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Abstract 
In this paper, we present Lyapunov-type inequality for conformable BVP  

( ) ( ) ( ) 0aT y t q t y tα + =  

with the conformable fractional derivative of order 1 2α< ≤  and 2 3α< ≤  
with corresponding boundary conditions. We obtain the Lyapunov-type 
inequality by a construction Green’s function and get its corresponding 
maximum value. Application to the corresponding eigenvalue problem is also 
discussed. 
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1. Introduction 

Lyapunov-type inequality is an important and useful tool for studying 
differential equations. The classical Lyapunov-type inequality for differential 
equations was studied in [1]:  

( ) ( ) ( )
( ) ( )

, ,

0,

y t q t y t a t b

y a y b

′′ = − < <


= =
               (1.1) 

if (1.1) has a nontrivial solution, then  

( ) 4d .
b

a
q s s

b a
>

−∫                     (1.2) 

Furthermore, the constant 4 in (1.2) is sharp.  
More authors paid attention to study Lyapunov-type inequality for differential 

equations and got many results. In recent years, a series of achievements have 
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been made in the Lyapunov-type inequalities of fractional differential equations. 
We refer to [2]-[12]. In [3], Ferreira studied the following equations:  
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if (1.3) has a nontrivial solution, then  
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In [7], Abdeljanad and Baleanu obtained a Lyapunov-type inequality for ABR 
fractional boundary value problem  
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if (1.4) has a nontrivial solution, then  
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where  

( ) ( ) ( ) ( ) ( )( )( )23 2 .
2 2 aT s q t I q s t

B B
αα α

α α
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In [10], Abdeljawad studied a generalized Lyapunov-type inequalities for 
conformable BVP  
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if (1.5) has a nontrivial solution, then  
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Furthermore, Abdeljawad proved a Lyapunov-type inequalitiy for a sequential 
conformable BVP  
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if (1.6) has a nontrivial solution, then  
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In this paper, we establish a Lyapunov-type inequalities for conformable BVP  

( ) ( ) ( )
( ) ( )

0, ,1 2,

0

aT y t q t y t a t b

y a y b
α α + = < < < ≤


′= =

           (1.7) 

and  
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( ) ( ) ( )
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          (1.8) 

where aTα  is conformable fractional derivative starting at a of order α , and 
,p q  are real-valued continuous. The introduction and background of 

conformable fractional are given in [2] [10]. Then, we give the definition and 
lemma about conformable fractional derivative in the following. 

Definition 1.1. [4] Let 1n nα< ≤ + . Then  

( )( ) ( ) ( ) ( )11 d
!

t n nc
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− −= − −∫  

is called the left conformable fractional derivative starting at c of order α . 
Lemma 1.1. [4] Let [ ): ,f c R∞ →  be ( )1n +  times differentiable for t c> , 

1n nα< ≤ + . Then, we have the following result:  
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2. A Lyapunov-Type Inequality for Conformable Fractional  
Derivative of 1 2α< ≤   

Theorem 2.1. [ ],y C a b∈  is a solution of the BVP (1.7) if and only if y satisfies 
the integral equation  

( ) ( ) ( ) ( ), d .
b

a
y t G t s q s y s s= ∫                    (2.1) 

where ( ),G t s  is the Green’s function defined as  
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             (2.2) 

Proof. Applying the integral aIα  in the (1.7), we have  

( ) ( ) ( )( ).a a aI T y t I q t y tα α α⋅ = −  

Then, using definition 1.1 and lemma 1.1, we obtain  

( ) ( ) ( )( ) ( ) ( )2
0 1 d .

t

a
y t c c t a t s s a q s y s sα−= + − − − −∫          (2.3) 

Since ( ) 0y a = , we get immediately that 0 0c = . 
By the boundary condition ( ) 0y b′ = , we obtain  

( ) ( ) ( )2
1 d .

b

a
c s a q s y s sα−= −∫  

Hence, equation (2.3) becomes  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )2 2d d .
b t

a a
y t t a s a q s y s s t s s a q s y s sα α− −= − − − − −∫ ∫  (2.4) 

Then, equation (2.4) can be written in the form of (2.1), where the Green’s 
function is defined in (2.2). 

The proof is completed.  
Corollary 2.1. The function G defined in Theorem 2.1 satisfied the following 

property:  
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[ ]
( ) ( ) ( ) 1

,
max , , .
s a b

G t s G t t t a α −

∈
= = −                  (2.5) 

Proof. We define the function  

( ) ( )( ) 2
1 ,g t s t a s a α−= − −  

and  

( ) ( ) 1
2 , .g t s s a α−= −  

For a t s b≤ ≤ ≤ , differentiating ( )1 ,g t s  with respect to s, we get  

( ) ( )( )( ) 3
1 , 2 0.g t s t a s a αα −′ = − − − <                (2.6) 

While for a s t b≤ ≤ ≤ , differentiating ( )2 ,g t s  with respect to s, we get  

( ) ( )( ) 2
2 , 1 0.g t s s a αα −′ = − − >                  (2.7) 

Hence, ( )1 ,g t s  is a decreasing function, ( )2 ,g t s  is an increasing function 
in s. Consequently, G (t, s) gets the maximum at s = t, we obtain (2.5). 

Corollary 2.2. If (1.7) has a nontrivial continuous solution, then  

( ) ( )1 d 1.
b

a
t a q s sα−− ≥∫                      (2.8) 

Proof. Let [ ],y C a b∈  be a nontrivial solution of the BVP (1.7), where the 
norm  

[ ]
( ){ }

,
sup .

t a b
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∈
=  

Form (2.1), we have  

( ) ( ) ( ) ( )
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≤

≤
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∫

∫

∫

                (2.9) 

Taking the norm leads to  

( ) ( )( )1 d .
b

a
y t a q s s yα−≤ −∫  

Then,  

( ) ( )1 d 1.
b

a
t a q s sα−− ≥∫  

This completes the proof. 
Corollary 2.3. If the BVP (1.7) has a nontrivial continuous solution, then  

( ) ( )1d .
b

a
q s s b a α−≥ −∫                    (2.10) 

Proof. In (2.8), let  

( ) ( ) ( )1 , , .f t t a t a bα−= − ∈  

Differentiating ( )f t  on ( ),a b , we have  

( ) ( )( ) 21 0,f t t a αα −′ = − − >  
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hence, ( )f t  is a increasing function, we have  

[ ]
( ) ( ) ( ) 1

,
max .
t a b

f t f b b a α−

∈
≤ = −  

Then,  

( ) ( )1 d 1.
b

a
b a q s sα−− ≥∫  

Hence, we get the inequality (2.10). The proof is complete. 
Example 2.1. If the BVP  

( ) ( )
( ) ( )

0, 0 1,1 2,

0 1 0

aT y t y t t

y y
α λ α + = < < < ≤


′= =

 

has a nontrivial solution, then  

1.λ ≥                           (2.11) 

Proof. Assume that λ  is an eigenvalue of (1.7). By using Corollary 2.3, we 
have  

1

0
d 1.sλ λ= ≥∫  

Hence, we get the desired result (2.11). The proof is complete. 

3. A Lyapunov-Type Inequality for Conformable Fractional  
Derivative of 2 3α< ≤   

Theorem 3.1. [ ],f C a b∈  is a solution of the BVP (1.8) if and only if f satisfies 
the integral equation  

( ) ( ) ( ) ( ), d .
b

a
f t H t s p s f s s= ∫                (3.12) 

where ( ),H t s  is the Green’s function defined as  
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−=  − − − − − ≤ ≤ ≤  −  

 (3.13) 

Proof. Applying the integral aIα  in the (1.8), we have  

( ) ( ) ( )( ).a a aI T f t I p t f tα α α⋅ = −  

Then, using definition 1.1 and lemma 1.1, we obtain  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 3
0 1 2

1 d .
2

t

a
f t a a t a a t a t s s a p s f s sα−= + − + − − − −∫    (3.14) 

Since ( ) ( ) 0f a f a′= = , we get immediately that 0 1 0a a= = . 
By the boundary condition ( ) 0f b′ = , we obtain  

( ) ( )( ) ( ) ( )3
2

1 d .
2

b

a
a b s s a p s f s s

b a
α−= − −

− ∫  

Hence, equation (3.14) becomes  
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( ) ( )
( ) ( )( ) ( ) ( )
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−
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−
= − −

−

− − −

∫

∫
         (3.15) 

Then equation (3.15) can be written in the form of (3.12), where the Green’s 
function is defined in (3.13). The proof is completed.   

Corollary 3.1. The function H defined in Theorem 3.1 satisfied the following 
property:  

[ ]
( ) ( ) ( )( )( ) 3
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Proof. We define the function  
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t a b s s a
h t s

b a

α−− − −
=

−
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2 2

3
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2 2
b s t a t s

h t s s a
b a

α− − − −
= − − 
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For a t s b≤ ≤ ≤ , differentiating ( )1 ,h t s  with respect to t, we get  

( ) ( )( )( ) 3

1 , 0.
t a b s s a

h t s
b a

α−− − −
′ = ≥

−
              (3.16) 

Hence, ( )1 ,h t s  is an increasing function in t.  
While for a s t b≤ ≤ ≤ , differentiating ( )2 ,h t s  with respect to t, we get  

( ) ( )( ) ( ) ( ) 3
2 , .

b s t a
h t s t s s a

b a
α−− − 

′ = − − − − 
 

Let  

( ) ( )( ) ( ) 1 ,
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b a b a b a
− − − −   = − − = − − +   − − −   

 

then, we have  

( ) 1 0.b sg t
b a
−′ = − <
−

 

Hence,  

( ) ( ) 0.g t g b≥ =  

That we obtain ( )2 ,h t s  is an increasing function in t. Consequently, 
( ),H t s  gets the maximum at t b= . We have  
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( )

( )( )( )2 3 3

1 ,
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b a b s s a b a b s s a
h b s

b a
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and  

( ) ( )( )
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( ) ( ) ( )( )2 2 2
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Hence, 1 2h h> , we obtain  

[ ]
( ) ( ) ( ) ( )( )( ) 3
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max , , , .
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b a b s s a
H t s H b s h b s
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Furthermore, we have  

( ) ( )( )( ) ( ) ( )3 2 3

, .
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b a b s s a b a s a
H b s

α α− −− − − − −
= ≤  

Hence,  

[ ]
( ) ( )( ) 3

,
max , .

2s a b

b a s a
H b s

α−

∈

− −
≤  

The proof is completed. 
Corollary 3.2. If (1.8) has a nontrivial continuous solution, then  

( ) ( )
( )

3
2

2d .
b

a
s a p s s
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α−− ≥

−
∫                 (3.17) 

Proof. Let [ ],f C a b∈  be a nontrivial solution of the BVP (1.8), where the 
norm  

[ ]
( ){ }

,
sup .

t a b
f f t

∈
=  

Form (3.1), we have  

( ) ( ) ( ) ( )
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( ) ( ) ( )
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2 3
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2

b

a
b
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b

a

f t H t s p s f s s

H b s p s f s s

b a s a
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α
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≤

− −
≤

∫

∫
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          (3.18) 

Taking the norm leads to  

( ) ( ) ( )
2 3

d .
2

b

a

b a s a
f p s s f

α− − −
 ≤
 
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Then,  

( ) ( ) ( )
2 3

d 1.
2

b

a

b a s a
p s s

α−− −
≥∫  

Hence, we get the inequality in (3.17). This completes the proof. 
Example 3.1. If the BVP  

( ) ( )
( ) ( ) ( )

0, 0 1, 2 3,

0 0 1 0

aT f t f t t

f f f
α λ α + = < < < ≤
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has a nontrivial continuous solution, then  
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( )2 2 .λ α≥ −                          (3.19) 

Proof. Assume that λ  is an eigenvalue of (1.8). By using Corollary 3.2, we 
have  

1 3
0

d 2.s sα λ− ≥∫  

Then, we obtain  

1 3
0

1d 2.
2

s sαλ λ
α

− = ≥
−∫  

We get the desired result (3.19). The proof is complete. 

4. Conclusion 

On the base of [10], by changing and increasing the edge value conditions, we 
establish some new Lyapunov-type inequalities for conformable BVP with the 
conformable derivative of order 1 2α< ≤  and 2 3α< ≤ . In Section 2 and 
Section 3, by Green’s function and its corresponding maximum value, we obtain 
new results about Lyapunov-type inequalities for conformable BVP. 
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