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Abstract 

The multiphase flow in a Peirce-Smith copper converter is numerically ex-
plored in this work. Molten matte, molten slag and air are the phases consi-
dered. The transient partial differential equations that constitute the mathe-
matical model are discretized using a two-dimensional computational mesh. 
The Computational Fluid Dynamics technique is employed to numerically 
solve the discretized equations. The aim of the numerical analysis is to study 
the influence of the nozzle height on the phase distributions inside the con-
verter. Three values of the nozzle heights are considered. 
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1. Introduction 

At industry, the majority of the blister copper is produced today by means of the 
Peirce-Smith converter (PSC), in which air is injected to oxidize sulfur and 
chemically reduce copper. Besides, silica flux is added to the converter in order 
to form a slag which captures the matte impurities [1]. The air is injected into 
the molten copper matte through submerged nozzles [2]. 

In the PSC an intense momentum transfer is required to get high heat transfer 
and chemical reaction rates. In some papers, physical experiments on water 
models are reported to analyze the bubbling to jetting flow regimes in copper 
converters [2] [3] [4] [5]. In recent years, computer simulations have been car-
ried out in order to understand the fluid flow in these devices. Recently, the 
Computational Fluid Dynamics (CFD) technique is employed to study the flow 
dynamics in copper converters [6] [7] [8] [9].  
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Here, the multiphase flow in a PSC is analyzed using the CFD technique. 
Three phases are considered: molten copper matte, molten slag, and air. Three 
nozzle heights are considered in the two-dimensional transient computer simu-
lations, namely 0.1, 0.25 and 0.5 m.  

2. Mathematical Model 

The conservation of momentum and mass of the considered phases (molten 
matte, molten slag, air) is modeled using the Navier-Stokes and the continuity 
equations [10]. To simulate the turbulence, the K-ε model is selected [11]. To 
represent the multiphase flow, the Volume of Fluid (VOF) model [12] is em-
ployed, whose derivation rests on the assumption that two or more phases are 
not interpenetrating. In this model it is assumed that in each control volume the 
volume fractions of all phases sum to unity, and the interface between the phases 
is obtained by solving the continuity equation for each phase. For the pres-
sure-velocity coupling, the Pressure Implicit with Splitting Operations (PISO) 
algorithm is selected [13]. 

3. Numerical Solution 

Computational Fluid Dynamics (CFD) software is employed to numerically 
solve the mathematical model [13] [14]. The transient partial differential equa-
tions that constitute the mathematical model are discretized using a 
two-dimensional computational mesh composed of 12,000 trilateral cells [15]. 

The current phases and physical dimensions of a slice of the copper converter 
are shown in Table 1 and Figure 1. The operating conditions prevailing during 
the computer simulations are shown in Table 2. Air injection velocity is kept at 
10 m·s−1 [16]. The properties of the considered phases are shown in Table 3. In 
order to keep the numerical stability during the integration of the mathematical 
model equations, a time step value of 0.001 s is employed in the computer runs. 

4. Results of Numerical Simulations 

During the numerical simulations three values of the nozzle height were consi-
dered: 0.1, 0.25 and 0.5 m. As is shown in Table 2, the values of the matte height,  
 
Table 1. Physical dimensions of the Peirce-Smith copper converter. 

Converter diameter, m 4.0 

Nozzle diameter, m 0.05 

Off gas exit diameter, m 0.5 

Nozzle height, m 0.10, 0.25, 0.5 

 
Table 2. Operating conditions of the converter [16]. 

Matte height, m 2.0 

Slag height, m 0.1 

Air injection velocity, m·s−1 10 
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Table 3. Physical properties of the considered phases [1]. 

Property Air Slag Matte 

Density, kg·m−3 1.225 2500 5200 

Viscosity, kg·m−1·s−1 1.0789 × 10−5 0.05 0.004 

 

 
Figure 1. The phases and dimensions of the 2D copper converter. 
 
slag height and air injection velocity were kept constant at 2.0 m, 0.1 m, and 10 
m·s−1, respectively. Matte and slag distribution inside the converter were moni-
tored for each value of the nozzle height, namely 0.1, 0.25 and 0.5 m.  

Figures 2-7 depict the distribution of matte and slag for the three nozzle 
heights considered. As the time from the start of air injection elapses, air bubbles 
are formed in the matte and rise towards the slag and the converter mouth. The 
matte and the slag are stirred by the air bubbles and are pushed from the left side 
of the converter to the right one. By comparison of the Figures 2-4, it can be 
appreciated that as the nozzle height is increased from 0.1 to 0.5 m, the matte 
located at the converter bottom becomes less and less agitated. 

Figures 5-7 show the distribution of the slag inside the converter for lance 
heights of 0.1, 0.25 and 0.5 m, respectively. The majority of slag remains floating 
above the matte, however it is observed that small amounts of slag are mixed 
with the matte at the bottom and right section of the converter. It can be ob-
served that as the nozzle height is increased, the mixing of the slag with the mate 
is decreased. Remarkably, the thickness of the slag layer that floats in the matte 
at the right side of the converter is increased as the nozzle height is increased. 

Related to the bubbling to jetting transition during air injection, it is reported 
that this phenomenon is properly characterized through the dimensionless Ku-
tateladze number (Ku) [16] [17], which considers the most important forces that 
determine this transition. These forces are: air inertial forces, bubble buoyancy  
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Figure 2. Matte distribution for nozzle height = 0.1 m. The red phase is matte. Time 
elapsed from the start of blowing: (a) 1 s, (b) 3 s, (c) 5 s, (d) 7 s, (e) 9 s, (f) 11 s. 
 

 
Figure 3. Matte distribution for nozzle height = 0.25 m. The red phase is matte. Time 
elapsed from the start of blowing: (a) 1 s, (b) 3 s, (c) 6 s, (d) 8 s. 
 
forces, gravity forces, and tension forces. Ku number is defined in this way [17]: 

( ) 0.25
a m m aKu v gρ σ ρ ρ

−
 = −   
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Figure 4. Matte distribution for nozzle height = 0.5 m. The red phase is matte. Time 
elapsed from the start of blowing: (a) 1 s, (b) 2 s, (c) 3 s, (d) 4 s. 
 

 
Figure 5. Slag distribution for nozzle height = 0.1 m. The red phase is slag. Time elapsed 
from the start of blowing: (a) 1 s, (b) 3 s, (c) 5 s, (d) 7 s, (e) 9 s, (f) 11 s. 
 
where v is the air injection velocity, ρa is the air density, ρm is the molten matte 
density, σm is the matte surface tension, and g is the gravity force. For the PSC, it  
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Figure 6. Slag distribution for nozzle height = 0.25 m. The red phase is slag. Time elapsed 
from the start of blowing: (a) 1 s, (b) 3 s, (c) 6 s, (d) 8 s. 
 

 
Figure 7. Slag distribution for nozzle height = 0.5 m. The red phase is slag. Time elapsed 
from the start of blowing: (a) 1 s, (b) 2 s, (c) 3 s, (d) 4 s. 
 
is reported that the transition from bubbling to jetting occurs for Ku ≥ 3.4832, 
which corresponds to air injection velocities greater than 50 m·s−1 [16]. Results 
of this work are consistent with those presented in [7] and [15]. 

5. Conclusions 

A numerical analysis of the multiphase flow in a Peirce-Smith copper converter 
was carried out using the Computational Fluid Dynamics technique. Three 
phases were considered, namely molten matte, molten slag, and air. The matte 
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height, the slag height, and the air injection velocity were kept constant along the 
computer runs. The aim of the numerical analysis was to study the influence of 
the nozzle height on the phase distributions inside the converter. From the nu-
merical results of the two-dimensional transient computer runs the following 
conclusions arise: 

1) As the nozzle height is increased, the matte agitation at the bottom conver-
ter is decreased. 

2) As the nozzle height is increased, the thickness of the slag layer at the right 
side of the converter is increased. 

3) As the nozzle height is increased, the mixing of the slag with the mate is 
decreased. 

4) The nozzle height parameter plays a significant role in the phase distribu-
tions inside the converter. 

Future work must consider the three-dimensional behavior of the copper 
converter. 
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