
Advances in Pure Mathematics, 2018, 8, 687-698 
http://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

 

DOI: 10.4236/apm.2018.87041  Jul. 31, 2018 687 Advances in Pure Mathematics 
 

 
 
 

There Are Infinitely Many Mersnne Composite 
Numbers with Prime Exponents 

Fengsui Liu 

Department of Mathematics, Nanchang University, Nanchang, China 

 
 
 

Abstract 
By extending both arithmetical operations into finite sets of natural numbers, 
from the entire set of natural numbers successively deleting some residue 
classes modulo a prime, we invented a recursive sieve method or algorithm on 
natural numbers and their sets. The algorithm mechanically yields a sequence 
of sets, which converges to the set of all primes p such that 2p + 1 divides the 
Mersenne number Mp. The cardinal sequence corresponding to the sequence 
of sets is strictly increasing. So that we have captured enough usable struc-
tures, without any estimation, the existing theories of those structures allow us 
to prove an exact result: there are infinitely many Mersenne composite num-
bers with prime exponents Mp. 
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1. Introduction 

A Mersenne number xM  is a number of the form 

2 1.x
xM = −  

They are named after Marin Mersenne, a French Minim friar, who studied 
them in the early 17th century. 

If the exponent x is a composite number, obviously xM  is a composite num-
ber. One only discusses the primality of a Mersenne number with a prime expo-
nent.  

On January 3, 2018, the Great Internet Mersenne Prime Search has discovered 
the largest known prime number, 277232917−1, having 23,249,425 digits. A com-
puter volunteered by Jonathan Pace made the find on December 26, 2017 [1]. 
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One has a conjecture and an open problem about Mersenne numbers. 
There are infinitely many Mersenne primes. 
There are infinitely many Mersenne composite numbers. 
In 1750 Euler stated and in 1775 Laglange proved the following theorem [2]. 
Let 3mod 4p ≡  is prime. Then 2 1p +  is also prime if and only if 2 1p +  

divides Mp. 
When p and 2 1p +  both are prime, the prime p is said to be a Sophie Ger-

main prime. 
If we prove that there are infinitely many Sophie Germain primes of the form 

4 3k + , then we prove that there are infinitely many Mersenne composite num-
bers. 

In normal sieve theory, like the twin prime conjecture, it is hopeless to prove 
the Sophie German prime conjecture. 

Primes have some obvious structures. We don’t know if they also have some 
additional structures. Because of this, we have been unable to settle many ques-
tions about primes [3]. 

In 2014, Simon Davis provided a probabilistic proof of infinite extent of the 
sequence of Mersenne composite numbers with prime exponents [4]. 

In 2011, author used the recursive sieve method, which reveals some exotic 
structures for sets of primes, to prove the Sophie Germain prime conjecture: 
there are infinitely many primes p such that 2 1p +  is also prime [5]. 

In this paper we extend the above structural result to prove: there are infinite-
ly many Sophie Germain primes of the form 4 3k + , then we solve the open 
problem about Mersenne composite numbers. 

In order to be self-contained, we repeat some contents in the paper [5]. 

2. A Formal System 

For expressing a recursive sieve method by well formed formulas, we extend 
both arithmetical operations addition +, multiplication × on natural numbers 
into finite sets of natural numbers. 

We use small letters , ,a x t  to denote natural numbers and capital letters 
, ,A X T  to denote sets of natural numbers. 
For arbitrary both finite sets of natural numbers ,A B  we write 

1 2 1 2, , , , , ,i n i nA a a a a a a a a= < < < < <� � � � , 

1 2 1 2, , , , , ,j m j mB b b b b b b b b= < < < < <� � � � . 

We define 

1 1 2 1 1, , , ,..., ,i j n m n mA B a b a b a b a b a b−+ = + + + + +� ,       (2.1) 

1 1 2 1 1, , , , , , .i j n m n mAB a b a b a b a b a b−= � �  

Example: 

1,5 0,6,12,18,24 1,5,7,11,13,17,19,23,25,29 ,+ =  

6 0,1,2,3,4 0,6,12,18, 24 .=  
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For the empty set φ  we define Aφ φ+ =  and Aφ φ= . 
We write \A B  for the set difference of A and B. 
Let 

1 2, , , , , modi nX A a a a a a≡ = � �  

be several residue classes modulo a. 
We define the solution of the system of congruences 

1 2, , , , , modi nX A a a a a a≡ = � � , 

1 2, , , , , modj mX B b b b b b≡ = � �  

to be 

11 21, , , , , modij nmX D d d d d ab≡ = � �
            

(2.2) 

where modijx d ab=  is the solution of the system of congruences 

mod ,ix a a=  
mod .jx b b=  

If the greatest common divisor ( ),a b  equals 1, by the Chinese remainder 
theorem, every solution modijx d ab=  exists with ijd ab< , every solution is 
computable and unique. 

Except extending +, × into finite sets of natural numbers, we continue the tra-
ditional interpretation of the formal language 0, 1, +, ×, ∈ . The reader who is 
familiar with model theory may know, we have founded a new model or struc-
ture of second order arithmetic by a two-sorted logic 

( ) , ,0,1, , , ,P N N + × ∈
                    

(2.3) 

where N is the set of all natural numbers and ( )P N  is the power set of N. 
We denote this model by ( )P N . 
Given a interpretation of the formal language 0, 1, +, ×, ∈ , the set of true 

sentences in ( )P N , the theory of the model, is entirely determined. The entities 
in ( )P N  have intrinsic objective nature. Example the set of all primes p such 
that 2 1| pp M+  have intrinsic objective nature, infinite or not. 

Mathematicians assume that ,0,1, ,N + ×  is the standard model of Peano 
theory PA, 

N PA                           (2.4) 

Similarly, we assume that ( ) , ,0,1, , ,P N N + × ∈  is the standard model of a 
new arithmetical theory PA ZF+ , 

( )P N PA ZF+ .                      (2.5) 

This is a joint theory of PA and ZF, in other words, ( )P N  is not only a 
model of Peano theory PA but also is a model of set theory ZF. 

As a model of Peano theory PA the natural numbers in the model ( )P N  
and the natural numbers in the model N are the same. 

As a model of set theory ZF the natural numbers are atoms, urelements, or 
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objects that have no element. We discuss sets of natural numbers and sets of sets 
of natural numbers. 

The model ( )P N  and the theory PA ZF+  construct a new formal system. 
In this formal system ( )P N , we may formalize natural numbers and sets of 
natural numbers as individuals, terms, or points. 

We do not know if the theory PA ZF+  can solve the open problem, but we 
know that the new formal language 0, 1, +, ×, ∈  has more stronger expressive 
power. The new formal system ( )P N  has more richer mathematical struc-
tures. 

In the formal system ( )P N , we may introduce a recursive algorithm and 
produce some recursive sequences of sets. A new notation, the sequence of sets, 
reveals structures for some prime sets. Based on the theory PA ZF+  and the 
existing theories of those structures, we can carefully construct a logical deduc-
tion, which is built into the structures of the natural numbers and their sets, to 
solve some old prime problems in pure mathematics. 

“A well chosen notation can contribute to making mathematical reasoning it-
self easier, or even purely mechanical.” [6]. 

We do not further discuss this formal system in view from logic and mathe-
matical foundation 

3. A Recursive Algorithm or Sieve Method 

From the entire set of natural numbers successively deleting some residue classes 
modulo a prime, we invented a recursive sieve method or algorithm on natural 
numbers and their sets. Now we introduce the algorithm for Sophie Germain 
primes of the form 4 3k + . 

Let ip  be i-th prime, 0 2p = . For every prime 2ip > , let 

( )0, 1 2 modi i iB p p≡ −                    (3.1) 

be the solution of the congruence 

( )2 1 0mod .ix x p+ ≡  

Example: 

1 0,1 mod3,B ≡  

2 0, 2 mod5,B ≡  

3 0,3 mod 7,B ≡  

4 0,5 mod11,B ≡  

Let 

1 14 .i
i jm p+ = ∏                        (3.2) 

From the residue class 3mod 4x ≡  we successively delete the residue classes 

1 mod3B , � , modi iB p  leave the residue class 1 1modi iT m+ + . Then the left re-
sidue class is the set of all numbers x of the form 4 3k +  such that ( )2 1x x +  
does not contain any prime j ip p<  as a factor ( )( )12 1 , 1ix x m ++ = . 

https://doi.org/10.4236/apm.2018.87041


F. S. Liu 
 

 

DOI: 10.4236/apm.2018.87041 691 Advances in Pure Mathematics 
 

Let 

1modi iX D m +≡                        (3.3) 

be the solution of the system of congruences 

modi iX T m≡  

modi iX B p≡  

Let 1iT +  be the set of least nonnegative representatives of the left residue class 

1 1modi iT m+ + . 
In the formal system ( )P N  we obtain a recursive formula for the set 1iT + , 

which describe the recursive algorithm or sieve method for Sophie Germain 
primes of the form 4 3k + . 

1 3 ,T =  

( )1 0,1, 2, , 1 \ .i i i i iT T m p D+ = + −�               (3.4) 

The number of elements of the set 1iT +  is 

( )1 1 2 .i
i iT P+ = −∏                       (3.5) 

We exhibit the first few terms of formula (3.4) and briefly prove that the algo-
rithm is valid by mathematical induction. 

The residue class 1 3 mod 4T =  is the set of all numbers x of the form  
4 3k + . Now the set 3 mod 4X ≡  is equivalent to the set  

( )3 4 0,1,2 mod12X ≡ + , 

from them we delete the solution of the system of congruences  

1 3,7 mod12D = , and leave 

( )2 3 4 0,1,2 \ 3,7 11 .T = + =  

The residue class 2 11 mod12T =  is the set of all numbers x of the form 
4 3k +  such that ( )( )2 1 ,12 1x x + = . Now the set 11 mod12X ≡  is equiva-
lent to the set 

( )11 12 0,1,2,3,4 mod 60X ≡ +  

from them we delete the solution of the system of congruences 

2 35,47 mod 60,D =  

and leave 

( )3 11 12 0,1,2,3,4 \ 35,47 11,23,59 .T = + =  

The residue class 3 11,23,59 mod 60T =  is the set of all numbers x of the 
form 4 3k +  such that ( )( )2 1 ,60 1x x + = . And so on. 

Suppose that the residue class modi iT m  is the set of all numbers x of the 
form 4 3k +  such that ( )( )2 1 , 1ix x m+ = . We delete the residue class  

modi iB p  from them. In other words, we delete the solution 1modi iX D m +≡  
of the system of congruences 

modi iX T m≡  
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modi iX B p≡  

Now the residue class modi iT m  is equivalent to the residue class  

( ) 10,1, 2, , 1 modi i i iT m p m ++ −�  

From them we delete the solution 1modi iD m + , which is the set of all numbers 
x of the form 4 3k +  such that ( )2 1 0mod ix x p+ ≡ . It follows that the left re-
sidue class 1 1modi iT m+ +  is the set of all numbers x of the form 4 3k + , and 

( )( )12 1 , 1ix x m ++ = . Our algorithm is valid. It is easy to compute  
( )1 2i i iT T p+ = −  

by the above algorithm. 
We may rigorously prove formulas (3.4) and (3.5) by mathematical induction, 

the proof is left to the reader. 
In the next section we refine formula (3.4) and solve the open problem 

4. A Main Theorem 

We call a Sophie Germain primes of the form 4 3k +  a S-prime. 
Let eT  be the set of all S-primes 

{ }: is a S-primeeT x x= .                   (4.1) 

By the recursive sieve method we shall determine an additional exotic struc-
ture for the set eT  based on the limit of a sequence of sets ( iT ′ ), 

lim .i eT T′=  

Next we prove that the cardinality of the set eT  is infinite by existing theories 
of those structures, 

0.eT =ℵ  

Based on the recursive algorithm, formula (3.4), we successively delete all 
numbers x of the form 4 3k +  such that ( )2 1x x +  contains the least prime 
factor ip . We delete non S-primes or non S-primes together with a S-prime. 
The sifting condition or “sieve” is 

( )2 1 0mod .ix x p+ ≡                      (4.2) 

We modify the sifting condition to be 

( )2 1 0mod .i ix x p p x+ ≡ ∧ <                  (4.3) 

According to this new sifting condition or “sieve”, we successively delete the 
set iC  of all numbers x such that either x or 2 1x +  is composite with the least 
prime factor 2ip > , 

( ){ }: mod 2 1 0mod .i i i i iC x x X T m x x p p x= ∈ ≡ ∧ + ≡ ∧ <      (4.4) 

but remain the S-prime x if ip x= . 
We delete all sets jC  with 1 j i≤ <  from the set 0N  of all natural num-

bers x of the form 4 3k + , and leave the set 
1

0 1
\ .i

i jL N C−= ∪                       (4.5) 

The set of all S-primes is 

https://doi.org/10.4236/apm.2018.87041


F. S. Liu 
 

 

DOI: 10.4236/apm.2018.87041 693 Advances in Pure Mathematics 
 

 0 1
\ .e iT N C∞= ∪                        (4.6) 

The recursive sieve (4.3) is a perfect tool, with this tool we delete all non 
S-primes and leave all S-primes. So that we only need to determine the number 
of all S-primes eT . If we do so successfully, then the parity obstruction, a ghost 
in house of primes, has been automatically evaporated. 

With the recursive sieve (4.3), each non S-prime is deleted exactly once, there 
is need neither the inclusion-exclusion principle nor the estimation of error 
terms, which cause all the difficulty in normal sieve theory. 

Let iA  be the set of all S-primes x less than ip  

{ }: is a S-primei iA x x p x= < ∧ .                (4.7) 

From the recursive formula (3.4), we deduce that the left set iL  is the union 
of the set iA  of S-primes and the residue class modi iT m . 

modi i i iL A T m= ∪                       (4.8) 

Now we intercept the initial segment from the left set iL , which is the union 
of the set iA  of S-primes and the set iT  of least nonnegative representatives. 
Then we obtain a new recursive formula 

.i i iT A T′= ∪                          (4.9) 

Except remaining all S-primes x less than ip  in the initial segment iT ′ , both 
sets iT ′  and iT  are the same. 

For example 

4 3 11,23,71, , 263,299,323,359,383,419

3,11,23,71, , 263,299,323,359,383,419

T ′ =

=

∪ �

�
 

Note: the 3 2 3 1 7M = × + =  is a prime. For all S-prime 3p > , 2 1| pp M+ , 
the pM  is a Mersenne composite number. Example: 11 23 83, , ,M M M � . 

Formula (4.9) expresses the recursively sifting process according to the sifting 
condition (4.3), and provides a recursive definition of the initial segment iT ′ . 
The initial segment is a well chosen notation. We shall consider some properties 
of the initial segment, and reveal some structures of the sequence of the initial 
segments to determine the set of all S-primes and its cardinality. 

Let iA  be the number of S-primes less than ip . Then the number of ele-
ments of the initial segment iT ′  is 

.i i iT A T′ = +                        (4.10) 

From formula (3.5) we deduce that the cardinal sequence iT ′  is strictly in-
creasing 

1 .i iT T +′ ′<                         (4.11) 

Based on order topology obviously we have 

0lim .iT ′ =ℵ                        (4.12) 

Intuitively we see that the initial segment iT ′  approaches the set of all S- 
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primes eT , and the corresponding cardinality iT ′  approaches infinity as  
i →∞ . Thus the set of all S-primes is limit computable and is an infinite set. 

Next we give a formal proof based on set theory and order topology 

4.1. A Formal Proof 

Let iA′  be the subset of all S-primes in the initial segment iT ′  

{ }: is S-primei iA x T x′ ′= ∈ .                 (4.13) 

We consider the structures of both sequences of sets ( )iT ′  and ( )iA′  to 
solve the open problem. 

Lemma 4.1: 
The sequence of the initial segments ( )iT ′  and the sequence of its subsets

( )iA′  of S-primes both converge to the set of all S-primes eT . 
First from set theory, next from order topology we prove this Lemma. 
Proof: 
For the convenience of the reader, we quote a definition of the set theoretic 

limit of a sequence of sets [7]. 
Let nF  be a sequence of sets, we define limsup n

n
F

→∞
 and liminf nn

F
→∞

 as fol-
lows 

0 0
limsup .n n

n
F F∞ ∞

→∞
=∪ ∩                    (4.14) 

 0 0
liminf .n nn

F F∞ ∞

→∞
=∪ ∩                    (4.15) 

It is easy to check that limsup n
n

F
→∞

 is the set of those elements x, which be-
longs to nF  for infinitely many n. Analogously, x belongs to liminf nn

F
→∞

 if and 
only if it belongs to nF  for almost all n, that is it belongs to all but a finite 
number of the nF . 

If 

limsup liminfn nnn
F F

→∞→∞
= . 

we say that the sequence of sets nF  converges to the limit 

lim limsup liminfn n nnn
F F F

→∞→∞
= = .                (4.16) 

We know that the sequence of left sets iL  is descending 

1 2 iL L L⊃ ⊃ ⊃ ⊃� �                    (4.17) 

According to the definition of the set theoretic limit of a sequence of sets, we 
obtain that the sequence of left sets ( )iL  converges to the set eT  

lim .i i eL L T= =∩                      (4.18) 

The sequence of subsets ( ).iA  of S-primes is ascending 

1 2 iA A A′ ′ ′⊂ ⊂ ⊂ ⊂� �                    (4.19) 

We obtain that the sequence of subsets ( ).iA  converges to the set eT , 

lim .i i eA A T′ ′= =∪                      (4.20) 
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The initial segment iT ′  is located between two sets .
iA  and iL  

.i i iA T L′ ′⊂ ⊂                        (4.21) 

Thus the sequence of the initial segments ( ).iT  converges to the set eT  

lim .i eT T′=                         (4.22) 

According to set theory, we have proved that both sequences of sets ( ).iT  and 

( ).iA  converge to the set of all S-primes eT . 

lim lim .i i eA T T′ ′= =                      (4.23) 

Next we prove that according to order topology both sequences of sets ( ).iT  
and ( ).iA  converge to the set of all S-primes eT . 

We quote a definition of the order topology [8]. 
Let X be a set with a linear order relation; assume X has more one element. Let 

B be the collection of all sets of the following types: 
1) All open intervals ( ),a b  in X. 
2) All intervals of the form [ )0 ,a b , where 0a  is the smallest element (if any) 

in X. 
3) All intervals of the form ( ]0,a b , where 0b  is the largest element (if any) 

in X. 
The collection B is a bases of a topology on X, which is called the order topol-

ogy. 
According to the definition there is no order topology on the empty set or sets 

with a single element. 
The recursively sifting process, formula (4.9), produces both sequences of sets 

together with the set theoretic limit point eT . 

1 1 2: , , , , , .i eX T T T T′ ′ ′� �  

 2 1 2: , , , , , .i eX A A A T′ ′ ′� �                    (4.24) 

We further consider the structures of sets 1X  and 2X  using the recursively 
sifting process (4.9) as an order relation 

( ), ; .i j i i ei j T T T T′ ′ ′< < ∀ <  

( ), ; .i j i i ei j A A A T′ ′ ′< < ∀ <                   (4.25) 

The set 1X  has no repeated term. It is a well ordered set with the order type 
1ω +  using the recursively sifting process (4.9) as an order relation. Thus the 

set 1X  may be endowed an order topology. 
The set 2X  may have some repeated terms. We have computed out the first 

few S-primes x. The set 2X  contains more than one element, may be endowed 
an order topology using the recursively sifting process (4.9) as an order relation. 

Obviously, for every neighborhood ( ], ec T  of eT  there is a natural number 

0i , for all 0i i> , we have ( ],i eT c T′∈  and ( ],i eA c T′∈ , thus both sequences of 

sets ( ).iT  and ( ).iA  converge to the set of all S-primes eT . 

lim ,i eT T′=                           (4.26) 
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lim .i eA T′ =                           (4.27) 

According to the order topology, we have again proved that both sequences of 
sets ( ).iT  and ( ).iA  converge to the set of all S-primes eT . We also have 

lim lim .i iT A′ ′=                        (4.28) 

The formula iT ′  is a recursive asymptotic formula for the set of all S-primes 

eT . 
end proof. 
In general, if eT φ= , the set { }2X φ=  only has a single element, which has 

no order topology. In this case formula (4.28) is not valid and our method of 
proof may be useless [5]. 

Lemma 4.1 reveals an order topological structure and a set theoretic structure 
for the set of all S-primes on the recursive sequences of sets. Based on the exist-
ing theories of those structures, we easily prove that the cardinality of the set of 
all S-primes is infinite. 

Theorem 4.2: 
The set of all S-primes is an infinite set. 
We give two proofs. 
Proof A: 
We consider the cardinalities iT ′  and iA′  of sets on two sides of the equal-

ity (4.28), and the order topological limits of cardinal sequences ( )iT ′  and 

( )iA′ , as the sets iT ′  and iA′  both tend to eT . 
From general topology we know, if the limits of both cardinal sequences ( )iT ′  

and ( )iA′  on two sides of the equality (4.28) exist, then both limits are equal; if 
lim iA′  does not exist, then the condition for the existence of the limit lim iT ′  
is not sufficient [8]. 

For S-primes, the set eT  is nonempty, the formula (4.28) is valid, obviously 
the order topological limits lim iA′  and lim iT ′  on two sides of the equality 
(4.28) exist, thus both limits are equal 

 lim lim .i iA T′ ′=                       (4.29) 

From formula (4.12) 0lim iT ′ =ℵ  we have 

 0lim .iA′ =ℵ                        (4.30) 

Usually let ( )2 nπ  be the counting function, the number of S-primes less 
than or equal to n. Normal sieve theory is unable to provide non-trivial lower 
bounds of ( )2 nπ  because the parity obstruction. Let n be a natural number. 
Then the number sequence ( )im  is a subsequence of the number sequence (n), 
we have 

( ) ( )2 2lim lim .in mπ π=                   (4.31) 

By formula (4.13), the iA′  is the set of all S-primes less than im , and the iA′  
is the number of all S-primes less than im , thus ( )2 i im Aπ ′= . We have 

( )2lim limi im Aπ ′= .                   (4.32) 

From formula (4.30) we prove 
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( )2 0lim .nπ =ℵ                       (4.33) 
We directly prove that the number of all S-primes is infinite with the counting 

function. Next we give another proof by the continuity of the cardinal function. 
End proof. 
Proof B: 
Let :f X Y→  be the cardinal function ( )f T T= . from the order topo-

logical space X to the order topological space Y 

1 2: , , , , , ,i eX T T T T′ ′ ′� �  

1 2 0: , , , , , .iY T T T′ ′ ′ ℵ� �                   (4.34) 

It is easy to check that for every open set ) ( ) ( ]1 0, , , , ,T c c d d′ ℵ  in Y the pre- 
image [ ) ( ) ( ]1, , , , , eT c c d d T′  is also an open set in X. So that the cardinal func-
tion T  is continuous at eT  with respect to the above order topology. 

Both order topological spaces are first countable, hence the cardinal function 
T  is sequentially continuous. By a usual topological theorem [9] (Theorem 

21.3, p130), the cardinal function T  preserves limits 

lim lim .i iT T′ ′=                       (4.35) 

Order topological spaces are Hausdorff spaces. In Hausdorff spaces the limit 
point of the sequence of sets ( ).iT  and the limit point of cardinal sequence  

( ).
iT  are unique. 
We have proved Lemma 4.1, lim i eT T′= , and formula (4.12), 0lim iT ′ =ℵ . 

Substitute, we obtain that the set of all S-primes is an infinite set, 

0.eT =ℵ                          (4.36) 
End proof. 
By Euler-Lagrange theorem we have solved the open problem about Mersenne 

numbers. 
Theorem 4.3:  
There are infinitely many Mersenne composite numbers with prime ex-

ponents. 

4.2. Conclusions 

In pure mathematics, without any statistical data, without the Riemann hypo-
thesis, by the recursive algorithm, we well understand the recursive structure, set 
theoretic structure and order topological structure for the set of all S-primes on 
sequences of sets. We choose a well notation, the sequences of set, which makes 
mathematical reasoning itself easier, or even purely mechanical. Then we obtain 
a formal proof of the open problem about Mersenne composites. 

In general, we may discuss Shophe German primes of the form ,x kx c+ , 
then treat another prime problems, in this paper we do not discuss them. 
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