

# Lyapunov-Type Inequalities for Conformable BVP

### Xia Wang, Run Xu\*

School of Mathematical Sciences, Qufu Normal University, Qufu, China Email: \*983417471@qq.com

How to cite this paper: Wang, X. and Xu, R. (2018) Lyapunov-Type Inequalities for Conformable BVP. *Journal of Applied Mathematics and Physics*, **6**, 1549-1557. https://doi.org/10.4236/jamp.2018.67131

**Received:** June 8, 2018 **Accepted:** July 24, 2018 **Published:** July 27, 2018

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

## Abstract

In this paper, we present Lyapunov-type inequality for conformable BVP

$$T_{\alpha}^{a} y(t) + q(t) y(t) = 0$$

with the conformable fractional derivative of order  $1 < \alpha \le 2$  and  $2 < \alpha \le 3$  with corresponding boundary conditions. We obtain the Lyapunov-type inequality by a construction Green's function and get its corresponding maximum value. Application to the corresponding eigenvalue problem is also discussed.

## **Keywords**

Lyapunov-Type Inequalities, Conformable Fractional Derivative, Green's Function, Eigenvalue

## **1. Introduction**

Lyapunov-type inequality is an important and useful tool for studying differential equations. The classical Lyapunov-type inequality for differential equations was studied in [1]:

$$\begin{cases} y''(t) = -q(t)y(t), \ a < t < b, \\ y(a) = y(b) = 0, \end{cases}$$
(1.1)

if (1.1) has a nontrivial solution, then

$$\int_{a}^{b} \left| q\left(s\right) \right| \mathrm{d}s > \frac{4}{b-a}.$$
(1.2)

Furthermore, the constant 4 in (1.2) is sharp.

More authors paid attention to study Lyapunov-type inequality for differential equations and got many results. In recent years, a series of achievements have

been made in the Lyapunov-type inequalities of fractional differential equations. We refer to [2]-[12]. In [3], Ferreira studied the following equations:

$$\begin{cases} {}_{a}^{C}D^{\alpha}y(t) + q(t)y(t) = 0, & a < t < b, 1 < \alpha \le 2\\ y(a) = 0 = y(b), \end{cases}$$
(1.3)

if (1.3) has a nontrivial solution, then

$$\int_{a}^{b} |q(s)| ds > \frac{\Gamma(\alpha)\alpha^{\alpha}}{\left[(\alpha-1)(b-a)\right]^{\alpha-1}}$$

In [7], Abdeljanad and Baleanu obtained a Lyapunov-type inequality for ABR fractional boundary value problem

$$\begin{cases} \binom{ABR}{a} D^{\alpha} y(t) + q(t) y(t) = 0, \quad a < t < b, \quad 2 < \alpha \le 3, \\ y(a) = y(b) = 0, \end{cases}$$
(1.4)

if (1.4) has a nontrivial solution, then

$$\int_{a}^{b} T(s) \, \mathrm{d}s > \frac{4}{b-a},$$

where

$$T(s) = \left[\frac{3-\alpha}{B(\alpha-2)}|q(t)| + \frac{\alpha-2}{B(\alpha-2)}({}_{a}I^{\alpha-2}|q(s)|)(t)\right].$$

In [10], Abdeljawad studied a generalized Lyapunov-type inequalities for conformable BVP

$$\begin{cases} T_{\alpha}^{c} x(t) + r(t) x(t) = 0, & c < t < d, 1 < \alpha \le 2, \\ x(c) = x(d) = 0, \end{cases}$$
(1.5)

if (1.5) has a nontrivial solution, then

$$\int_{c}^{d} |r(s)| \mathrm{d}s > \frac{\alpha^{\alpha}}{(\alpha-1)^{\alpha-1} (d-c)^{\alpha-1}}.$$

Furthermore, Abdeljawad proved a Lyapunov-type inequalitiy for a sequential conformable BVP

$$\begin{cases} T_{\alpha}^{a} \cdot T_{\alpha}^{a} x(t) + r(t) x(t) = 0, & a < t < b, \frac{1}{2} < \alpha \le 1, \\ x(c) = x(d) = 0, \end{cases}$$
(1.6)

if (1.6) has a nontrivial solution, then

$$\int_{c}^{d} |r(t)| \mathrm{d}s > \frac{3\alpha - 1}{(d-c)^{2\alpha - 1}} \left(\frac{3\alpha - 1}{2\alpha - 1}\right)^{\frac{2\alpha - 1}{\alpha}}.$$

In this paper, we establish a Lyapunov-type inequalities for conformable BVP

$$\begin{cases} T_{\alpha}^{a} y(t) + q(t) y(t) = 0, & a < t < b, 1 < \alpha \le 2, \\ y(a) = y'(b) = 0 \end{cases}$$
(1.7)

and

$$T_{\alpha}^{a} f(t) + p(t) f(t) = 0, \quad a < t < b, 2 < \alpha \le 3,$$
  
$$f(a) = f'(a) = f'(b) = 0,$$
 (1.8)

where  $T^a_{\alpha}$  is conformable fractional derivative starting at *a* of order  $\alpha$ , and p,q are real-valued continuous. The introduction and background of conformable fractional are given in [2] [10]. Then, we give the definition and lemma about conformable fractional derivative in the following.

**Definition 1.1.** [4] Let  $n < \alpha \le n+1$ . Then

$$\left(I_{\alpha}^{c}g\right)(t) = \frac{1}{n!}\int_{c}^{t} \left(t-s\right)^{n} \left(s-c\right)^{\alpha-n-1}g\left(s\right) \mathrm{d}s$$

is called the left conformable fractional derivative starting at *c* of order  $\alpha$ .

**Lemma 1.1.** [4] Let  $f:[c,\infty) \to R$  be (n+1) times differentiable for t > c,  $n < \alpha \le n+1$ . Then, we have the following result:

$$\left(I_{\alpha}^{c} \cdot T_{\alpha}^{c} f\right)(t) = f\left(t\right) - \sum_{k=0}^{n} \frac{f^{n}\left(c\right)\left(t-c\right)^{k}}{k!}.$$

# 2. A Lyapunov-Type Inequality for Conformable Fractional Derivative of $1 < \alpha \le 2$

**Theorem 2.1.**  $y \in C[a,b]$  is a solution of the BVP (1.7) if and only if *y* satisfies the integral equation

$$y(t) = \int_{a}^{b} G(t,s)q(s)y(s)ds.$$
 (2.1)

where G(t,s) is the Green's function defined as

$$G(t,s) = \begin{cases} (t-a)(s-a)^{\alpha-2}, & a \le t \le s \le b, \\ (s-a)^{\alpha-1}, & a \le s \le t \le b. \end{cases}$$
(2.2)

**Proof.** Applying the integral  $I_a^{\alpha}$  in the (1.7), we have

$$I^a_{\alpha} \cdot T^a_{\alpha} y(t) = -I^a_{\alpha} (q(t) y(t)).$$

Then, using definition 1.1 and lemma 1.1, we obtain

$$y(t) = c_0 + c_1(t-a) - \int_a^t (t-s)(s-a)^{\alpha-2} q(s) y(s) ds.$$
 (2.3)

Since y(a) = 0, we get immediately that  $c_0 = 0$ . By the boundary condition y'(b) = 0, we obtain

$$c_1 = \int_a^b (s-a)^{\alpha-2} q(s) y(s) \mathrm{d}s.$$

Hence, equation (2.3) becomes

$$y(t) = (t-a) \int_{a}^{b} (s-a)^{\alpha-2} q(s) y(s) ds - \int_{a}^{t} (t-s) (s-a)^{\alpha-2} q(s) y(s) ds.$$
 (2.4)

Then, equation (2.4) can be written in the form of (2.1), where the Green's function is defined in (2.2).

The proof is completed.

**Corollary 2.1.** The function *G* defined in Theorem 2.1 satisfied the following property:

$$\max_{s \in [a,b]} G(t,s) = G(t,t) = (t-a)^{\alpha - 1}.$$
(2.5)

**Proof.** We define the function

$$g_1(t,s) = (t-a)(s-a)^{\alpha-2}$$

and

$$g_2(t,s) = (s-a)^{\alpha-1}.$$

For  $a \le t \le s \le b$ , differentiating  $g_1(t,s)$  with respect to *s*, we get

$$g'_{1}(t,s) = (t-a)(\alpha-2)(s-a)^{\alpha-3} < 0.$$
 (2.6)

While for  $a \le s \le t \le b$ , differentiating  $g_2(t,s)$  with respect to *s*, we get

$$g_{2}'(t,s) = (\alpha - 1)(s - a)^{\alpha - 2} > 0.$$
(2.7)

Hence,  $g_1(t,s)$  is a decreasing function,  $g_2(t,s)$  is an increasing function in *s*. Consequently, G (*t*, *s*) gets the maximum at s = t, we obtain (2.5).

Corollary 2.2. If (1.7) has a nontrivial continuous solution, then

$$\int_{a}^{b} (t-a)^{\alpha-1} |q(s)| \, \mathrm{d}s \ge 1.$$
(2.8)

**Proof.** Let  $y \in C[a,b]$  be a nontrivial solution of the BVP (1.7), where the norm

$$\left\|y\right\| = \sup_{t \in [a,b]} \left\{ \left|y\left(t\right)\right| \right\}.$$

Form (2.1), we have

$$|y(t)| \leq \int_{a}^{b} |G(t,s)| |q(s)| |y(s)| ds$$
  

$$\leq \int_{a}^{b} \max_{s \in [a,b]} G(t,s) |q(s)| |y(s)| ds$$
  

$$\leq \int_{a}^{b} (t-a)^{\alpha-1} |q(s)| |y(s)| ds.$$
(2.9)

Taking the norm leads to

$$||y|| \le \left(\int_{a}^{b} (t-a)^{\alpha-1} |q(s)| \, \mathrm{d}s\right) ||y||.$$

Then,

$$\int_{a}^{b} \left(t-a\right)^{\alpha-1} \left|q\left(s\right)\right| \mathrm{d}s \ge 1.$$

This completes the proof.

Corollary 2.3. If the BVP (1.7) has a nontrivial continuous solution, then

$$\int_{a}^{b} |q(s)| \, \mathrm{d}s \ge (b-a)^{1-\alpha} \,. \tag{2.10}$$

**Proof.** In (2.8), let

$$f(t) = (t-a)^{\alpha-1}, \quad t \in (a,b).$$

Differentiating f(t) on (a,b), we have

$$f'(t) = (\alpha - 1)(t - a)^{\alpha - 2} > 0,$$

hence, f(t) is a increasing function, we have

$$\max_{t\in[a,b]}f(t)\leq f(b)=(b-a)^{\alpha-1}.$$

Then,

$$\int_{a}^{b} \left(b-a\right)^{\alpha-1} \left|q\left(s\right)\right| \mathrm{d}s \geq 1.$$

Hence, we get the inequality (2.10). The proof is complete. **Example 2.1.** If the BVP

$$\begin{cases} T_{\alpha}^{a} y(t) + \lambda y(t) = 0, & 0 < t < 1, 1 < \alpha \le 2, \\ y(0) = y'(1) = 0 \end{cases}$$

has a nontrivial solution, then

$$\left|\lambda\right| \ge 1. \tag{2.11}$$

**Proof.** Assume that  $\lambda$  is an eigenvalue of (1.7). By using Corollary 2.3, we have

$$\int_0^1 \left| \lambda \right| \, \mathrm{d}s = \left| \lambda \right| \ge 1 \, .$$

Hence, we get the desired result (2.11). The proof is complete.

# 3. A Lyapunov-Type Inequality for Conformable Fractional Derivative of $2 < \alpha \le 3$

**Theorem 3.1.**  $f \in C[a,b]$  is a solution of the BVP (1.8) if and only if *f* satisfies the integral equation

$$f(t) = \int_{a}^{b} H(t,s) p(s) f(s) \mathrm{d}s.$$
(3.12)

where H(t,s) is the Green's function defined as

$$H(t,s) = \begin{cases} \frac{(t-a)^{2}(b-s)(s-a)^{\alpha-3}}{2(b-a)}, & a \le t \le s \le b, \\ \left[\frac{(b-s)(t-a)^{2}}{2(b-a)} - \frac{(t-s)^{2}}{2}\right](s-a)^{\alpha-3}, & a \le s \le t \le b. \end{cases}$$
(3.13)

**Proof.** Applying the integral  $I_a^{\alpha}$  in the (1.8), we have

$$I_{\alpha}^{a} \cdot T_{\alpha}^{a} f(t) = -I_{\alpha}^{a} (p(t) f(t)).$$

Then, using definition 1.1 and lemma 1.1, we obtain

$$f(t) = a_0 + a_1(t-a) + a_2(t-a)^2 - \frac{1}{2} \int_a^t (t-s)^2 (s-a)^{\alpha-3} p(s) f(s) ds.$$
(3.14)

Since f(a) = f'(a) = 0, we get immediately that  $a_0 = a_1 = 0$ . By the boundary condition f'(b) = 0, we obtain

$$a_{2} = \frac{1}{2(b-a)} \int_{a}^{b} (b-s)(s-a)^{\alpha-3} p(s) f(s) ds.$$

Hence, equation (3.14) becomes

$$f(t) = \frac{(t-a)^2}{2(b-a)} \int_a^b (b-s)(s-a)^{\alpha-3} p(s) f(s) ds$$
  
$$-\frac{1}{2} \int_a^t (t-s)^2 (s-a)^{\alpha-3} p(s) f(s) ds.$$
(3.15)

Then equation (3.15) can be written in the form of (3.12), where the Green's function is defined in (3.13). The proof is completed.

**Corollary 3.1.** The function *H* defined in Theorem 3.1 satisfied the following property:

$$\max_{t \in [a,b]} H(t,s) = H(b,s) = \frac{(b-a)(b-s)(s-a)^{\alpha-3}}{2},$$
$$\max_{s \in [a,b]} H(b,s) \le \frac{(b-a)(s-a)^{\alpha-3}}{2}.$$

**Proof.** We define the function

$$h_1(t,s) = \frac{(t-a)^2 (b-s)(s-a)^{\alpha-3}}{2(b-a)}$$

and

$$h_2(t,s) = \left[\frac{(b-s)(t-a)^2}{2(b-a)} - \frac{(t-s)^2}{2}\right](s-a)^{\alpha-3}.$$

For  $a \le t \le s \le b$ , differentiating  $h_1(t,s)$  with respect to *t*, we get

$$h_{1}'(t,s) = \frac{(t-a)(b-s)(s-a)^{\alpha-3}}{b-a} \ge 0.$$
(3.16)

Hence,  $h_1(t,s)$  is an increasing function in *t*.

While for  $a \le s \le t \le b$ , differentiating  $h_2(t,s)$  with respect to *t*, we get

$$h'_{2}(t,s) = \left[\frac{(b-s)(t-a)}{b-a} - (t-s)\right](s-a)^{\alpha-3}.$$

Let

$$g(t) = \frac{(b-s)(t-a)}{b-a} - (t-s) = \left(\frac{b-s}{b-a} - 1\right)t - \left(\frac{b-s}{b-a}\right)a + s,$$

then, we have

$$g'(t) = \frac{b-s}{b-a} - 1 < 0$$

Hence,

$$g(t) \ge g(b) = 0$$

That we obtain  $h_2(t,s)$  is an increasing function in *t*. Consequently, H(t,s) gets the maximum at t = b. We have

$$h_1(b,s) = \frac{(b-a)^2 (b-s)(s-a)^{\alpha-3}}{2(b-a)} = \frac{(b-a)(b-s)(s-a)^{\alpha-3}}{2}$$

and

$$h_2(b,s) = \left[\frac{(b-s)(b-a)^2}{2(b-a)} - \frac{(b-s)^2}{2}\right](s-a)^{\alpha-3} = \frac{(b-s)(s-a)^{\alpha-2}}{2}.$$

Hence,  $h_1 > h_2$ , we obtain

$$\max_{t \in [a,b]} H(t,s) = H(b,s) = h_1(b,s) = \frac{(b-a)(b-s)(s-a)^{\alpha-3}}{2}.$$

Furthermore, we have

$$H(b,s) = \frac{(b-a)(b-s)(s-a)^{\alpha-3}}{2} \le \frac{(b-a)^2(s-a)^{\alpha-3}}{2}.$$

Hence,

$$\max_{s\in[a,b]}H(b,s)\leq\frac{(b-a)(s-a)^{\alpha-3}}{2}.$$

The proof is completed.

Corollary 3.2. If (1.8) has a nontrivial continuous solution, then

$$\int_{a}^{b} (s-a)^{\alpha-3} |p(s)| ds \ge \frac{2}{(b-a)^{2}}.$$
(3.17)

**Proof.** Let  $f \in C[a,b]$  be a nontrivial solution of the BVP (1.8), where the norm

$$\left\|f\right\| = \sup_{t \in [a,b]} \left\{\left|f\left(t\right)\right|\right\}$$

Form (3.1), we have

$$|f(t)| \leq \int_{a}^{b} |H(t,s)| |p(s)| |f(s)| ds$$
  

$$\leq \int_{a}^{b} \max_{s \in [a,b]} H(b,s) |p(s)| |f(s)| ds$$

$$\leq \int_{a}^{b} \frac{(b-a)^{2} (s-a)^{\alpha-3}}{2} |p(s)| |f(s)| ds.$$
(3.18)

Taking the norm leads to

$$||f|| \leq \left(\int_{a}^{b} \frac{(b-a)^{2}(s-a)^{\alpha-3}}{2} |p(s)| ds\right) ||f||.$$

Then,

$$\int_{a}^{b} \frac{(b-a)^{2} (s-a)^{\alpha-3}}{2} |p(s)| ds \ge 1.$$

Hence, we get the inequality in (3.17). This completes the proof. **Example 3.1.** If the BVP

$$\begin{cases} T_{\alpha}^{a} f(t) + \lambda f(t) = 0, & 0 < t < 1, 2 < \alpha \le 3, \\ f(0) = f'(0) = f'(1) = 0 \end{cases}$$

has a nontrivial continuous solution, then

$$|\lambda| \ge 2(\alpha - 2). \tag{3.19}$$

**Proof.** Assume that  $\lambda$  is an eigenvalue of (1.8). By using Corollary 3.2, we have

$$\int_0^1 s^{\alpha-3} \left| \lambda \right| \mathrm{d}s \ge 2.$$

Then, we obtain

$$\left|\lambda\right|\int_{0}^{1}s^{\alpha-3}\mathrm{d}s=\left|\lambda\right|\frac{1}{\alpha-2}\geq 2.$$

We get the desired result (3.19). The proof is complete.

### 4. Conclusion

On the base of [10], by changing and increasing the edge value conditions, we establish some new Lyapunov-type inequalities for conformable BVP with the conformable derivative of order  $1 < \alpha \le 2$  and  $2 < \alpha \le 3$ . In Section 2 and Section 3, by Green's function and its corresponding maximum value, we obtain new results about Lyapunov-type inequalities for conformable BVP.

#### Funding

This research is supported by National Science Foundation of China (11671227) and Academic dissertation research innovation funding fund.

#### **Conflicts of Interest**

The authors declare no conflicts of interest regarding the publication of this paper.

#### References

- [1] Lyapunov, A.M. (1947) Problème général de la stabilité du mouvement. *Annales de la Faculté des sciences de Toulouse. Mathématiques, Série* 2, **9**, 203-474.
- Ferreira, R.A.C. (2013) A Lyapunov-Type Inequality for a Fractional Boundary Value Problem. *Fractional Calculus and Applied Analysis*, 16, 978-984. https://doi.org/10.2478/s13540-013-0060-5
- [3] Ferreira, R.A.C. (2014) On a Lyapunov-Type Inequality and the Zeros of a Certain Mittag-Leffler Function. *Journal of Mathematical Analysis and Applications*, 412, 1058-1063. <u>https://doi.org/10.1016/j.jmaa.2013.11.025</u>
- [4] Abdeljawad, T. (2015) On Conformable Fractional Calculus. *Journal of Computa*tional and Applied Mathematics, 279, 57-66. https://doi.org/10.1016/j.cam.2014.10.016
- [5] Jleli, M. and Samet, B. (2015) Lyapunov-Type Inequalities for a Fractional Differential Equation with Mixed Boundary Conditions. *Mathematical Inequalities & Applications*, 18, 443-451. <u>https://doi.org/10.7153/mia-18-33</u>
- [6] Rong, J. and Bai, C. (2015) Lyapunov-Type Inequality for a Fractional Differential Equation with Fractional Boundary Conditions. *Advances in Difference Equations*, 2015, 82. <u>https://doi.org/10.1186/s13662-015-0430-x</u>
- [7] Abdeljawad, T. and Baleanu, D. (2017) Fractional Operators with Exponential Ker-

nels and Lyapunov Type Inequality. Advances in Difference Equations, 2017, 313.

- [8] O'Regan, D. and Samet, B. (2015) Lyapunov-Type Inequalities for a Class of Fractional Differential Equations. *Journal of Inequalities and Applications*, 2015, 247. <u>https://doi.org/10.1186/s13660-015-0769-2</u>
- [9] Ferreira, R.A.C. (2016) Lyapunov-Type Inequalities for Some Sequential Fractional Boundary Value Problems. *Advances in Dynamical Systems and Applications*, 11, 33-43.
- [10] Abdeljawad, T., Alzabut, J. and Jarad, F. (2017) A Generalized Lyapunov-Type Inequalities in the Frame of Conformable Derivatives. *Advances in Difference Equations*, **2017**, 321.
- [11] Chidouh, A. and Torres, D.F.M. (2017) A Generalized Lyapunovs Inequality for a Fractional Boundary Value Problem. *Journal of Computational and Applied Mathematics*, **312**, 192-197. <u>https://doi.org/10.1016/j.cam.2016.03.035</u>
- [12] Chidouh, A. and Torres, D.F.M. (2017) A Lyapunov Inequalities for a Boundary Value Problem in Involving Conformable Derivatives. *Progress in Fractional Differentiation and Applications*, **3**, 323-329. <u>https://doi.org/10.18576/pfda/030407</u>