
Journal of Transportation Technologies, 2018, 8, 209-231
http://www.scirp.org/journal/jtts

ISSN Online: 2160-0481
ISSN Print: 2160-0473

Resource Efficient Hardware Implementation
for Real-Time Traffic Sign Recognition

Huai-Mao Weng, Ching-Te Chiu

Department of Electrical Engineering, National Tsing-Hua University, Taiwan

Abstract
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the
Advanced Driver Assistance System (ADAS) devices in modern cars. To con-
cern the most important issues, which are real-time and resource efficiency,
we propose a high efficiency hardware implementation for TSR. We divide
the TSR procedure into two stages, detection and recognition. In the detection
stage, under the assumption that most German traffic signs have red or blue
colors with circle, triangle or rectangle shapes, we use Normalized RGB color
transform and Single-Pass Connected Component Labeling (CCL) to find the
potential traffic signs efficiently. For Single-Pass CCL, our contribution is to
eliminate the “merge-stack” operations by recording connected relations of
region in the scan phase and updating the labels in the iterating phase. In the
recognition stage, the Histogram of Oriented Gradient (HOG) is used to gen-
erate the descriptor of the signs, and we classify the signs with Support Vector
Machine (SVM). In the HOG module, we analyze the required minimum bits
under different recognition rate. The proposed method achieves 96.61% de-
tection rate and 90.85% recognition rate while testing with the GTSDB data-
set. Our hardware implementation reduces the storage of CCL and simplifies
the HOG computation. Main CCL storage size is reduced by 20% comparing
to the most advanced design under typical condition. By using TSMC 90 nm
technology, the proposed design operates at 105 MHz clock rate and processes
in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and
the power consumption is close to 8 mW. Therefore, this work is resource ef-
ficient and achieves real-time requirement.

Keywords
Traffic Sign Recognition, Advanced Driver Assistance System, Real-Time
Processing, Color Segmentation, Connected Component Analysis, Histogram
of Oriented Gradient, Support Vector Machine, German Traffic Sign
Detection Benchmark, CMOS, ASIC, VLSI

How to cite this paper: Weng, H.-M. and
Chiu, C.-T. (2018) Resource Efficient Hard-
ware Implementation for Real-Time Traffic
Sign Recognition. Journal of Transporta-
tion Technologies, 8, 209-231.
https://doi.org/10.4236/jtts.2018.83012

Received: May 22, 2018
Accepted: July 17, 2018
Published: July 20, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

DOI: 10.4236/jtts.2018.83012 Jul. 20, 2018 209 Journal of Transportation Technologies

http://www.scirp.org/journal/jtts
https://doi.org/10.4236/jtts.2018.83012
http://www.scirp.org
https://doi.org/10.4236/jtts.2018.83012
http://creativecommons.org/licenses/by/4.0/

H.-M. Weng, C.-T. Chiu

1. Introduction

Driver Assistance System (ADAS) is a common device in modern cars. ADAS is
designed to enhance car safety and driving comfort. ADAS often includes auto-
motive navigation, autonomous cruise control, collision avoidance, lane depar-
ture warning, and so on. The Traffic Sign Recognition (TSR, or Road Sign Rec-
ognition, RSR) can help driver notice the fast passed signs, thus avoiding traffic
violations or accidents. The TSR must be fast enough to react to the changing
traffic conditions. The recognition rate of TSR should be high enough to detect
most signs and prevent false information. The method should be fast as well as
easy to implement with hardware, which is able to process in real-time. Besides,
a well-designed hardware implementation should be energy saving as well as low
cost, which means resource efficiency.

There are many researches for TSR proposed. Mammeri et al. [1] classify the
most traffic sign recognition methods into three categories, which are im-
age-processing (traditional computer-vision) based, machine learning based and
hybrid method. The image-processing based methods use various ComputerVi-
sion techniques to find traffic signs in the source image. Gomez-Moreno et al.
[2] make a comparison of several color segmentation methods for TSR, and
shows that the RGB Normalized method performs the best result. Khan et al. [3]
use the Gabor filter and the K-mean clustering to segment the signs. Ming Liang
et al. [4] perform a SVM-based color transform. Liang et al. [4] use the template
matching method with templates of different orientations. The shape analysis
proposed by Khan et al. [3] verifies the basic polygon properties of the signs.
Gonzalez et al. [5] propose a VISUALISE system, which implements the con-
strained Hough transform to extract the edge of signs in the luminance image.
Most image-processing based methods are simple to implement and the compu-
ting speed is fast. However, the recognition rate is relatively low.

The machine learning (ML) based method has been used in the traffic sign
recognition recently. The descriptor and classifier method is one of the ML
techniques. Overett et al. [6] propose a LiteHOG+ descriptor that extended the
HOG feature [7] by a centre-surround statistics, and classify with a cascade FDA
classifier. Seo et al. [8] present a color-based feature with AdaBoost classifier to
detect the signs. Besides, they construct a log-polar transform and the SVM me-
thod to classify the signs. Another common ML technique is the artificial neural
network. Zhang et al. [9] propose the probabilistic neural network to recognize
traffic signs. Jin et al. [10] construct the convolutional neural networks and train
with a hinge loss stochastic gradient descent method. The ML based method
achieves high recognition rate. However, the massive computational complexity
makes it difficult to process in real-time with appropriate computing resources.

The hybrid method divides the TSR procedure into two stages, detection and
recognition. The detection stage use the image-processing based method to detect
the potential signs in the source image. The recognition stage uses the machine
learning based method to recognize the detected signs. Thus, the hybrid method

DOI: 10.4236/jtts.2018.83012 210 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

takes both advantages of fast computation and high recognition rate. There are
various techniques in the detection stage. A specialized color transform with
thresholding, followed by the Connected Component Labeling (CCL) procedure,
is an effective way to extract traffic signs [11] [12] [13]. Some researches [14]
[15] [16] use the maximally stable extremal region (MSER) to extract the stable
regions. Liu et al. [17] propose the High-Contrast Region Extraction to extract
the regions by a possibility map. In the recognition stage, the descriptor and
classifier method is often used. The common descriptor choices are the Histo-
gram of Oriented Gradient (HOG) [4] [12] [13] [14] [16] or modified HOG [6],
[15]. The classifier can be support vector machine (SVM) [5] [12] [13] [14] [15],
neural networks [16] or SRC-based classifier [17]. Most of the recently propose
researches implement the hybrid method, so does this work.

We propose a high efficient TSR method, which reaches high recognition rate
and processes in real-time. Our contribution is to propose an efficient two-phase
method to eliminate the “merge-stack” operations so the operation speed and
memory cost in the CCL module is significantly improved. The method achieves
96.61% detection rate and 90.85% recognition rate while testing with GTSDB
dataset. The proposed TSR method is further implemented on hardware. The
hardware implementation aims to reduce the storage and simplify the computa-
tion of software implementation. By using TSMC 90 nm process, the proposed
hardware operates at 105 MHz clock frequency and processes 135 fps with the
image size of 1360 × 800. The proposed TSR method is illustrated in Section 2.
Section 3 shows the performance evaluation results and the testing method we
used. Section 4 introduces the hardware architecture of the proposed method
and shows the tap-out results. A brief conclusion is given in Section 5.

2. Proposed TSR Method

We propose the hybrid traffic sign recognition method. The method contains
two main stages, detection and recognition. In the detection stage, we use Nor-
malized RGB color transform and Single-Pass Connected Component Labeling
(CCL) to find the potential traffic signs. In the recognition stage, Histogram of
Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we
classify the signs with Support Vector Machine (SVM). The overall flow chart of
main TSR procedures is shown in Figure 1. We describe the procedures in detail
in the following subsections.

2.1. Detection Procedure

The detection procedure is used to detect the potential traffic signs form the
source image. It is the most time consumption part of the whole TSR procedure.
Because we have to scan the whole source image to find the potential traffic signs
Figure 2. Results of each step in the detection procedure (or Region-of-Interest,
ROI) before recognizing every found ROIs. Figure 2 shows the results of each
step in the detection procedure.

DOI: 10.4236/jtts.2018.83012 211 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 1. Flow chart of the proposed TSR method. The left side shows the detection pro-
cedure, and the right side shows the recognition.

Figure 2. Result of each step in the detection procedure. (a) Example extracted from the
source image (full color); (b) NRB color transform (gray-scale image produced); (c) Mul-
tiple thresholding (3 binary images produced); (d) Single-pass connected component
labeling (ROIs extracted).

1) Reducing the Searching Space: Fortunately, the traffic signs do not appear
at any location of the source image. For example, the signs do not appear at the
sky and surface. Therefore, we are able to reduce the searching space by remov-
ing the top and the bottom of source images. In addition, we split a source image
into left-frame and right-frame, then process two frames independently. Figure 3
shows the layout of the frames. Our experiment shows that there are less than
4% of total signs are out of the searching space. On the other hand, because the

DOI: 10.4236/jtts.2018.83012 212 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 3. Searching space and the layout of two frames in the source image.

images are taken from the moving car, the out-of-space signs will move into the
searching space over time.

2) Color Segmentation: We use the color segmentation to extract the specified
color of the traffic sign boundary, e.g. red and blue. The color segmentation
contains two parts. The first part is the color transform. The researches [5] [14]
[15] claim that the Normalized-RGB Color Transform performs the most robust
result under different lighting and contrast condition. A gray-scale image is
generated by the color transform, and the value is higher for red or blue, lower
for other colors. We emphasize the negative influence of green color, in other
words, a pixel that has greener ingredient is less likely to be the targeted blue or
red color. The modified normalized RGB color transform, called NRB color
transform, is shown as following:

() (),
ax ,

,
m R B

R
NRB R

G B
G B

β α+ ∗ + +
= (1)

where R, G, B are the red, green and blue color channel, respectively. max(R; B)
is the maximum value between R and B. α is a small constant, we set to 8. β is a
green color magnification, we set to 4 in this work.

The second part is the thresholding. A threshold is used to determine if the
pixel has the specified color or not. The transformed pixel that passes the thre-
shold will be set to 1, otherwise 0. Thus, the binary image is produced by the
color segmentation. For the flexibility under different conditions, we use mul-
tiple thresholds instead of a single threshold. Hence, multiple binary images are
produced by thresholding.

3) Single-Pass Connected Component Labeling: We use the Connected Com-
ponent Labeling (CCL) algorithm to group the white pixels in the binary image.
The CCL algorithm scans the binary image and assigns the label to each pixel
using only local operations [18]. A set of connected pixels is called a “region”. As
shown in Figure 4, two pixels are “connected” if they are adjacent to each other.
The traditional two-pass CCL algorithm produces the labeled image, where all
pixels that belong to a region are labeled to the same number. The first pass of
CCL is to scan the pixels and record the connecting relations. The initially la-
beled image is generated, but the label number may be incorrect because there

DOI: 10.4236/jtts.2018.83012 213 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

(a) (b)

Figure 4. The adjacent pixels of (a) 4-connectivity; (b) 8-connectivity. The central pixel is
marked as × and the adjacent pixels are gray. The pixels with letters are the ones that
should be checked while scanning the image.

are unread pixels when scanning the image in the first pass. Hence, the second
pass is to re-label the incorrect labels by the recorded relations.

Obviously, the connecting relations of the pixels are built in the first pass,
while the second pass is only used to replace the incorrect labels in the labeled
image. Abubaker et al. [19] propose the single-pass algorithm for the connected
component analysis. If we do not need the labeled image as the result, the second
pass can be eliminated. Instead, we extract some “features” of the regions during
the first pass. Because of the elimination of the second pass, the theoretical
computing time of the single-pass algorithm is half comparing to the two-pass
algorithm.

Furthermore, the memory requirement is reduced. According to Figure 4,
when we scan the pixels in the binary image, the decision of the current label
number is observed by only the neighbor labels in the previous row. Because the
result is features of the region, the completely labeled image can be replaced by a
labeled row, called the “row-buffer”. Besides, the “data-table” is introduced to
store the extracted region features. Overall, the total memory of the CCL is
greatly reduced by the elimination of labeled image, even though the additional
storage, e.g. the data-table, is required. The main procedure of single-pass CCL
algorithm can be expressed as the pseudo code of Algorithm 1. We select the
bounding box as the region feature in this work. The bounding box contains the
boundaries of regions, which lets us extract the ROIs from the source image. Fi-
nally, we can pass the detected ROIs to the next main procedure, recognition.

2.2. Recognition Procedure

The recognition procedure is used to classify the potential traffic signs found by
the detection procedure. Besides, there are many false detected ROIs, which
should be removed. The schematic diagram of the recognition procedure is
shown in Figure 5. We first check the region criteria. It can be done by observ-
ing only the bounding box information. The width and height of the region
should not be greater than 110% of the maximal size nor less than 90% of the
minimal size. The width/height ratio should be within 0.75 and 1.25. According
to the experiment, there are averagely 10.75 ROIs per image that meet the crite-
ria. We extract the eligible regions from the source image. They are converted
into gray-scale and resized to 32 × 32, before the HOG calculation.

DOI: 10.4236/jtts.2018.83012 214 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 5. Schematic diagram of the recognition procedure. (a) ROI boundaries produced
by detection procedure; (b) Extracted traffic signs; (c) Resize and convert to gray-scale;
(d) HOG descriptor calculation; (e) SVM classification; (f) Traffic sign recognized.

Algorithm 1. Single-pass connected components labeling.

DOI: 10.4236/jtts.2018.83012 215 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

1) Simplification of HOG Calculation: Next, we calculate the HOG descriptor
of the regions. We choose the HOG parameters that reference to N. Dalal et al.
[7]: 3 × 3 blocks per window, 2 × 2 cells per block, 8 × 8 pixels per cell, an 8-bin
histogram spreads over 0 to 360 degrees, and the arithmetic mean is used for
normalization. Not all parameters are same as the original research. Moreover,
we replace the floating-point calculation with fixed-point for simplification and
faster computation. In other words, the quantization is performed for easier
hardware implementation.

We use some approximate formulas instead of the original precise formulas.
The gradient calculation of X-axis and Y-axis are:

[]
[]T

1,0,1

1,0,1

x

y

grad

grad

= −

= −
 (2)

which are same as the original ones. We use the Manhattan distance to approx-
imate the magnitude calculation:

x ygrad grad grad= + (3)

where |gradx| and |grady| are the absolute values of X-gradient and Y-gradient.
When we need only 8 bins result that distributes over 0 to 360 degrees, the
orientation calculation can be approximated as the following formula:

() () (), 0 4 0 2 1x y y x x yori grad grad grad grad= < ⋅ + < ⋅ + > ⋅ (4)

where the comparing calculation (e.g. <and>) produces 1 bit result. The actual
calculated values of each orientation bin are shown in Figure 6.

2) SVM Classification: After the HOG descriptor is generated, we classify the
ROIs with the Support Vector Machine (SVM) [20]. The detailed parameters of
the SVM are described in Section 4. The SVM is trained before testing, in other
words, only the prediction is performed when doing the TSR procedure. Finally,
the traffic signs in the source image are recognized and the false positives are
removed.

Figure 6. The calculated values of the 8-bin orientation.

DOI: 10.4236/jtts.2018.83012 216 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

3. Performance Evaluation

A. Testing Dataset and Environment Settings
The German Traffic Sign Detection Benchmark (GTSDB) [21] is a dataset that

aims to present a real-world single-image detection problem. The source images
in the GTSDB are 1360 × 800 pixels. The target sign size is 24 × 24 at minimal
and 128 × 128 at maximal. Our TSR experiment contains more than 500 images
with more than 700 traffic signs. There are total 35 classes of the signs, which
could be categorized into 3 major classes. Figure 7 shows the example of target
signs and the major classes of GTSDB.

The detection rate is defined as following:

#correctly detected sigDetec ns
to

tion rat
tal s

e
sign

= (5)

If a detected region has more than 75% overlap area with the ground-truth
signs, we decide that it is a correct detection. Otherwise, it is a false positive de-
tection.

The recognition rate is defined as following:

#correctly classified signs
tota

Re
l

cognition
detected s s

rate
ign

= (6)

If there is a correct detected sign, it should be classified to the corresponding
class. Else, the false detection should be classified as non-traffic-sign. The para-
meters for SVM are: one vs. one type, linear kernel, γ = 0.1, and C = 10. The
SVM training and testing process is described as following. First, we randomly
divide all detected signs into 5 categories, e.g. 20% for each category. Second, we
select one of the category for testing dataset, while the others are training data-
set. Third, we train the SVM with the training dataset and calculate the SVM
prediction accuracy with the testing dataset. Then, we repeat the procedure for 5
times and select a different category for testing dataset for each time. Finally, the
total recognition rate is the average results of 5 times.

The software implementation of the proposed TSR method is written in C++
using the OpenCV 3.0 [22] library. The SVM classification uses the LIBSVM

Figure 7. Traffic sign classes and the major classes of GTSDB. (a) Prohibitory; (b) Dan-
ger; (c) Mandatory.

DOI: 10.4236/jtts.2018.83012 217 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

[23] library. Our experiment executes on the PC with Intel Xeon E3-1230v2 (3.2
GHz) CPU and 16GB RAM.

B. The Influence of Color Segmentation Thresholds
The threshold value in the color segmentation procedure can influence the

detection rate. We choose multiple thresholds to overcome the variation of
weather and lighting conditions. According to Figure 8, we find that using three
thresholds performs the better result. However, the improvement is negligible
when using more than three thresholds. The disadvantage of multiple thresholds
is that the CCL needs more computing time to process multiple images, as well
as more potential signs generated. Overall, we select three thresholds to reach
the detection rate of 96.61% in this work.

C. The Influence of Reducing HOG Calculation Bits
For easier hardware implementation and resource efficiency, we use the

fix-point to replace the floating-point in the HOG calculation. There is a division
calculation when performing normalization to the HOG descriptor output.
Thus, we test that how many bits are enough for the descriptor. Furthermore,
the input bits could also be reduced. The following experiment results are ob-
tained by HOG descriptors and SVM classification. The descriptors are generat-
ed from the ROIs that generated by the detection procedure. Figure 9 shows the
influence of reducing HOG input bits. According to the result, the input bit re-
ducing does not have the significant influence of recognition rate until 4-bit.
Thus, we select 4-bit as the input data width of a pixel. Figure 10 shows the in-
fluence of reducing HOG output bits. We find that the recognition rate is almost
unchanged while reducing the descriptor bits, until the 4-bit fixed point is tested.
As the experiment result shows, we select 4-bit as the output data width for a
descriptor element.

In addition, by observing the HOG descriptors, we find that there are less than
0.01% values which are greater than 0.4375. Hence, if we truncate the values to
0.4375, there is one more output bit reduced. Even though, the recognition

Figure 8. Traffic sign classes and the major classes of GTSDB. (a) Prohibitory; (b) Dan-
ger; (c) Mandatory.

DOI: 10.4236/jtts.2018.83012 218 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 9. The influence of reducing HOG input bits vs. recognition rate.

Figure 10. The influence of reducing HOG output bits vs. recognition rate.

rate keeps unchanged, because there are too little affected values to influence the
result. In brief, the proposed TSR method reaches the 90.85% recognition rate
when the input data is 4-bit width and the output data is 3-bit width.

D. Time Consumption of Software Implementation
The time consumption of the TSR software implementation is listed in Table 1.

The result is the average of testing more than 700 source image. According to
the result, the detection procedure consumes about 3/4 of total time. The CCL
costs most time to process, which is about half of whole TSR procedure. The
HOG descriptor generation is an OpenCV built-in function, which is highly op-
timized by SIMD instructions. Hence, it is so fast and only takes about 5% of to-
tal time. We use LIBSVM to do SVM classification, and the result only counts
the prediction time without training time. Thus, it is a relatively simple procedure.

DOI: 10.4236/jtts.2018.83012 219 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Table 1. Time consumption of the tsr software implementation.

Main
Procedure

Sub Procedure
Time
(ms)

Percentage
Time
(ms)

Percentage

Detection
Allocate memory and create two frames

NRB color transform
1.28
5.26

4.8%
19.6%

19.99 74.4%

 Thresholding and single-pass CCL 13.45 50.1%

Recognition
Resize and convert to gray image

HOG calculation (OpenCV build-in)
0.95
1.41

3.5%
5.2%

6.88 25.6%

 SVM classification (LIBSVM) 4.52 16.8%

Total 26.87 100% 26.87 100%

To summarize, the propose TSR method with software implementation needs
26.87 ms to process an image with size of 1360 × 800 on average. In other words,
the processing speed is up to 37 fps. The result may be considered as real-time,
but we can do better with the hardware implementation.

4. Hardware Implementation

A. Overall Architecture
In this section, we describe the hardware architecture of the proposed TSR

method. The hardware design should implement the most critical part of the
TSR method. There are two aspects of the critical part should be considered. The
first is the procedure that requires the most time to process, which is timing
critical. The second is the procedure that requires the most computing resource,
which means resource critical. Therefore, we decide to implement the detection
procedure and the HOG calculation of recognition procedure in hardware.
There are some relatively simple procedures like SVM prediction and image re-
sizing. We use software implementation on those procedures. Figure 11 shows
the hardware/software combination flow of the proposed TSR method. The
source image first inputs to the hardware color segmentation unit, pixel by pixel
as raster scanning. The pixels that determined as foreground or background are
delivered to the single-pass CCL unit to group the connected pixels into a ROI.
Next, the detected ROIs are checked with several conditions by the software
procedure, and the ROIs that pass the conditions are resized to a constant size.
The HOG unit generates the descriptors of resized ROIs. Finally, these descrip-
tors are classified by software SVM procedure, and the traffic sign recognition is
done.

The top module for TSR contains two independent main modules, detection
module and recognition module. The input data of detection module is the
source image. The output is the region information of potential signs (or ROIs).
In fact, the information is the feature vector of ROIs. The detection module
contains two sub-modules, color segmentation (CS) and connected component
labeling (CCL). After NRB transforming and thresholding in CS module, the
color pixel reduces into 1-bit value and passes to CCL module. The input of

DOI: 10.4236/jtts.2018.83012 220 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 11. Flow chart of hardware/software combination method for TSR.

recognition module is the resized region and the output is HOG descriptor.
There is a HOG sub-module contained in the recognition module. Figure 12
shows the block diagram of TSR top module.

B. Detection Module
The detection module contains two main sub-modules, color segmentation

(CS) module and connected component labeling (CCL) module. For better per-
formance, we implement a two-stage pipeline on these modules. Figure 13
shows the block diagram of detection module. The hollow arrows represent data
path, and the solid arrows represent control path. The CS module receives a col-
or pixel with three 8-bit channel per cycle. We use raster-scan to obtain the pixel
from the source image. The color data of input pixel first transforms into a sin-
gle 8-bit gray-scale data at normalized-RB color transform (NRB) module. Then,
a threshold is performed on the data to produce a 1-bit true/false value. The CS
control unit selects the current thresholds that are pre-defined in our TSR expe-
riment. The CCL module receives the 1-bit value, and regards the value as fore-
ground (1) or background (0). The CCL control unit generates the coordinates
information and control signals. The CCL main unit executes the single-pass
CCL algorithm. When a region is found, the unit outputs the corresponding re-
gion feature, which is the boundary box of the region.

1) NRB Color Transform Module: The Normalized Red/Blue color transform
(NRB) module used to transform the RGB color image into red/blue enhanced
image. We implement the formula shown at Equation (1). Figure 14 shows the
block diagram of NRB module. For fast calculation, we implement left shifting
instead of multiplication. In fact, because the shift value is constant, the shifting
is wire connection in hardware. We multiply the numerator by 256 to make sure
that the division result is an integer that is greater than zero.

2) Connected Component Labeling Module: The Connected Component
Labeling (CCL) module implements the single-pass CCL algorithm. Because it is
the most resource consuming module of the TSR design, we try to reduce the
memory requirement for resource efficiency. Comparing to the other CCL de-
signs [24] [25] [26] [27], the most important improvement of our design is the

DOI: 10.4236/jtts.2018.83012 221 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 12. Block diagram of TSR top module.

Figure 13. Block diagram of detection module.

Figure 14. Block diagram of NRB module.

eliminating of “merge-stack”. The merge stack is used to record the merge pat-
tern when scanning a row. The merge pattern is the connecting relations be-
tween pixels. When we find two pixels are connected, this information is pushed
into the stack. After scanning a row, we pop the merge pattern from the stack,
and update the connecting relations in the merge-table and the data-table.

The CCL procedure is divided into two phases, a) scanning a row and b) ite-
rating through tables. At the scanning a row phase, the proposed CCL algorithm

DOI: 10.4236/jtts.2018.83012 222 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

reads pixels from a binary image using raster-scanning. The connecting relations
and region feature vectors are also recorded at this phase. After a row is scanned,
it switches to the iterating through tables phase. We check all used entries at the
merge-table and the active-table to find the completed labels and the feature of
the completed region is sent out.

Figure 15 shows the block diagram of CCL main module when scanning a
row. We describe the hardware execution flow as following.

1) Fetch the neighbor labels from the row-buffer as explained in the previous,
and inquiry the correct label from the merge-table. The row-buffer is indexed by
the axis x, so it is the input of the row-buffer.

2) The new label value is provided by the release-queue. If the release-queue is
empty, the value is provided by the label-counter.

3) The label-selector determines the current label value. If a merging between
two labels appears, the label-selector sends the merging signal.

4) The row-buffer records the current label. The merge-table records the
merging of two labels if needed. The data-table records the feature vectors of re-
gions and merges two vectors if the merging signal received. The feature vectors
are bounding box of regions in this work, hence the inputs of the merge-table
are the axis x and the axis y.

5) The active-table marks the current label as active, thus prevents the releas-
ing of the current label when iterating through tables.

All these stages are done within a cycle. Therefore, we can process a pixel per
cycle. After scanning a row, the CCL module switches into iterating through
tables phase.

Figure 16 shows the block diagram of CCL main module when iterating
through tables. We descript the hardware execution flow as following.

Figure 15. Block diagram of CCL main module when scanning a row.

DOI: 10.4236/jtts.2018.83012 223 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 16. Block diagram of CCL main module when iterating through tables.

1) Fetch the label from the iterate-counter. The counter counts from zero to
the same value as the label-counter, because the values greater than the la-
bel-counter are never used before.

2) The label-iterator checks the merging state of the label in the merge-table.
The label is considered as the root when it points to self.

3) The label-iterator checks the activating state of the label in the active-table.
4) Record the unused labels in the release-queue. A label is considered as un-

used when it is not the root or it is inactivate.
5) When the label-iterator finds a completed label, the feature vector of the

corresponding labeled region sends out, and the entry in the data-table can be
reused. A label is considered as completed when it is the root and it is inactivate.

All these stages are done within a cycle. Therefore, we can process a table en-
try per cycle. After the iterate-counter finishes, the CCL module switches back to
the scanning a row phase and the procedure continues.

C. Recognition Module
The recognition module contains HOG compute module and HOG control

module. Figure 17 shows the block diagram of recognition module. The recog-
nition module receives one ROI pixel per cycle. The input pixel is reduced into 4
most significant bits for lower computing resource and fast computing time. For
the same reason, the output is reduced into 3 most significant bits. When the
calculation of HOG is done, the recognition module outputs the descriptor for 3
bits per cycle. The Histogram of Gradient Module contains four major modules.
The cell buffer receives ROI pixels and stores the values. When all 64 entries of
the cell buffer are filled, the cell process unit calculates the gradient information
of each pixel, including the orientation and magnitude. The gradient will then
store into block buffer, which contain 4 voting tables. After all 64 entries of the

DOI: 10.4236/jtts.2018.83012 224 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 17. Block diagram of CCL main module when iterating through tables.

cell buffer processed, the first voting table is completed. Next, we fill the cell
buffer with another 64 pixels, and the procedure continues. Finally, all voting
tables are completed. The block process unit calculates the normalization result
across 4 tables and the HOG module outputs the descriptor for SVM classifica-
tion.

Figure 18 shows the block diagram and data flow of cell buffer, cell process
unit and block buffer. The cell buffer is a 64 entries array storing ROI pixel val-
ues. The block buffer contains 4 voting tables. Each table is indexed by the gra-
dient orientation and accumulates the gradient magnitude. The cell process unit
contains several function units, and divides into two-stage pipeline for better
performance. We implement the gradient unit with Equation (2), the gradient
absolute unit with Equation (3) and the orientation unit with Equation (4).

Figure 19 shows the block diagram and data flow of block buffer and block
process unit. The block process unit calculates the arithmetic mean of a descrip-
tor element across all four cells in the block. Then, the descriptor output is re-
duced to 3-bit width. We divide the block process unit into two-stage pipeline.

D. Cycles of Hardware Implementation
Because the detection module receives one pixel per cycle, the throughput is 1

pixel/cycle. We set the frame size to 680 × 480, and there are two frames in an
image. We assume that the max number of label is 128 (or a quarter of frame
row size), which is observed from our TSR experiment. The worst case is that all
128 labels are used, hence there are another 128 cycles to check the label comple-
tion from tables after scanning each row. The detection procedure takes 387,840
cycles to process a frame, which means 775,680 cycles to process an image.

The parameters for HOG are described in Section III. We first need 64 cycles
to fill the cell-buffer and 64 cycles to process each pixel in the cell-buffer. The
block-buffer contains 4 cells and need 512 cycles to be filled. Finally, there are
another 32 cycles to output the descriptor in a block and total 9 blocks to be
computed. Overall, the detection procedure takes 4896 cycles to process a ROI.

DOI: 10.4236/jtts.2018.83012 225 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 18. Block diagram of cell buffer, cell process unit and block buffer.

Figure 19. Block diagram of block buffer and block process unit.

We assume that there are 10.75 regions per image on average, which means ave-
ragely 52,632 cycles to process all ROIs in an image.

The detection module and the recognition module are independent to each
other. Hence, a pipeline mechanism could perform to increase overall through-
put. Each time the detection module produces a valid ROI, the ROI will be send
to the recognition module. The detection module requires 775,680 cycles to
process an image. The recognition module needs 52,632 cycles to complete all
ROIs in an image. Therefore, the detection procedure requires more cycles than
recognition, which is the bottleneck, as same as the software implementation.

E. Implementation Results and Comparisons
We synthesize and perform APR to the proposed TSR hardware architecture

with TSMC 90 nm CMOS technology. Table 2 shows the detail specification.
The design layout of APR result is shown in Figure 20. The hardware detection
module simulates with several images with various conditions from GTSDB da-
taset. The hardware recognition module simulates with all three different major
classes of traffic signs from GTSDB dataset. Both modules output exactly same
results to software implementation. The core size is 0.26 mm2 and chip size is

DOI: 10.4236/jtts.2018.83012 226 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

Figure 20. Layout of the proposed design; the chip core size is 0.51 mm × 0.51 mm2.

Table 2. The specification table of proposed architecture.

Technology TSMC90 nm

2

2

Core Size 0.51 0.51 mm
Chip Size 1.05 1.05 mm

×
×

Clock Rate 105 MHz

Power 8.03 mW

Test Coverage 97.98%

Number of Input Pins 66
Number of Output Pins 18
Number of Total Pins 84

Package CLCC84

about 1 mm2. The design operates at 105 MHz clock frequency. It needs 775,680
cycles to process an input image, which means the speed is up to 135 fps, or 7.4
ms per image.

We compare our resource efficient CCL architecture with other CCL hard-
ware designs. There are the traditional two pass algorithm [24], the single pass
algorithm [25], the single pass with label recycling mechanism [26], and The
state of the art design [27]. Our most important improvement is the elimination

DOI: 10.4236/jtts.2018.83012 227 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

of the merge-stack that used in other designs. We use the method similar to
Klaiber et al. [27] to calculate the main CCL storage size. The calculation is un-
der the typical case. The typical case assumes that the max number of indepen-
dent regions per row is equal to 1/4 of the row size, which is observed in our TSR
experiment. The storage comparison with different image size is shown in Table 3.
According to the result, the proposed CCL design reduces the memory size up to
20% comparing to the most advanced design in the typical case.

We also compare our TSR hardware design with others. To reach the
real-time requirement, many researches implement the hardware accelerator or
full system for traffic sign recognition. The hardware implementations could
perform on Field Programmable Gate Array (FPGA) [28] [29] [30] [31] or Ap-
plication-Specific Integrated Circuit (ASIC) [31]. Most of them use hybrid me-
thod for easier hardware implementation and fast processing speed. Table 4 lists
the detailed specification and the techniques they used in the different imple-
mentations. The most important, the processing time helps us determine
whether the design reaches the real-time requirement. Besides, the larger image
size means that the computing ability of the design is more powerful.

According to the comparison, the proposed hardware design reaches the
real-time requirement. Our design has the fastest processing speed with large
input image size. In addition, testing by a public dataset makes our recognition
rate more convince then the others.

Table 3. Main storage size of various CCL designs under different image size in the typi-
cal case.

Image size [24] [25] [26] [27] This work

320 × 240 672,000 139,920 9920 7504 (100%) 6080 (81%)

640 × 480 3072K 626,880 22,400 16,992 (100%) 13,760 (80%)

1280 × 720 10,368K 2101K 49,920 37,952 (100%) 30,720 (80%)

1920 × 1080 23,328K 4708K 76,800 58,368 (100%) 47,040 (80%)

Table 4. Comparison of the TSR hardware designs.

Design Detection Technique
Recognition
Technique

Test
Dataset

Recognition
Rate

Image
Size

Technology
Area/Gate

Count
Freq.

(MHz)
Speed

(ms/frame)

[28]
HSV color space,

median filter, CCL

Border-vectors,
Constructed

neural network
N/A N/A 640 × 480

Xilinx
Virtex 4

160 K NAND 88 16

[29]
HSV color space,
Morphological
Filtering, CCL

Template matching N/A N/A 320 × 240
Xilinx

Virtex 5
N/A 100 114

[30]
HSI color space,
Filtering, CCL

Border descriptor
(shape only)

N/A N/A 1280 × 720
Xilinx

Spartan 6
N/A 75 16.6

[31]
Multiscale Retinex,
Template matching

SIFT descriptor,
SVM classifier

N/A 90% 320 × 240 130 nm 10.61 mm2 200 33.3

This
work

NRB
color transform, CCL

HOG descriptor,
SVM classifier

GTSDB 90.85% 1360 × 800 90 nm 0.26 mm2 105 7.4

DOI: 10.4236/jtts.2018.83012 228 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012

H.-M. Weng, C.-T. Chiu

5. Conclusion

In this paper, we propose a traffic sign recognition method and its resource effi-
cient hardware implementation that processes in real-time. The proposed TSR
method achieves 96.61% detection rate and 90.85% recognition rate while testing
with GTSDB dataset. Our hardware implementation reduces the storage of CCL,
and simplifies the HOG computation. The reducing of main CCL storage size is
up to 20% comparing to the most advanced design under typical condition. The
proposed hardware operates at 105 MHz clock frequency by using TSMC 90 nm
CMOS technology. With image size of 1360 × 800, the processing speed is up to
135 fps. The chip size is about 1 mm2 and the power consumption is close to 8
mW. Therefore, this work is resource efficient and achieves real-time require-
ment.

References
[1] Mammeri, A., Boukerche, A. and Almulla, M. (2013) Design of Traffic Sign Detec-

tion, Recognition, and Transmission Systems for Smart Vehicles. IEEE Wireless
Communications, 20, 36-43. https://doi.org/10.1109/MWC.2013.6704472

[2] Gomez-Moreno, H., Maldonado-Bascon, S., Gil-Jimenez, P. and Lafuente-Arroyo,
S. (2010) Goal Evaluation of Segmentation Algorithms for Traffic Sign Recognition.
IEEE Transactions on Intelligent Transportation Systems, 11, 917-930.
https://doi.org/10.1109/TITS.2010.2054084

[3] Khan, J.F., Bhuiyan, S.M.A. and Adhami, R.R. (2011) Image Segmentation and
Shape Analysis for Road-Sign Detection. IEEE Transactions on Intelligent Trans-
portation Systems, 12, 83-96. https://doi.org/10.1109/TITS.2010.2073466

[4] Liang, M., Yuan, M., Hu, X., Li, J. and Liu, H. (2013) Traffic Sign Detection by ROI
Extraction and Histogram Features-Based Recognition. The 2013 International
Joint Conference on Neural Networks, Dallas, 4-9 August 2013, 1-8.

[5] Gonzalez, A., Garrido, M., Llorca, D.F., Gavilan, M., Fernandez, J.P., Alcantarilla,
P.F., Parra, I., Herranz, F., Bergasa, L.M., Sotelo, M. and Revenga de Toro, P. (2011)
Automatic Traffic Signs and Panels Inspection System Using Computer Vision.
IEEE Transactions on Intelligent Transportation Systems, 12, 485-499.
https://doi.org/10.1109/TITS.2010.2098029

[6] Overett, G., Tychsen-Smith, L., Petersson, L., Pettersson, N. and Andersson, L.
(2014) Creating Robust High-Throughput Traffic Sign Detectors Using Cen-
tre-Surround Hog Statistics. Machine Vision and Applications, 25, 713-726.
https://doi.org/10.1007/s00138-011-0393-1

[7] Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gradients for Human De-
tection. IEEE Computer Society Conference on Computer Vision and Pattern Rec-
ognition, San Diego, 20-25 June 2005, Vol. 1, 886-893.
https://doi.org/10.1109/CVPR.2005.177

[8] Seo, Y.W., Lee, J., Zhang, W. and Wettergreen, D. (2015) Recognition of Highway
Workzones for Reliable Autonomous Driving. IEEE Transactions on Intelligent
Transportation Systems, 16, 708-718.

[9] Zhang, K., Sheng, Y. and Li, J. (2012) Automatic Detection of Road Traffic Signs
from Natural Scene Images Based on Pixel Vector and Central Projected Shape
Feature. IET Intelligent Transport Systems, 6, 282-291.
https://doi.org/10.1049/iet-its.2011.0105

DOI: 10.4236/jtts.2018.83012 229 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012
https://doi.org/10.1109/MWC.2013.6704472
https://doi.org/10.1109/TITS.2010.2054084
https://doi.org/10.1109/TITS.2010.2073466
https://doi.org/10.1109/TITS.2010.2098029
https://doi.org/10.1007/s00138-011-0393-1
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1049/iet-its.2011.0105

H.-M. Weng, C.-T. Chiu

[10] Jin, J., Fu, K. and Zhang, C. (2014) Traffic Sign Recognition with Hinge Loss
Trained Convolutional Neural Networks. IEEE Transactions on Intelligent Trans-
portation Systems, 15, 1991-2000. https://doi.org/10.1109/TITS.2014.2308281

[11] Ruta, A., Li, Y. and Liu, X. (2010) Real-Time Traffic Sign Recognition from Video
by Class-Specific Discriminative Features. Pattern Recognition, 43, 416-430.
https://doi.org/10.1016/j.patcog.2009.05.018

[12] Chen, Z., Huang, X., Ni, Z. and He, H. (2014) A GPU-Based Real-Time Traffic Sign
Detection and Recognition System. IEEE Symposium on Computational Intelli-
gence in Vehicles and Transportation Systems, Orlando, 9-12 December 2014, 1-5.
https://doi.org/10.1109/CIVTS.2014.7009470

[13] Zaklouta, F. and Stanciulescu, B. (2014) Real-Time Traffic Sign Recognition in
Three Stages. Robotics and Autonomous Systems, 62, 16-24.
https://doi.org/10.1016/j.robot.2012.07.019

[14] Greenhalgh, J. and Mirmehdi, M. (2012) Real-Time Detection and Recognition of
Road Traffic Signs. IEEE Transactions on Intelligent Transportation Systems, 13,
1498-1506. https://doi.org/10.1109/TITS.2012.2208909

[15] Yuan, X., Hao, X., Chen, H. and Wei, X. (2014) Robust Traffic Sign Recognition
Based on Color Global and Local Oriented Edge Magnitude Patterns. IEEE Trans-
actions on Intelligent Transportation Systems, 15, 1466-1477.
https://doi.org/10.1109/TITS.2014.2298912

[16] Yang, Y., Luo, H., Xu, H. and Wu, F. (2016) Towards Real-Time Traffic Sign Detec-
tion and Classification. IEEE Transactions on Intelligent Transportation Systems,
17, 2022-2031. https://doi.org/10.1109/TITS.2015.2482461

[17] Liu, C., Chang, F., Chen, Z. and Liu, D. (2016) Fast Traffic Sign Recognition via
High-Contrast Region Extraction and Extended Sparse Representation. IEEE
Transactions on Intelligent Transportation Systems, 17, 79-92.
https://doi.org/10.1109/TITS.2015.2459594

[18] Rosenfeld, A. and Pfaltz, J.L. (1966) Sequential Operations in Digital Picture
Processing. Journal of the ACM, 13, 471-494.
https://doi.org/10.1145/321356.321357

[19] AbuBaker, A., Qahwaji, R., Ipson, S. and Saleh, M. (2007) One Scan Connected
Component Labeling Technique. IEEE International Conference on Signal
Processing and Communications, Dubai, 24-27 November 2007, 1283-1286.
https://doi.org/10.1109/ICSPC.2007.4728561

[20] Cortes, C. and Vapnik, V. (1995) Support-Vector Networks. Machine Learning, 20,
273-297. https://doi.org/10.1007/BF00994018

[21] Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M. and Igel, C. (2013) Detection of
Traffic Signs in Real-World Images: The German Traffic Sign Detection Bench-
mark. The 2013 International Joint Conference on Neural Networks, Dallas, 4-9
August 2013, 1-8. https://doi.org/10.1109/IJCNN.2013.6706807

[22] The OpenCV Library. http://opencv.org

[23] Chang, C.-C. and Lin, C.-J. (2011) Libsvm: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology, 2, 27.

[24] Yang, X.D. (1988) Design of Fast Connected Components Hardware. Computer So-
ciety Conference on Computer Vision and Pattern Recognition, Ann Arbor, 5-9 Jun
1988, 937-944. https://doi.org/10.1109/CVPR.1988.196345

[25] Johnston, C.T. and Bailey, D.G. (2008) FPGA Implementation of a Single Pass
Connected Components Algorithm. 4th IEEE International Symposium on Elec-

DOI: 10.4236/jtts.2018.83012 230 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012
https://doi.org/10.1109/TITS.2014.2308281
https://doi.org/10.1016/j.patcog.2009.05.018
https://doi.org/10.1109/CIVTS.2014.7009470
https://doi.org/10.1016/j.robot.2012.07.019
https://doi.org/10.1109/TITS.2012.2208909
https://doi.org/10.1109/TITS.2014.2298912
https://doi.org/10.1109/TITS.2015.2482461
https://doi.org/10.1109/TITS.2015.2459594
https://doi.org/10.1145/321356.321357
https://doi.org/10.1109/ICSPC.2007.4728561
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/IJCNN.2013.6706807
http://opencv.org/
https://doi.org/10.1109/CVPR.1988.196345

H.-M. Weng, C.-T. Chiu

tronic Design, Test and Applications, Hong Kong, 23-25 January 2008, 228-231.
https://doi.org/10.1109/DELTA.2008.21

[26] Ma, N., Bailey, D.G. and Johnston, C.T. (2008) Optimised Single Pass Connected
Components Analysis. International Conference on Field-Programmable Technol-
ogy, Taipei, 7-10 December 2008, 185-192.
https://doi.org/10.1109/FPT.2008.4762382

[27] Klaiber, M.J., Bailey, D.G., Baroud, Y.O. and Simon, S. (2016) A Resource Efficient
Hardware Architecture for Connected Component Analysis. IEEE Transactions on
Circuits and Systems for Video Technology, 26, 1334-1349.
https://doi.org/10.1109/TCSVT.2015.2450371

[28] Souani, C., Faiedh, H. and Besbes, K. (2014) Efficient Algorithm for Automatic
Road Sign Recognition and Its Hardware Implementation. Journal of Real-Time
Image Processing, 9, 79-93. https://doi.org/10.1007/s11554-013-0348-z

[29] Waite, S. (2013) FPGA-Based Traffic Sign Recognition for Advanced Driver Assis-
tance Systems. Journal of Transportation Technologies, 3, 1-16.

[30] Aguirre-Dobernack, N., Guzmn-Miranda, H. and Aguirre, M.A. (2013) Implemen-
tation of a Machine Vision System for Real-Time Traffic Sign Recognition on
FPGA. 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna,
10-13 November 2013, 2285-2290. https://doi.org/10.1109/IECON.2013.6699487

[31] Park, J., Kwon, J., Oh, J., Lee, S., Kim, J.Y. and Yoo, H.J. (2012) A 92mw Real-Time
Traffic Sign Recognition System with Robust Illumination Adaptation and Support
Vector Machine. IEEE Journal of Solid-State Circuits, 47, 2711-2723.
https://doi.org/10.1109/JSSC.2012.2211691

DOI: 10.4236/jtts.2018.83012 231 Journal of Transportation Technologies

https://doi.org/10.4236/jtts.2018.83012
https://doi.org/10.1109/DELTA.2008.21
https://doi.org/10.1109/FPT.2008.4762382
https://doi.org/10.1109/TCSVT.2015.2450371
https://doi.org/10.1007/s11554-013-0348-z
https://doi.org/10.1109/IECON.2013.6699487
https://doi.org/10.1109/JSSC.2012.2211691

	Resource Efficient Hardware Implementation for Real-Time Traffic Sign Recognition
	Abstract
	Keywords
	1. Introduction
	2. Proposed TSR Method
	2.1. Detection Procedure
	2.2. Recognition Procedure

	3. Performance Evaluation
	4. Hardware Implementation
	5. Conclusion
	References

