx xµ ν≤ + ≤ , we have: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

& 1 1
12 1 .
2

B B B B B

B B B B

x x x x x

x x x x

µ ν µ ν π

µ µ ν µ

≤ + = − ≤

⇒ ≤ + ≤ ⇒ ≤  

Therefore, we have ( ) ( )0 0.5A Bx xµ µ≤ ≤ ≤ . 
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Similarly, We also have: 
When ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≥ ≥ ≥ , ( ) ( )0 0.5A Bx xν ν≤ ≤ ≤ . Thus we 

get: 

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

1 1 3 0, ,
2
1 3 1 0, .
2

G G

A B A B A B A B

A B A B A B A B

K A K B

µ µ µ µ ν ν ν ν µ ν

µ µ µ µ ν ν ν ν µ ν

−

 − + − + − − − ≥ ≤  = 
 − − − + − + − ≥ ≥  

 

Thus we obtain: For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , ( ) ( )G GK A K B≥ . 
Similarly, we also have: 
For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≥ ≥ ≥ , ( ) ( )G GK A K B≥ . 
Therefore, ( )GK A  meet the property of order. 
According to KP4I, ( ) ( ) ( ), ,BB SKB HCK A K A K Aα  and ( )RK Aβ  don’t meet 

KP4I. 
For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , ( ) 1BB A A AK A π µ ν= − = + ,  

( ) 1BB B B BK B π µ ν= − = + . We cannot have ( ) ( )BB BBK A K B≥ .
 

( ) ( )

( )

( ) ( ) ( )( )

, 1 0
1

1 log log log , 1

, 1 0
1

1 log , 1A A A

A A A

HC

A A A A A A

A A A

A A A

K A

α α α

α

α α α

µ ν π

µ ν π
α α

α
µ µ ν ν π π α

µ ν π
α α

α

µ ν π α

 + +
≠ >= −

 + + + =
 + +

≠ > −= 
 + =


( ) ( )

( )

( ) ( ) ( )( )

, 1 0
1

1 log log log , 1

, 1 0
1

1 log , 1B B B

B B B

HC

B B B B B B

B B B

B B B

K B

α α α

α

α α α

µ ν π

µ ν π
α α

α
µ µ ν ν π π α

µ ν π
α α

α

µ ν π α

 + +
≠ >= −

 + + + =
 + +

≠ > −= 
 + =


 

Obviously, we cannot get ( ) ( )HC HCK A K Bα α≥ .
 

( )
( ) ( ) ( )( )log

1 ,0 1;
1

A A A

RK A
β β β

β
µ ν π

β
β

+ +
= − < <

−
 

( )
( ) ( ) ( )( )log

1 ,0 1;
1

B B B

RK B
β β β

β
µ ν π

β
β

+ +
= − < <

−
 

We cannot obtain ( ) ( )R RK A K Bβ β≥  too.

 

( ) { }
{ }

min , 11 11 , ,
2 max , 2 1

A A A A
SKB A A A A

A A A A

K A
µ ν π ν

π π µ ν
µ ν π µ

 +  −
= − + = + ≤    + −  

 
( ) { }

{ }
min , 11 11 , ,

2 max , 2 1
B B B B

SKB B B B B
B B B B

K B
µ ν π ν

π π µ ν
µ ν π µ

 +  −
= − + = + ≤    + −    

Obviously, ( ) ( )SKB SKBK A K B≥  cannot be determined. Hence, SKBK  does 
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not meet the property KP4I. 
For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , we have 

( ) ( ) ( ) ( ), ,p p p p
A B B Ax x x xµ µ ν ν≤ ≤  

and we cannot have ( ) ( ) ( ) ( )&p p p p
A B B Ax x x xπ π π π≤ ≤ . Hence, We cannot 

have ( ) ( )N NK A K B≥

 
and ( ) ( )SK SKK A K B≥ , Hence, ,N SKK K  and  

( ),DGMS U V  do not meet the property KP4I. 

4. Intuitionistic Fuzzy Knowledge Measure Model  
with Parameter 

According to KP4I, knowledge measure ( )K A  can be considered to be a posi-
tive relation to ( ) ( )A Ax xµ ν− . In addition, when ( ) ( )A Ax xµ ν−  is a con-
stant, due to the same difference between membership and non-membership, 
the greater the minimum value of the degree of membership and 
non-membership is, the greater the maximum value of the degree of member-
ship and non-membership will be, the higher the degree of known information 
will be, and hence the larger the knowledge measure value should be under the  
same difference between membership and non-membership. Thus, the know-

ledge measure should be positively correlated to 
( ) ( )

( )1 min ,
A A

A A

x xµ ν
µ ν
−

−
. 

Based on the definition of knowledge measure of IFSs and the analysis above, 
a model can be achieved: 

( )
( ) ( )

( ) ( )( )1

1 , 0.
1 min ,

p
n

A i A i
p

i A i A i

x x
K A p

n x x

µ ν

µ ν=

 −
 = >
 − 

∑           (14) 

( )pK A  is proved to meet all four properties of Definition 6. 
Proof: For each 0 p<  and for each A ∈ IFSs, obviously, ( )0 1pK A≤ ≤ . 
(KP1) ( ) ( ) ( )0 0A A px x K Aµ ν= = ⇒ = . 

(KP2) ( ) ( ) ( )1 0 & 1p A AK A x xµ ν= ⇔ = =  or ( ) ( )1& 0A Ax xµ ν= = . 

(KP3) ( )
( )( ) ( )( )

( )
1 min , 1 min ,

p p
A A A A C

p pp p
A A A A

K A K A
µ ν ν µ

µ ν ν µ

− −
= = =

− −
. 

(KP4I) For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , 

( ) ( )
( )
( )

( ) ( )
( )

, .
1 min , 1 1

p p p
A A A A B B

p pp p
A A A B

K A K B
µ ν ν µ ν µ

µ ν µ µ

 − − −
= = =  − − − 

 

( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤  

( ) ( )
( )( ) ( )( )
( )( ) ( )( )
( ) ( )
( ) ( )

0, 0

1 0, 1 0

1 1 0

0

0

A B B A

A B B B A B

A B B B A B

A B B A A B B A

A A B B A B B A

ν ν µ µ

ν ν µ µ µ ν

ν ν µ µ µ ν

ν ν µ µ µ ν µ ν

ν µ ν µ µ ν µ ν

⇒ − ≥ − ≥

⇒ − − ≥ − − ≥

⇒ − − + − − ≥

⇒ − + − + − ≥

⇒ − − − + − ≥
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( )( ) ( )( )
( )( ) ( )( )

( )( )

( )
( )

( )
( )

( ) ( )

1 1 0

1 1
0

1 1

0
1 1 1 1

1 1

A A B B B A

A A B B B A

A B

A A B B A A B B

A B A B
p p

A A B B
p p

A B

p pK A K B

ν µ µ ν µ µ

ν µ µ ν µ µ
µ µ

ν µ ν µ ν µ ν µ
µ µ µ µ

ν µ ν µ

µ µ

⇒ − − − − − ≥

− − − − −
⇒ ≥

− −

− − − −
⇒ − ≥ ⇒ ≥

− − − −

− −
⇒ ≥

− −

⇒ ≥

 

Similarly, we also have: 
For ( ) ( ) ( ) ( )A B B Ax x x xµ µ ν ν≤ ≤ ≤ , ( ) ( )p pK A K B≥ .

 
Hence, for each 0p > , ( )pK A  is a knowledge measure of IFSs A. 

4.1. Comparison between ( )pK A  and ( )GK A  

According to Lemma 2 and the analysis above, ( )GK A  and ( )pK A  meet the 
property of order, while ( ) ( ) ( ) ( ) ( ) ( ), , , ,BB SKB HC R N SKK A K A K A K A K A K Aα β,  
and ( ),S U V  don’t meet KP4I. Hence, we compare ( )pK A  

with ( )GK A  as 
follows. 

( ) ( )1 min ,

p
A A

p
A A

K A
µ ν

µ ν
 −

=   − 
                  (15) 

( )pK A  
is affected by the difference between membership and non-membership 

degree with the positive correlation, which is the same as ( )GK A . Meanwhile, 
when A Aµ ν− , the difference between membership and non-membership de-
gree, is a constant, ( )pK A  is also affected with the positive correlation by the 
minimum of membership and non-membership degree, while ( )GK A  the 
negative correlation. 

( ) ( )( ) ( )( )1 1 1 2
1 1

2 2
A A A A A A A

GK A
µ ν π µ ν µ ν− − + − − − −

= − = − . 

From practical significance, ( )pK A  
will be more reasonable than ( )GK A . If 

dµ ν− =  is a constant, then the greater the minimum value of membership 
and non-membership, the greater the amount of knowledge. For example, if 

0A A B B dµ ν µ ν− = − = ≥  and ( ) ( )min , min , 0A A A B B Bµ ν ν µ ν ν= ≥ = ≥ , then 
we have , , , ,A B A B A A B B A Bµ µ ν ν µ ν µ ν π π≥ ≥ ≥ ≥ ≤ , and hence we know that the 
known extent of A is more than that of B under the same difference between 
membership and non-membership degree. Thus, it means that ( ) ( )K A K B≥ , 
which is the same as ( )pK A  

and different from ( )GK A . 

4.2. Analysis of Parameter p for ( )pK A  

Let ( )
( ) ( )

( ) ( )( )1
1

1
1 min ,

n
A i A i

i A i A i

x x
K A

n x x

µ ν

µ ν=

−
=

−
∑ . 

Obviously, ( )pK A  is a power function of ( )1K A , and we get
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( ) ( )( )1
p

pK A K A= .
 
According to the nature of the power function, we obtain: 

1) When 1p = , ( ) ( )1pK A K A=  is linear function of 
( )1 min ,

A A

A A

µ ν
µ ν
−

−
. 

2) When 0 1p< < , ( )pK A  is a convex function on the defined domain 

( ) [ ]1 0,1K A ∈ , which means that if ( )1K A  is close to 0, the amount of infor-
mation ( )pK A  decreases rapidly; when ( )1K A  approaches 1, the amount of 
information ( )pK A  

increases slowly. 
3) Contrary to 2), when 1p > , ( )pK A  is a concave function on the defined 

domain ( ) [ ]1 0,1K A ∈ , which means that if ( )1K A  is close to 0, the amount of 
information ( )pK A  decreases slowly; when ( )1K A  approaches 1, the amount 
of information ( )pK A  

increases sharply. 
According to the analysis above, in practical applications, people can find 

suitable information measurement models based on parameter adjustments. 

5. Experimental Example and Result Analysis 

Example 1. Consider five IFSs, 

{ } { } { }
{ } { }

1 2 3

4 5

,0,0.5 , ,0.1,0.5 , ,0.2,0.5 ,

,0.3,0.5 , ,0.4,0.5 .

D x D x D x

D x D x

= = =

= =  

It is clear that 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 4 5

5 4 3 2 1

1 2 3 4 5

0

0.5

.

D D D D D

D D D D D

D D D D D

x x x x x

x x x x x

K x K x K x K x K x

µ µ µ µ µ

ν ν ν ν ν

= < < < <

= = = = = =

⇒ > > > >
 

From Equations (7)-(14), we obtain Table 1. The evaluation index Accuracy  
 

Table 1. Comparison of experimental results of K (Di), (i = 1, 2, 3, 4, 5). 

Knowledge 
measure 

Table Column Head 
Accuracy 

Right or 
Wrong D1 D2 D3 D4 D5 

KG 0.25 0.16 0.09 0.04 0.01 100% Right 

KSKB 0.5 0.522 0.538 0.543 0.533 40% Wrong 

KBB 0.5 0.6 0.7 0.8 0.9 0% Wrong 

1
HYK  0.699 0.590 0.553 0.553 0.590 60% Wrong 

0.5
rK  0.699 0.562 0.538 0.538 0.562 60% Wrong 

KN 0.5 0.557 0.624 0.7 0.781 100% Right 

2
SKK  0.25 0.36 0.49 0.64 0.81 100% Right 

K0.5 0.707 0.667 0.612 0.535 0.408 100% Right 

K1 0.5 0.444 0.375 0.286 0.167 100% Right 

K2 0.25 0.198 0.141 0.082 0.028 100% Right 

K3 0.125 0.088 0.053 0.023 0.005 100% Right 

Note. Each bold data means the wrong prediction result and the corresponding method. 
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can be defined as follows: 

( )
( )

Number Entropies with Right Order in
Accuracy

Number
i

i

D
D

=        (16) 

Results show that for the knowledge measures with the order property, such 
as KG and Kp, the order of their results is completely correct, while the order of 
the results for the knowledge measures without the order property, such as KSKB, 
KBB, 1

HYK , 0.5
rK , KN, KSK and S(U, V), do not meet the property KP4I. According 

to Table 1, KG and Kp will be better than the others. Hence, we conclude that KG 
and Kp are better than the others. 

A type of classic intuitionistic fuzzy sets mA  are used to compare and analyze 
the difference of results among the proposed ( )pK A  and all those traditional 
knowledge measure formulas [18]. 

Example 2. Let ( ) ( ){ }, , |A AA x x x x Xµ ν= ∈  be an IFS in X. For any posi-
tive real number m, De et al. define the IFS mA  as follows [18]: 

( )( ) ( )( ){ }, ,1 1 |
m m

m A AA x x x x Xµ ν= − − ∈ . 

Obviously, we have 0 s t≤ ≤ , ( )( ) ( )( )0 1
t s

A Ax xµ µ≤ ≤ ≤ ,  

( )( ) ( )( )0 1 1 1 1 1
s t

A Ax xν ν≤ − − ≤ − − ≤ , and a series of IFSs for contrast experi-

ments can be constructed. 
Using the operation above, they defined the concentration and dilation of A as 

follows: 

Concentration: ( ) ( )( ) ( )( ){ }2 2
2 , ,1 1 |A ACON A A x x x x Xµ ν= = − − ∈ . 

Dilation: ( ) ( )( ) ( )( ){ }1 2 1 2
1 2 , ,1 1 |A ADIL A A x x x x Xµ ν= = − − ∈ . 

Like fuzzy sets, ( )CON A  and ( )DIL A  can be treated as “Very (A)” and 
“More or less (A)”, respectively. 

In the next, we consider an IFS A in X = {6, 7, 8, 9, 10} defined in reference [9] 
[13] [17] as follows: 

Taking into account the characteristics of the value of language variables, De 
et al. define IFS 0.5 2 3 4, , , ,A A A A A  in X to be “More or Less Large”, “Large”, 
“Very Large”, “Quite Very Large”, “Very Very Large”. In the same way, 

0.5 2 3 4, , , ,B B B B B  and 0.5 2 3 4, , , ,C C C C C  can be defined [17]. 

{ }6,0.1,0.8 , 7,0.3,0.5 , 8,0.6,0.2 , 9,0.9,0.0 , 10,1.0,0.0 ,A =  

{
}

0.5 6,0.316,0.553 , 7,0.548,0.293 , 8,0.775,0.106 ,

9,0.949,0.0 , 10,1.0,0.0 ,

A =
 

{
}

2 6,0.01,0.96 , 7,0.09,0.75 , 8,0.36,0.36 ,

9,0.81,0.0 , 10,1.0,0.0 ,

A =
 

{
}

3 6,0.001,0.992 , 7,0.027,0.875 , 8,0.216,0.488 ,

9,0.729,0.0 , 10,1.0,0.0 ,

A =
 

https://doi.org/10.4236/am.2018.97060


Z. H. Zhang et al. 
 

 

DOI: 10.4236/am.2018.97060 885 Applied Mathematics 

 

{
}

4 6,0.000,0.998 , 7,0.008,0.938 , 8,0.13,0.59 ,

9,0.656,0.0 , 10,1.0,0.0 .

A =
 

{ }6,0.1,0.8 , 7,0.3,0.5 , 8,0.5,0.4 , 9,0.9,0.0 , 10,1.0,0.0 ,B =  

{
}

0.5 6,0.316,0.553 , 7,0.548,0.293 , 8,0.707,0.225 ,

9,0.949,0.0 , 10,1.0,0.0 ,

B =
 

{
}

2 6,0.01,0.96 , 7,0.09,0.75 , 8,0.25,0.64 ,

9,0.81,0.0 , 10,1.0,0.0 ,

B =
 

{
}

3 6,0.001,0.992 , 7,0.027,0.875 , 8,0.125,0.784 ,

9,0.729,0.0 , 10,1.0,0.0 ,

B =
 

{
}

4 6,0.000,0.998 , 7,0.008,0.938 , 8,0.062,0.870 ,

9,0.656,0.0 , 10,1.0,0.0 .

B =
 

{ }6,0.1,0.8 , 7,0.3,0.5 , 8,0.5,0.5 , 9,0.9,0.0 , 10,1.0,0.0 ,C =  

{
}

0.5 6,0.316,0.553 , 7,0.548,0.293 , 8,0.707,0.293 ,

9,0.949,0.0 , 10,1.0,0.0 ,

C =
 

{
}

2 6,0.01,0.96 , 7,0.09,0.75 , 8,0.25,0.75 ,

9,0.81,0.0 , 10,1.0,0.0 ,

C =
 

{
}

3 6,0.001,0.992 , 7,0.027,0.875 , 8,0.125,0.875 ,

9,0.729,0.0 , 10,1.0,0.0 ,

C =
 

{
}

4 6,0.000,0.998 , 7,0.008,0.938 , 8,0.062,0.938 ,

9,0.656,0.0 , 10,1.0,0.0 .

C =
 

From the data above, for each { }6,7,8,9,10x X∈ = , we obtain: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.5 2 3 4

0.5 2 3 4

,

;
AA A A A

AA A A A

x x x x x

x x x x x

µ µ µ µ µ

ν ν ν ν ν

≥ ≥ ≥ ≥

≤ ≤ ≤ ≤

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.5 2 3 4

0.5 2 3 4

,

;
BB B B B

BB B B B

x x x x x

x x x x x

µ µ µ µ µ

ν ν ν ν ν

≥ ≥ ≥ ≥

≤ ≤ ≤ ≤
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0.5 2 3 4

0.5 2 3 4

,

.
CC C C C

CC C C C

x x x x x

x x x x x

µ µ µ µ µ

ν ν ν ν ν

≥ ≥ ≥ ≥

≤ ≤ ≤ ≤
 

According to the definition of knowledge measure of IFSs, obviously we get: 

( ) ( ) ( )
( ) ( )

0.5 2

3 4

Knowledge Knowledge Knowledge

Knowledge Knowledge ;

A A A

A A

< <

< <
 

( ) ( ) ( )
( ) ( )

0.5 2

3 4

Knowledge Knowledge Knowledge

Knowledge Knowledge ;

B B B

B B

< <

< <
 

https://doi.org/10.4236/am.2018.97060


Z. H. Zhang et al. 
 

 

DOI: 10.4236/am.2018.97060 886 Applied Mathematics 

 

( ) ( ) ( )
( ) ( )

0.5 2

3 4

Knowledge Knowledge Knowledge

Knowledge Knowledge .

C C C

C C

< <

< <
 

The results are shown in the following Tables 2-4. 
Where the evaluation index Accuracy is defined as follows: 

( )
( )

Number Entropies with Right Order in
Accuracy

Number
i i i

i i i

A B C
A B C

+ +
=

+ +    (17) 

 
Table 2. Comparison of experimental results from Ak.  

Knowledge 
measure 

IFSs for comparison experiments  
Accuracy 

Number 
of wrong A1 A2 A3 A4  

KG 0.785 0.788 0.805 0.854 1 93.3% 0 

KSKB 0.794 0.786 0.783 0.827 1 73.3% 2 

KBB 0.908 0.880 0.868 0.866 1 46.7% 5 

1
HYK  0.754 0.744 0.783 0.816 1 86.7% 1 

0.5
rK  0.713 0.704 0.737 0.773 1 86.7% 1 

KN 0.856 0.835 0.839 0.847 1 80% 1 

2
SKK  0.827 0.780 0.764 0.765 1 60% 2 

K0.5 0.805 0.814 0.746 0.874 1 80% 1 

K1 0.681 0.693 0.699 0.788 1 86.7% 0 

K2 0.542 0.549 0.621 0.679 1 93.3% 0 

K3 0.472 0.470 0.559 0.613 0 93.3% 1 

Note. Each bold data means the wrong prediction result and the corresponding method. 
 

Table 3. Comparison of experimental results from Bk.  

Knowledge 
measure 

IFSs for comparison experiments 
Accuracy 

Number 
of wrong B1 B2 B3 B4 B5 

KG 0.767 0.761 0.865 0.911 0.926 93.3% 1 

KSKB 0.787 0.763 0.852 0.888 0.899 73.3% 1 

KBB 0.918 0.900 0.902 0.9066 0.90662 46.7% 1 

1
HYK  0.748 0.745 0.802 0.848 0.879 86.7% 1 

0.5
rK  0.710 0.706 0.748 0.791 0.826 86.7% 1 

KN 0.858 0.847 0.874 0.893 0.900 80% 1 

2
SKK  0.846 0.814 0.819 0.831 0.838 60% 2 

K0.5 0.790 0.755 0.890 0.930 0.941 80% 1 

K1 0.655 0.626 0.803 0.869 0.891 86.7% 1 

K2 0.507 0.505 0.675 0.768 0.810 93.3% 1 

K3 0.437 0.445 0.587 0.691 0.748 93.3% 0 

Note. Each bold data means the wrong prediction result and the corresponding method. 
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Table 4. Comparison of experimental results from Ck. 

Knowledge 
measure 

IFSs for comparison experiments 
Accuracy 

Number 
of wrong C1 C2 C3 C4 C5 

KG 0.481 0.488 0.672 0.683 0.722 93.3% 0 

KSKB 0.790 0.756 0.878 0.907 0.913 73.3% 1 

KBB 0.932 0.920 0.924 0.925 0.920 46.7% 2 

1
HYK  0.761 0.767 0.829 0.874 0.900 86.7% 0 

0.5
rK  0.499 0.489 0.312 0.218 0.164 86.7% 0 

KN 0.868 0.864 0.895 0.911 0.913 80% 1 

2
SKK  0.872 0.852 0.861 0.866 0.864 60% 2 

K0.5 0.786 0.673 0.910 0.942 0.949 80% 1 

K1 0.648 0.593 0.832 0.890 0.905 86.7% 1 

K2 0.4985 0.4993 0.709 0.802 0.835 93.3% 0 

K3 0.429 0.445 0.619 0.731 0.783 93.3% 0 

Note. Each bold data means the wrong prediction result and the corresponding method. 
 

Based on the theoretical derivation, ( )GK A  
and ( )pK A  

satisfy the proper-
ty of order KP4I, while ( ) ( ) ( ) ( ) ( ) ( )1, , , , , ,BB SKB HC HC R NK A K A K A K A K A K Aα β

( )SKK A  and ( ),S U V  do not Satisfy this property. From the comparative 
analysis of the results in Tables 2-4, we found that the overall order accuracy of 

( )pK A  is 89%, and that of ( ) ( ) ( )2 3& & GK A K A K A  is 93.3%, owning the 
highest accuracy among all methods. Moreover, From Example 1 - 2, the order 
of all the results from ( )2K A  and ( )GK A  is exactly the same. And for the 
order of all the results from ( )3K A  and ( )GK A , there is only slight differenc-
es in Example 2 between them. Hence the overall performance of ( )pK A  is ac-
ceptable. 

In conclusion, the above theoretical and experimental results show that the 
proposed parametric algorithm is simple and feasible, and it is an effective tool 
for knowledge measure. In future research, we will apply the constructed know-
ledge measure model to calculate the information volume of uncertain variables, 
study the information-based sorting and decision operators, and apply them to 
the research of management science decision making like references [19] [20], 
such as supply chain management and risk management. 

6. Conclusion 

On the basis of Szmidt & Kacprzyk’s axiom system, a simple model of know-
ledge measure with parameters is presented. And we illustrate the validity of the 
measure tool from the theoretical and empirical evidence. At the same time, this 
paper also applies the proposed knowledge measure, along with some classical 
knowledge measure formulas of IFSs, from the theoretical and practical compar-
ison, to verify a conclusion: In most knowledge measures of IFSs, the accuracy of 
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those formulas satisfying the order property will be higher than that of those not 
satisfying. 
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