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Abstract 
Although large amounts of research have been completed to find the rela-
tionship between particulate matter and climate change, they have still proven 
to be inadequate. Efforts to lay the foundations for understanding atmospher-
ic chemical reactions have been repeatedly foiled by both the size and com-
plexity of the task, which require more than the effort of a handful of re-
searchers. Since the development of advanced physical models for dust beha-
vior is projected to take years, what if laypeople could dramatically expedite 
this process by using their mobile devices as measurement tools? With rela-
tively little effort by many individuals, previously unknown information about 
the earth’s atmosphere may at last become accessible thanks to recent ad-
vances in artificial intelligence. However, there are potential obstacles. Even if 
all technical problems are resolved, viable plans for battling particulate matter 
pollution will likely need to be accompanied by environmental policies. While 
technological breakthroughs give reason to hope for a brighter future, the res-
olution of global issues requires both grassroots changes and global efforts. 
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1. Introduction 

To this day, the atmosphere remains a more or less inviolable province. We are 
mere observers to this domain; our understanding of the chemical interactions 
occurring within it is cursory at best. The scientific community has recently be-
gun to devote an increasing amount of attention to the relationship between dust 
and climate change: “Understanding the links between dust and climate in the 
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past will be crucial to evaluate the future impacts of dust on the Earth’s climate 
system in a warming world” [1]. Despite some hurdles, strides taken in the de-
velopment of both artificial intelligence and machine learning will help illumi-
nate the science behind atmospheric chemistry and equip humanity to reliably 
explain, predict, and reduce air pollution and climate change. Even so, the tools 
themselves could prove to be insufficient agents of change. As history tells us, 
real change can only occur when concerned citizens, institutions, and govern-
ment work together towards a common goal. 

2. Particulate Matter and Its Behavior 

The wildfire scourge that ravaged the western United States in September 2017 
brought about unprecedented levels of destruction on the region and filled the 
air with dangerous levels of pollution. The air pollution that choked these states 
forced residents at otherwise safe distances from the wildfire to flee their homes, 
schools, and workplaces. However, what was less reported were the far-reaching, 
global consequences caused by a local, seemingly isolated, event. Once the haze 
retreats, the residents will return to their lives and carry on business as usual. 
Not many of them think of the early September blaze as they enter the especially 
soggy winter months. Although the haze will dissipate, the particles that caused 
it will become dispersed throughout the earth’s atmosphere, altering its chemical 
composition and adding to climate change for years to come. 

Because the atmosphere is a natural crossroad where the products of reactions 
from around the world interact, this idea should not sound too far-fetched. The 
classic study done by the North Atlantic Aerosols and Marine Ecosystems Study 
(NAAMES) found a strong correlation between carbon and marine plankton 
populations. In particular, phytoplankton in the oceans produce dimethyl sul-
fide, which becomes rapidly oxidized to sulfate upon entering the atmosphere, 
generating what is called sulfate aerosols. When sulfate aerosols bind with water 
vapor, clouds are formed through condensation. On the one hand, because 
“plankton are an important carbon sink for atmospheric greenhouse gases,” the 
increased availability of carbon from both natural and manmade sources leads to 
a surge in phytoplankton population, and then to a colder and wetter climate 
[2]. On the other, the warmer the ocean, the less the carbon it harbors, limiting 
the growth of phytoplankton. Fewer plankton mean less cloud to cool the earth, 
hence warmer surface temperatures (Figure 1). 

Such a finding is only part of a bigger picture as more data is becoming avail-
able to both complement and complicate our grasp of atmospheric chemistry. 
For example, the particulate matter emitted during the high-temperature com-
bustion of biomass during the wildfires contains brown carbon, which rises 
through the atmosphere because its formations are less dense than black car-
bon’s formations. These brown carbon formations absorb and scatter solar radi-
ation, cooling the earth’s surface [2]. Yet even as of 2017, particulate matter re-
mained poorly defined and the definition itself included a wide variety of sizes and  
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Figure 1. Effects of temperature and ocean warming on planktonic egg and larval development times and associated dispersal 
distances (p. 332) [3]. 

 
configurations. It could be as small as a single molecule, or as large as a 
10-micron dust. Kok et al. (2011) found that 1- to 5-micron particles contributed 
the most to atmospheric fluctuations [4]. Based on their findings, a great deal of 
emphasis today is placed on making distinctions between fine (< 2.5 microns) 
and coarse (2.5 - 10 microns) particles. While fine particles interact with sun-
light to lower the temperature of the air by acting like tiny mirrors, coarse par-
ticles raise the temperature of the air by absorbing heat. Although particle size is 
significant, it is not the only attribute that matters. This year, Kok et al. con-
cluded that an addition of 2000 Tg of particles per year released into the atmos-
phere can make a tangible impact on the climate [4]. The study found that, while 
the same amount of dust generated over a short period may have similar effects, 
it is not comparable to that of the same amount accumulated at a more constant 
rate over the span of a year. Given that particles of any size may combine to 
form even larger particles, these factors may be irrelevant [5]. Thus, it is just as 
important to study particle behavior as it is to study the particles themselves. 
According to Pospisil and Jicha, such behavior is “a very complex process [that 
is difficult to describe mathematically]” (p. 157) [6]. The notable degree of en-
tropy and lack of linearity in dust behavior contribute to this difficulty, as well as 
the lack of useable data. 

Dust pollution is a daily reality familiar to many people living in industrial so-
cieties. Climate researchers have just begun to suspect that climate change trig-
gered by microscopic dust could be likened to harm to the people. In fact, parti-
culate matters can irritate the eyes, nose, and throat, and cause respiratory and 
cardiovascular diseases (Figure 2). 
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Studying the effects of these particulates in a vacuum may appear simple, but 
the earth’s atmosphere is a wide-open arena of myriad aerodynamic vectors that 
interact with each other in varied and unpredictable ways. The popular regional 
and global circulation model tracks airborne circulation by dividing the atmos-
phere and oceans into 40 - 50 vertical layers of 250 km2 units [8]. However, the 
coarseness of the model’s division of the atmosphere means that its predictions 
are relatively inaccurate, especially for matter smaller than 2 microns. Kok found 
gross inaccuracies in an analysis of clay aerosols, the radiative cooling effect of 
which is of significant interest in the field [9]. The global circulation model 
“overestimate [d] the emitted fraction of clay aerosols (< 2 μm diameter) by a 
factor of ~2 - 8 relative to measurements” (p. 1016). As this example shows, suf-
ficiently accurate advanced physical models of dust behavior are projected to 
take years to develop. Given the immensity of the Earth’s surface, the research 
required to develop such models is sure to involve more researches. At the same 
time, the Earth is already undergoing drastic climate change, so the need to ac-
celerate research is more pressing than ever. 

3. Grassroots Change at Fingertips 

Even if the technical challenges surrounding particulate matter behavior could 
be addressed, coming up with a viable solution for battling dust pollution on na-
tional and international levels will likely take the difficult path of clearing legis-
lative, financial, and diplomatic gridlocks. Environmental policy must keep in 
step with environmental changes, and the responsibility to spearhead environ-
mental activism falls on the well-informed, as raising awareness is at the begin-
ning of any large-scale movement. In fact, the role of information amounts 

 

 
Figure 2. Global concentration-mortality relationships for ambient PM2.5 for five indi-
vidual endpoints and total of five causes (p. 8058) [7]. 
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to more than just spreading relevant data. As an example, one may look to the 
immense influence exerted by Rachel Carson’s Book Silent Spring on the estab-
lishment of the Environmental Protection Agency in December 1970. As ac-
knowledged by the Agency itself, Silent Spring “played in the history of envi-
ronmentalism roughly the same role that Uncle Tom’s Cabin played in the ab-
olitionist movement. In fact, EPA today may be said without exaggeration to be 
the extended shadow of Rachel Carson” (p. 6) [10]. What Carson did to lead the 
Environmental Movement of the late 1960’s to such success was not only due to 
her exhaustive research related to environmental destruction and its effects on 
humans, but also due to her revelatory argumentation. By weaving seemingly 
unrelated incidents and facts into a coherent, science-based narrative, Carson 
allowed the public to easily grasp the state of affairs while urging them towards 
action. Though it is not to say that activism is impossible without the help of in-
tellectuals, their role in promoting awareness may be overwhelming. 

What if, then, laypeople could also empower the process of measuring, ana-
lyzing, evaluating, and proposing solutions for the particulate matter debacle as 
well? What if they could use their mobile devices as measurement tools? Existing 
communications technology and innovations in artificial intelligence might re-
duce development time. Every smartphone user can install a measurement ap-
plication on their smartphones: measurement devices are compact and can even 
be embedded in headphones or personal Bluetooth devices [11]. The measure-
ment application can run in the background, just like a music streaming applica-
tion, continuously taking readings of the surrounding air, including information 
such as the density of airborne dust, fumes, temperature, wind speed, and hu-
midity [12]. One application could provide visualization and other analytical 
functionalities, which helps to educate users on their environments and eases 
computational bottlenecks at data centers by performing processing on users’ 
devices. The same devices could be installed on building surfaces or rooftops to 
collect data from higher altitudes. Personal drones and other aerial vehicles such 
as helicopters can also play a vital role in collecting high-altitude data. This solu-
tion does not require people to make drastic departures from their current life-
styles and does not require the completion of a large-scale project devoted to a 
single purpose. Most importantly, such a system makes it possible to take at-
mospheric measurements anytime, anywhere, which was previously nearly im-
possible. 

4. How Machine Learning Can Help 

The data, as noted above, only makes up half of the equation: the other half is 
developing effective mathematical models using machine learning. Modeling 
complex systems such as the atmosphere present substantial challenges. Because 
there are so many variables that influence the model’s output, establishing the 
relationships between each variable to make accurate predictions is nearly im-
possible. This type of problem is referred to as complex function approximation 
because an association between a set of observed variables and a prediction is a 
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function in a mathematical sense. Traditionally, function approximation prob-
lems were first approached by assuming that the model would be accurately 
represented by a particular mathematical function, such as a linear function or a 
polynomial of a particular order. Any mathematical function can be described in 
terms of its type and a set of parameters. In this context, this model choice refers 
to the type of function used to make computations regarding the atmosphere. It 
naturally reflects a set of assumptions made about the nature of the input va-
riables and the structure of the system that is being modeled. These assumptions 
are essentially pre-hoc commitments made by scientists that are somewhat in-
dependent from the data. 

For example, in order to make predictions about the movement of a spring, a 
linear spring equation would serve as an adequate model. They make hundreds 
of measurements by manipulating the spring to estimate the spring equation’s 
parameters. The spring equation is a “good model” not because it is more accu-
rate than others, but because it is the simplest known expression which suffi-
ciently and accurately represents the movement of the spring within a reasona-
ble range of circumstances. That is, for any given model, there are a number of 
more complex models with an appropriate set of parameters that can explain the 
data as good or better than the model in question. An example of an alternative 
model is the model of the weak electric forces exerted by the atoms that make up 
the spring. The trade-off of this model is that it is more complex with more pa-
rameters, which require much more data to fine-tune. Trying to fit a complex 
model with a small amount of data results in over fitting, a phenomenon in 
which the model explains the data but is not meaningfully generalizable [13]. 
Thus, simpler models are usually preferred to more complex models. 

This is where machine learning can be used as a time- and cost-saving solu-
tion. Machine learning techniques such as deep learning do not require that re-
searchers commit themselves to any particular model before analyzing data that 
they collect. Deep learning has made the model creation process as simple as 
feeding data into an algorithm and getting a model in return, making it con-
ceivably practical to predict dust behavior based on data [14]. One field in which 
deep learning has been used to generate complex models is visual recognition. 
Developing visual recognition models is a surprisingly similar type of problem to 
developing weather forecasting models since both phenomena are highly com-
plex with an immense number of variables that are difficult for humans to mod-
el. Nonetheless, humans process visual information effortlessly. Deep learning 
models have revolutionized computer visual recognition and artificial intelli-
gence by allowing computers to develop visual recognition capabilities at a level 
that many scientists thought would not be seen for another century, so the pow-
er of deep learning can be harnessed to solve the problem of model choice. In-
stead of applying a specific model, researchers can simply commit to the number 
of total parameters that the algorithm can analyze and the dimensions of a neur-
al network model, which is a conceptual embodiment of the mathematical model 
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employed by deep learning. Then the deep learning algorithm analyzes the data 
and determines which parameters are not particularly helpful and removes them 
from the model while tuning the remaining parameters [15]. 

5. Conclusion 

This technology will help researchers make accurate predictions and generaliza-
tions based on collected atmospheric data, and the wealth of new data will create 
exciting new avenues for research in fields of natural sciences and engineering. 
Such a concerted effort will not only aid in addressing the dust epidemic, but it 
will also take weather forecasting techniques to a new level by allowing meteor-
ologists to predict extreme weather changes more accurately [16]. However, po-
tential obstacles do exist. Although involving large portions of the global popu-
lation would be an unparalleled advantage, the asymmetry in population densi-
ties at different geographic locations and altitudes and the creation of false data 
may initially yield a skewed picture of atmospheric conditions. Even if all tech-
nical problems are resolved, viable plans for actually battling particulate matter 
pollution would likely need to meet with legislative approval and be provided 
with financial resources. Just like any other policy, the best environmental policy 
is one which is initiated by the public, fully utilizes available democratic appara-
tus, and is keenly watched over by the larger public. Recent experience indicates 
that the challenge should not be taken lightly because broadly effective action on 
combatting climate change cannot happen solely at the grassroots level; the res-
olution of global crises requires global efforts. 
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