A Generalization of the Clark-Ocone Formula

Mahmmoud Salih*, Sulieman Jomah
School of Mathematics and Statistics, Northwest Normal University, Lanzhou, China
Email: *Mahmmoud.Salih@yahoo.com, suliemanjomah@hotmail.com

How to cite this paper: Salih, M. and Jomah, S. (2018) A Generalization of the Clark-Ocone Formula. Journal of Applied Mathematics and Physics, 6, 1443-1453.
https://doi.org/10.4236/jamp.2018.67121

Received: June 5, 2018
Accepted: July 16, 2018
Published: July 19, 2018

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we use a white noise approach to Malliavin calculus to prove the generalization of the Clark-Ocone formula

$$
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \diamond W(t) \mathrm{d} t
$$

where $E[F]$ denotes the generalized expectation, $D_{t} F(\omega)=\frac{\mathrm{d} F}{\mathrm{~d} \omega}$ is the (generalized) Malliavin derivative, \diamond is the Wick product and $W(t)$ is the 1-dimensional Gaussian white noise.

Keywords

White Noise, Malliavin Calculus, Wick Product, Brownian Motion

1. Introduction

In 1975, Hida introduced the theory of white noise with his lecture note on Brownian functionals [1]. After that H. Holden et al. [2] emphasized this theory with stochastic partial differential equations (SPDEs) driven by Brownian motion.

In 1984, Ocone proved the Clark-Ocone formula [3], to give an explicit representation to integral in Itô integral representation theorem in the context of analysis on the Wiener space $\Omega=C_{0}([0, T])$, the space of all real continuous functions on $[0, T]$ starting at 0 . He proved that

$$
\begin{equation*}
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \mathrm{d} B(t) \tag{1.1}
\end{equation*}
$$

where D_{t} is the Malliavin derivative and $B(t)$ is the one dimensional Brownian motion on the Winer space. In [4] the authors proved the generalization of Clark-Ocone formula (see, e.g., [5] [6]). This theorem has many interesting application, for example, computing the replicating portfolio of call option in Black \& Scholes type market. They proved that

$$
\begin{equation*}
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \diamond W(t) \mathrm{d} t \tag{1.2}
\end{equation*}
$$

where $E[F]$ denotes the generalized expectation, $D_{t} F(\omega)=\frac{\mathrm{d} F}{\mathrm{~d} \omega}$ is the (generalized) Malliavin derivative, \diamond is the Wick product and $W(t)$ is the one dimensional Gaussian white noise. This formula holds for all $F \in \mathcal{G}^{*}$, where \mathcal{G}^{*} is a space of stochastic distribution. In particular, if $F \in L^{2}(\mu)$ then equation (1.2) turns out to be

$$
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \mathrm{d} B(t)
$$

The purpose of this papper is to generalize the well known Clark-Ocone formula to generalized functions of white noise, i.e., to the space $\mathcal{G}^{-\beta}$. The generalization has the following form

$$
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \Delta W(t) \mathrm{d} t
$$

where $E[F]$ denotes the generalized expectation, $D_{t} F(\omega)=\frac{\mathrm{d} F}{\mathrm{~d} \omega}$ is the (generalized) Malliavin derivative, \diamond is the Wick product, and $W(t)$ is the 1-dimensional Gaussian white noise.

The paper is organized as follows. In Section 2 and 3, we recall necessary definitions and results from white noise and prove a new results that we will need. Finally in Section 4, we generalize the Clark-Ocone formula, i.e., to the space $\mathcal{G}^{-\beta}$.

2. White Noise

In this section we recall necessary definitions and results from white noise. For more information about white noise analysis (see e.g, [7]-[14]).

Given $\Omega=S(\mathbb{R})$ be the space of tempered distribution on the set \mathbb{R} of real number and let μ be the Gaussian white noise probability measure on Ω such that

$$
\begin{equation*}
\int_{\Omega} \mathrm{e}^{\mathrm{i}(\omega, \phi\rangle} \mathrm{d} \mu(\omega)=\mathrm{e}^{-\left.\frac{1}{2}| | \phi\right|^{2}} . \tag{2.1}
\end{equation*}
$$

where $\langle\omega, \phi\rangle$ denotes the action of $\omega \in S^{\prime}(\mathbb{R})$ on ϕ. It follows from (2.1) that

$$
E[\langle., \phi\rangle]=0, \quad E[\langle,, \phi\rangle]^{2}=\|\phi\|^{2}, \phi \in S(\mathbb{R})
$$

where $E=E_{\mu}$ denotes the expectation with respect to μ. This isometry allows us to define a Brownian motion $B(t)=B(t, \omega)$ as the continuous version of $\tilde{B}=\tilde{B}(t, \omega)=\left\langle\omega, \chi_{(0, t)}().\right\rangle$ where

$$
\chi_{[0, t]}(s)= \begin{cases}1 & \text { if } 1 \leq s \leq t, \\ -1 & \text { if }-t \leq s \leq 0, \\ 0 & \text { otherwise }\end{cases}
$$

Then, $\langle\omega, \varphi\rangle=\int_{\mathbb{R}} \varphi(t) \mathrm{d} B(t)$ for all $\varphi \in L^{2}(\mathbb{R})$. Let \mathcal{F}_{t} be the σ algebra
generated by $\{B(s, .)\}_{0 \leq s \leq t}$. If $f\left(t_{1}, t_{2}, \cdots, t_{n}\right) \in \hat{L}^{2}\left(\mathbb{R}^{n}\right)$, i.e., f_{n} is symmetric and

$$
\left\|f_{n}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\int_{\mathbb{R}^{n}} f_{n}^{2}\left(t_{1}, \cdots, t_{n}\right) \mathrm{d} t_{1} \cdots \mathrm{~d} t_{n}<\infty
$$

then the iterated Itô integral is given by

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f_{n} \mathrm{~d} B^{\otimes n}:=n!\int_{-\infty}^{\infty}\left(\int_{-\infty}^{t_{n}} \cdots\left(\int_{-\infty}^{t_{2}} f\left(t_{1}, \cdots, t_{n}\right) \mathrm{d} B\left(t_{1}\right)\right) \cdots\right) \mathrm{d} B\left(t_{n}\right) . \tag{2.2}
\end{equation*}
$$

In the following we let

$$
\begin{equation*}
h_{n}(x)=(-1)^{n} \mathrm{e}^{\frac{x^{2}}{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(\mathrm{e}^{-\frac{x^{2}}{2}}\right) ; n=0,1,2, \cdots \tag{2.3}
\end{equation*}
$$

be the Hermite polynomials and let $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ be the basis of $L^{2}(\mathbb{R})$ consiting

$$
\begin{equation*}
\xi_{n}(x)=\pi^{-\frac{1}{4}}((n-1)!)^{-\frac{1}{2}} \mathrm{e}^{-\frac{x^{2}}{2}} h_{n-1}(\sqrt{2} x), n=1,2, \cdots \tag{2.4}
\end{equation*}
$$

The set of multi-indices $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)$ of nonnegative integers is denoted by $\mathscr{T}=\left(\mathbb{N}_{0}^{\mathbb{N}}\right)_{\mathbb{C}}$. Where $\mathbb{N}=\{1,2, \cdots\}$ is the set of all natural number and $\mathbb{N}_{0}=\mathbb{N} \bigcup\{0\}$. If $z=\left(z_{1}, z_{2}, \cdots\right)$ is a sequence of number or function, we use the multi-induces notation

$$
z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}} \text { if } \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathscr{T}
$$

Theorem 2.1. ([15]) Let $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}$ be are an orthonormal function in $L^{2}(\Omega)$. Then for all multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in \mathscr{T}$, we have

$$
\int_{\mathbb{R}^{|\alpha|}} \varphi^{\hat{\otimes} \alpha} \mathrm{d} B^{\otimes|\alpha|}(x)=h_{\alpha_{1}}\left(\left\langle\omega, \varphi_{1}\right\rangle\right) \cdots h_{\alpha_{n}}\left(\left\langle\omega, \varphi_{n}\right\rangle\right) .
$$

Corollary 2.2.

$$
\left(H_{\alpha} \diamond H_{\beta}\right)=H_{\alpha+\beta}(\omega) ; \alpha, \beta \in \mathscr{T} .
$$

where \diamond denote the Wick product, and extend linearly. Then if $f_{n} \in \hat{L}^{2}\left(\mathbb{R}^{n}\right), g_{n} \in \hat{L}^{2}\left(\mathbb{R}^{m}\right)$, we have

$$
\left(\sum_{n} \int_{\mathbb{R}^{n}} f_{n} \mathrm{~d} B^{\otimes n}\right) \diamond\left(\sum_{m} \int_{\mathbb{R}^{m}} g_{m} \mathrm{~d} B^{\otimes m}\right)=\sum_{m, n} \int_{\mathbb{R}^{m+n}} f_{n} \hat{\otimes} g_{m} \mathrm{~d} B^{\otimes(m+n)}
$$

Proof.

$$
\begin{aligned}
& \int_{\mathbb{R}^{|\alpha|} \xi^{\hat{\otimes} \alpha}} \mathrm{d} B^{\otimes|\alpha|} \diamond \int_{\mathbb{R}^{|\beta|}} \xi^{\hat{\otimes} \beta} \mathrm{d} B^{\otimes|\beta|} \\
& =H_{\alpha} \diamond H_{\beta}=H_{\alpha+\beta}=\int_{\mathbb{R}^{|\alpha+\beta|}} \xi^{\hat{\otimes}(\alpha+\beta)} \mathrm{d} B^{\otimes|\alpha+\beta|} \\
& =\int_{\mathbb{R}^{\mid \alpha+\beta} \mid} \xi^{\hat{\otimes} \alpha} \hat{\otimes} \xi^{\hat{\otimes} \beta} \mathrm{d} B^{\otimes|\alpha+\beta|} .
\end{aligned}
$$

3. Stochastic Test Function and Stochastic Distribution (Konddratiev Spaces)

1) Stochastic test function spaces

Suppose $k \in \mathbb{N}$, for $0 \leq \beta<1$, let $(S)_{\beta}$ consist of those

$$
f=\sum_{\alpha} c_{\alpha} H_{\alpha}
$$

such that

$$
\|f\|_{k, \beta}=\sum_{\alpha} c_{\alpha}^{2}(\alpha)^{1+\beta}(2 \mathbb{N})^{k \alpha}, \forall k \in \mathbb{N}
$$

where

$$
\begin{equation*}
(2 \mathbb{N})^{k \alpha}=\prod_{i=1}^{m}(2 i)^{k \alpha_{i}}, \text { for } \alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right) \tag{3.1}
\end{equation*}
$$

2) Stochastic distribution

For $0 \leq \beta<1$, let $(S)_{\beta}^{*}$ be the space of Kondratiev space of stochastic distribution, consist of all formal expansions

$$
F=\sum_{\alpha} b_{\alpha} H_{\alpha}
$$

such that

$$
\|F\|_{-q,-\beta}=\sum_{\alpha} b_{\alpha}^{2}(\alpha)^{1-\beta}(2 \mathbb{N})^{-q \alpha}, \text { for some } q \in \mathbb{N}
$$

where $(2 \mathbb{N})^{\alpha}$ is defined in (3.1).
Note that $(S)_{\beta}^{*}$ is the dual of $(S)_{\beta}$ and we can define the action of

$$
\begin{array}{r}
F=\sum_{\alpha} b_{\alpha} H_{\alpha} \in(S)_{\beta}^{*} \text { on } f=\sum_{\alpha} c_{\alpha} H_{\alpha} \in(S)_{\beta} \text { by } \\
\langle F, f\rangle=\sum_{\alpha} \alpha!\left(b_{\alpha}, c_{\alpha}\right),
\end{array}
$$

where $\left(b_{\alpha}, c_{\alpha}\right)$ is the usual inner product in \mathbb{R}.
Definition 3.1. Let $F \in(S)_{\beta}^{*}$ be the random variable and let $\gamma \in L^{2}(\mathbb{R})$. Then we say that F has directional derivative in the direction γ if

$$
\begin{equation*}
D_{\gamma} F(\omega):=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}(F(\omega+\epsilon \gamma)-F(\omega)) \tag{3.2}
\end{equation*}
$$

if the limit exist in $F \in(S)_{\beta}^{*}$.
Definition 3.2. A function $\Phi: \mathbb{R} \rightarrow(S)_{\beta}^{*}$-integrable if

$$
\langle\Phi(.), \phi\rangle \in L^{1}(\mathbb{R}), \text { for all } \phi \in(S)_{\beta}
$$

Then the $(S)_{\beta}^{*}$-integrable of $\Phi(t)$, denoted by $\int_{\mathbb{R}} \Phi(t) \mathrm{d} t$, is the unique $(S)_{\beta}^{*}$ element such that

$$
\left\langle\int_{\mathbb{R}} \Phi(t) \mathrm{d} t, \phi\right\rangle=\int_{\mathbb{R}}\langle\Phi, \phi\rangle(t) \mathrm{d} t, \phi \in(S)_{\beta} .
$$

Definition 3.3. Consider $\varphi(t, \omega): \mathbb{R} \rightarrow(S)_{\beta}^{*}$ such that

$$
\varphi(t, \omega) \gamma(t) \text { is } \varphi(t, \omega) \text {-integrable }
$$

and

$$
D_{\gamma} F(\omega)=\int_{\mathbb{R}} \varphi(t, \omega) \gamma(t) \mathrm{d} t, \text { for all } \gamma \in L^{2}(\mathbb{R})
$$

then we say that F is (Hida) Malliavin differentiable and we put

$$
D_{t} F(\omega):=\frac{\mathrm{d} F}{\mathrm{~d} \omega}(t, \omega)=\varphi(t, \omega), t \in \mathbb{R}
$$

D_{t} is called the Hida-Malliavin derivative or stochastic gradient of F at t.

The set of all differentiable is denoted by \mathbb{D}.
Definition 3.4. Consider $F(\omega)=\sum_{\alpha} c_{\alpha} H_{\alpha}(\omega) \in(S)_{\beta}^{*}$. Then we define the stochastic derivative of F at t by

$$
\begin{aligned}
D_{t} F(\omega) & :=\frac{\mathrm{d} F}{\mathrm{~d} \omega}(t, \omega):=\sum_{\alpha} c_{\alpha} \sum_{i} \alpha_{i} H_{\alpha-\epsilon^{(i)}}(\omega) \cdot \xi_{i}(t) \\
& =\sum_{\gamma}\left(\sum_{i} c_{\gamma+\epsilon^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)\right) H_{\gamma}(\omega)
\end{aligned}
$$

Lemma 3.5.

1) Let $F \in(S)_{\beta}^{*}$. Then $D_{t} F \in(S)_{\beta}^{*}$ for a.a. $t \in \mathbb{R}$.
2) Suppose $F, F_{m} \in(S)_{\beta}^{*}$ for all $m \in \mathbb{N}$ and

$$
F_{m} \rightarrow F \text { in }(S)_{\beta}^{*}
$$

Then there exist a subsequence $\left\{F_{m_{k}}\right\}_{k=1}^{\infty}$ such that

$$
D_{t} F_{m_{k}} \rightarrow D_{t} F \text { in }(S)_{\beta}^{*}, \text { for } a . a t>0
$$

Proof. 1) Suppose $F(\omega)=\sum_{\alpha} c_{\alpha} H_{\alpha}(\omega) \in(S)_{\beta}^{*}$. Then

$$
\begin{aligned}
D_{t} F(\omega) & =\sum_{\alpha} c_{\alpha} \sum_{i} \alpha_{i} H_{\alpha-\epsilon^{(i)}}(\omega) \cdot \xi_{i}(t) \\
& =\sum_{\gamma}\left(\sum_{i} c_{\gamma+\epsilon^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)\right) H_{\gamma}(\omega) \\
& =\sum_{\gamma} g_{\gamma}(t) H_{\gamma}(\omega) .
\end{aligned}
$$

where $g_{\gamma}(t)=\sum_{i} c_{\gamma+\epsilon^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)$.
We want to prove that for some $q \in \mathbb{N}$,

$$
\left\|D_{t} F\right\|_{-\beta,-q-1}^{2}=\sum_{m}\left(\sum_{|\gamma|=m} g_{\gamma}^{2}(\gamma!)^{1-\beta}\right)(2 \mathbb{N})^{-\gamma(q+1)}<\infty \text { for a.a.t. }
$$

Note that

$$
\int_{\mathbb{R}} g_{\gamma}^{2}(t) \mathrm{d} t=\int_{\mathbb{R}}\left(\sum_{i} c_{\gamma+\epsilon^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)\right)^{2} \mathrm{~d} t=\sum c_{\gamma+\epsilon^{(i)}}^{2}\left(\gamma_{i}+1\right)^{2} .
$$

Moreover,

$$
(2 \mathbb{N})^{-\gamma q}<(2 \mathbb{N})^{-\gamma}=\prod_{i}(2 \cdot i)^{-\gamma_{i}} \leq \prod_{i} \mathrm{e}^{-\gamma_{i}(\log 2)}=\mathrm{e}^{-|\tilde{\gamma}|}
$$

where $\tilde{\gamma}=(\log 2) \gamma_{i}$ for all $i \in I$. Hence,

$$
\begin{aligned}
& \int_{\mathbb{R}}\left\|D_{t} F\right\|_{-\beta,-q-1}^{2} \mathrm{~d} t \\
& =\sum_{\gamma}\left(c_{\gamma+\epsilon^{(i)}}^{2}\left(\gamma_{i}+1\right)^{2}(\gamma!)^{1-\beta}\right)(2 \mathbb{N})^{-\gamma(q+1)} \\
& =\sum_{\gamma, i}\left(\gamma_{i}+1\right)(\gamma!)^{-\beta}(2 \mathbb{N})^{-\gamma(q+1)} \sum_{\alpha,|\alpha|=|\gamma|+1} c_{\alpha}^{2} \alpha! \\
& <\sum_{m} \sum_{|\bar{Y}|=m}(m+1) \mathrm{e}^{-m} \sum_{|\alpha|=(\log 2)^{-1} m+1} c_{\alpha}^{2}(\alpha!)(2 \mathbb{N})^{-\alpha q} .
\end{aligned}
$$

Using the fact that $(m+1) \mathrm{e}^{-m} \leq 1$ for all m, we get

$$
\begin{equation*}
\int_{\mathbb{R}}\left\|D_{t} F\right\|_{-\beta,-q-1}^{2} \mathrm{~d} t<\sum_{m}\left(\sum_{|\alpha|=(\log 2)^{-1} m+1} c_{\alpha}^{2} \alpha!\right)(2 \mathbb{N})^{-\alpha q}<\|F\|_{-\beta,-q}<\infty \tag{3.3}
\end{equation*}
$$

Therefore,

$$
D_{t} F \in(S)_{-\beta,-q-1} \text { for a.a. } t
$$

2) To prove this part, it suffices to prove that if $F_{m} \rightarrow 0$ in $(S)_{-\beta,-q}$, then there exist a subsequence $\left\{F_{m_{k}}\right\}_{k=1}^{\infty}$ such that $D_{t} F_{m} \rightarrow 0$ in $(S)_{\beta}^{*}$ as $k \rightarrow \infty$, for a.a. t. We have prove that

$$
\int_{\mathbb{R}}\left\|D_{t} F\right\|_{-\beta,-q-1}^{2} \mathrm{~d} t \leq\left\|F_{n}\right\|_{-\beta,-q}^{2} \rightarrow 0
$$

Therefore,

$$
\left\|D_{t} F_{n}\right\|_{-\beta,-q-1} \rightarrow 0 \text { in } L^{2}(\mathbb{R}) .
$$

So, there exists a subsequence $\left\{\left\|D_{t} F_{n}\right\|\right\}_{k \geq 1}$ such that $\left\|D_{t} F_{n_{k}}\right\|_{-\beta,-q-1} \rightarrow 0$ for a.a. t as $k \rightarrow \infty$. This complete the proof.

Suppose ξ_{1}, ξ_{2}, \cdots is the Hermite functions, and put

$$
\begin{equation*}
X_{i}=X_{i}(\omega)=\left\langle\omega, \xi_{i}\right\rangle=\int_{\mathbb{R}} \xi_{i}(s) \mathrm{d} B(s) ; i=1,2, \cdots \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{i}^{(t)}(\omega)=\int_{0}^{t} \xi_{i}(s) \mathrm{d} B(s) ; i=1,2, \cdots \tag{3.5}
\end{equation*}
$$

and

$$
X=\left(X_{1}, X_{2}, \cdots\right), X^{(t)}=\left(X_{1}^{(t)}, X_{2}^{(t)}, \cdots\right) .
$$

With this notation we have, $X^{\diamond \alpha}(\omega)=\left(X_{1}^{\diamond \alpha_{1}} \diamond \cdots \diamond X_{m}^{\diamond \alpha_{m}}\right)(\omega)=H_{\alpha}(\omega)$ for all multi indices α where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right)$.

Definition 3.6.1) Let $k \in \mathbb{N}, 0 \leq \beta<1$. We say that

$$
F=\sum_{n=0}^{\infty} I_{n}\left(f_{n}\right)
$$

belong to the space \mathcal{G}_{k}^{β} if

$$
\|F\|_{\mathcal{G}_{k}^{\beta}}^{2}=\sum_{n=0}^{\infty} \mathrm{e}^{2 k n}(n!)^{1+\beta}\left\|f_{n}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}<\infty
$$

we define

$$
\mathcal{G}^{\beta}=\bigcap_{k \in \mathbb{N}} \mathcal{G}_{k}^{\beta},
$$

and equip \mathcal{G}^{β} with the projective topology.
2) We say that

$$
G=\sum_{n=0}^{\infty} I_{n}\left(g_{n}\right)
$$

belong to the space $\mathcal{G}_{-q}^{-\beta}$ if

$$
\|G\|_{G_{-q}-\beta}^{2}=\sum_{n=0}^{\infty} \mathrm{e}^{-2 q n}(n!)^{1-\beta}\left\|f_{n}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}<\infty,
$$

we define

$$
\mathcal{G}^{-\beta}=\bigcap_{q \in \mathbb{N}} \mathcal{G}_{-q}^{-\beta}
$$

and equip $\mathcal{G}^{-\beta}$ with the inductive topology. Then $\mathcal{G}^{-\beta}$ is the dual of \mathcal{G}^{β}, with action

$$
\langle G, F\rangle=\sum_{n=0}^{\infty} n!\left\langle g_{n}, f_{n}\right\rangle .
$$

4. The Generalized Clark-Ocone Formula

Now we are prepared to present the main result of this paper. It generalizes the well know Clark-Ocone formula to generalized functions, i.e., to the space $\mathcal{G}^{-\beta}$.

Definition 3.1. Suppose $F=\sum_{n=0}^{\infty} I_{n}\left(f_{n}\right) \in \mathcal{G}^{\beta}$. Then the conditional expectation of F with respect to \mathcal{F}_{t} is given by

$$
\begin{equation*}
E\left[F \mid \mathcal{F}_{t}\right]=\sum_{n=0}^{\infty} \int_{\mathbb{R}^{n}} f_{n} \cdot \chi_{[o, t]^{n}} \mathrm{~d} B^{\otimes n} \tag{4.1}
\end{equation*}
$$

Note that this coincides with usual conditional expectation if $F \in L^{2}(\mu)$, and

$$
\begin{equation*}
\left\|E\left[F \mid \mathcal{F}_{t}\right]\right\|_{\mathcal{G}_{k}^{\beta}} \leq\|F\|_{\mathcal{G}_{k}^{\beta}}, \text { for some } k \in \mathbb{N} . \tag{4.2}
\end{equation*}
$$

In particular

$$
\begin{equation*}
E\left[F \mid \mathcal{F}_{t}\right] \in \mathcal{G}^{-\beta} \tag{4.3}
\end{equation*}
$$

Lemma 4.2. Suppose $F, G \in \mathcal{G}^{-\beta}$. Then

$$
E\left[F \diamond G \mid \mathcal{F}_{t}\right]=E\left[F \mid \mathcal{F}_{t}\right] \diamond E\left[G \mid \mathcal{F}_{t}\right]
$$

Proof. Assume that, without loss of generality,

$$
F=\int_{\mathbb{R}^{n}} f_{n} \mathrm{~d} B^{\otimes n}=\sum_{|\alpha|=n} c_{\alpha} \int_{\mathbb{R}^{n}} \xi^{\hat{\otimes} n} \mathrm{~d} B^{\otimes n}
$$

and similarly G. By Corollary 2.2 and Definition 4.1, we have

$$
\begin{aligned}
E\left[F \diamond G \mid \mathcal{F}_{t}\right] & =E\left[\int_{\mathbb{R}^{m+n}} f_{n} \hat{\otimes} g_{m} \mathrm{~d} B^{\otimes(m+n)} \mid \mathcal{F}_{t}\right] \\
& =\int_{\mathbb{R}^{m+n}} f_{n} \hat{\otimes} g_{m} \cdot \chi_{[0, t]^{m+n}} \mathrm{~d} B^{\otimes(m+n)} \\
& =\int_{\mathbb{R}^{m+n}} f_{n} \hat{\otimes} \chi_{[0, t]^{n}} \hat{\otimes} g_{m} \cdot \chi_{[0, t]^{m}} \mathrm{~d} B^{\otimes(m+n)} \\
& =E\left[F \mid \mathcal{F}_{t}\right] \Delta E\left[G \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

Lemma 4.3.

Let $F \in \mathcal{G}^{-\beta}$. Then $D_{t} F \in \mathcal{G}^{-\beta}$ for a.a. $t \in \mathbb{R}$.
Consider $F, F_{m} \in \mathcal{G}^{-\beta}$ for all $m \in \mathbb{N}$ and

$$
F_{m} \rightarrow F \text { in } \mathcal{G}^{-\beta} .
$$

Then there exists a subsequence $\left\{F_{m_{k}}\right\}_{k=1}^{\infty}$ such that

$$
D_{t} F_{m_{k}} \rightarrow D_{t} F \text { in } \mathcal{G}^{-\beta}, \text { for } a . a t>0
$$

Proof. 1) Suppose $F(\omega)=\sum_{\alpha} c_{\alpha} H_{\alpha}(\omega) \in \mathcal{G}^{-\beta}$. Then

$$
\begin{aligned}
D_{t} F(\omega) & =\sum_{\alpha} c_{\alpha} \sum_{i} \alpha_{i} H_{\alpha-\epsilon^{(i)}}(\omega) \cdot \xi_{i}(t) \\
& =\sum_{\gamma}\left(\sum_{i} c_{\gamma+t^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)\right) H_{\gamma}(\omega) \\
& =\sum_{\gamma} g_{\gamma}(t) H_{\gamma}(\omega) .
\end{aligned}
$$

where

$$
g_{\gamma}(t)=\sum_{i} c_{\gamma+\epsilon^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)
$$

Choose $q<\infty$ such that $\|F\|_{\mathcal{G}_{-q}^{-\beta}}^{2}=\sum_{m} \sum_{|\alpha|=m} c_{\alpha}^{2}(\alpha!)^{1-\beta} \mathrm{e}^{-2 q m}<\infty$. We will prove that

$$
\left\|D_{t} F\right\|_{g_{-q-1}^{-\beta}}^{2}=\sum_{n}\left(\sum_{|\gamma|=n} g_{\gamma}^{2}(\gamma!)^{1-\beta}\right) \mathrm{e}^{-2(q+1) n}<\infty \text { for } \text { a.a.t }
$$

Note that

$$
\int_{\mathbb{R}} g_{\gamma}^{2}(t) \mathrm{d} t=\int_{\mathbb{R}}\left(\sum_{i} c_{\gamma+e^{(i)}}\left(\gamma_{i}+1\right) \xi_{i}(t)\right)^{2} \mathrm{~d} t=\sum c_{\gamma+\epsilon^{(i)}}^{2}\left(\gamma_{i}+1\right)^{2}
$$

So

$$
\begin{aligned}
& \sum_{|\gamma|=n}\left(\int_{\mathbb{R}} g_{\gamma}^{2}(t) \mathrm{d} t\right)(\gamma!)^{1+\beta} \\
& =\sum_{\gamma+\epsilon^{(i)}}^{2}\left(\gamma_{i}+1\right)\left(\left(\gamma+\epsilon^{(i)}\right)!\right)^{1+\beta} \\
& \leq \sum_{\mid \gamma=n}(n+1) \sum_{i} c_{\gamma+t^{(i)}}^{2}\left(\gamma_{i}+1\right)\left(\left(\gamma+\epsilon^{(i)}\right)!\right)^{1+\beta} \\
& \leq(n+1) \sum_{|\alpha|=\gamma \mid+1} c_{\alpha}^{2}(\alpha!)^{1+\beta} .
\end{aligned}
$$

Hence, using the fact that $(n+1) \mathrm{e}^{-n} \leq 1$ for all n, we get

$$
\begin{align*}
& \int_{\mathbb{R}}\left\|D_{t} F\right\|_{g_{-(\beta+1)}}^{2} \mathrm{~d} t \\
& =\int_{\mathbb{R}} \sum_{n}\left(\sum_{|\gamma|=n} g_{\gamma}^{2}(\gamma!)^{1-\beta}\right) \mathrm{e}^{-2(q+1) n} \mathrm{~d} t \\
& \leq \sum_{n}(n+1)\left(\sum_{|\alpha||\gamma|+1} c_{\alpha}^{2}(\alpha!)^{1-\beta}\right) \mathrm{e}^{-2(q+1) n} \tag{4.4}\\
& \leq \sum_{n}\left(\sum_{|\alpha| \eta \mid+1} c_{\alpha}^{2}(\alpha!)^{1-\beta}\right) \mathrm{e}^{-2 q n} \leq\|F\|_{\mathcal{G}_{-q}^{-\beta}}^{2}<\infty .
\end{align*}
$$

Therefore,

$$
\left\|D_{t} F\right\|_{G_{-(q+1)}-\beta}^{2}<\infty \text { for a.a.t }
$$

and

$$
D_{t} F \in \mathcal{G}_{-(q+1)}^{-\beta} \subset \mathcal{G}^{-\beta} \text { for a.a.t }
$$

2) It suffices to prove that if $G_{m} \rightarrow 0$ in $\mathcal{G}_{-q}^{-\beta}$, then there exists a subsequence $\left\{G_{m_{k}}\right\}_{k=1}^{\infty}$ such that $D_{t} G_{m} \rightarrow 0$ in $\mathcal{G}^{-\beta}$ as $k \rightarrow \infty$, for a.a. t. By
(4.4) we can see that $\left\|D_{t} G_{m}\right\|_{\mathcal{G}_{-q}^{-\beta}} \rightarrow 0$ in $L^{2}(\mathbb{R})$. So there exists a subsequence

$$
\left\{\left\|D_{t} G_{m}\right\|_{\mathcal{G}_{-q}^{-\beta}}\right\}_{k=0}^{\infty}
$$

such that

$$
\begin{equation*}
\left\|D_{t} G_{m}\right\|_{\mathcal{G}_{-q}^{-\beta}} \rightarrow 0 \text { for a.a.t } \text { as } k \rightarrow \infty . \tag{4.5}
\end{equation*}
$$

Therefore,

$$
D_{t} G_{m_{k}} \rightarrow 0 \text { in } \mathcal{G}^{-\beta} \text { for a.a.t as } k \rightarrow \infty
$$

The last assertion follows from (4.2).
Theorem 4.4. Suppose λ denote Lebesque measure on \mathbb{R}. Let $F(\omega) \in L^{2}(\mu)$ be \mathcal{F}_{t}-measurable. Then

$$
(t, \omega) \rightarrow E\left[D_{t} F \mid \mathcal{F}_{t}\right](\omega) \in L^{2}(\lambda \times \mu)
$$

and

$$
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \mathrm{d} B(t)
$$

Proof. Let $F(\omega)=\sum_{\alpha \in J} c_{\alpha} H_{\alpha}(\omega)$ be the chaos expansion of F and put

$$
F_{n}=\sum_{\alpha \in, \bar{T}} c_{\alpha} H_{\alpha}(\omega)=\sum_{\alpha \in \sqrt{n}} c_{\alpha} X^{\diamond \alpha},
$$

where $\mathscr{T}_{n}=\{\alpha \in \mathscr{F} ;|\alpha| \leq n \&$ length $(\alpha) \leq n\}$. Then by Lemma 3.8 (see [4]), we have

$$
F_{n}(\omega)=E\left[F_{n}\right]+\int_{0}^{T} E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right] \mathrm{d} B(t)
$$

By Itô representation theorem there is a unique $u(t, \omega)$ which is \mathcal{F}_{t} adapted and such that

$$
E\left[\int_{0}^{T} u^{2}(t, \omega) \mathrm{d} t\right]<\infty
$$

and such that

$$
F(\omega)=E[F]+\int_{0}^{T} u(t, \omega) \mathrm{d} B(t)
$$

since $F_{n} \rightarrow F$ in $L^{2}(\mu)$, we conclude that

$$
\begin{aligned}
& E\left[\int_{0}^{T}\left(E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right]-u(t, \omega)\right)^{2} \mathrm{~d} t\right] \\
& =E\left[F_{n}-F-E\left[F_{n}\right]+E\left[F_{n}\right]^{2}\right] \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore,

$$
E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right] \rightarrow u(t, \omega) \text { in } L^{2}(\lambda \times \mu)
$$

on the other hand, by Lemma 4.1, we have

$$
E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right] \rightarrow E\left[D_{t} \mid \mathcal{F}_{t}\right] \text { in } \mathcal{G}^{-\beta} \text { for a.a } t
$$

By taking another subsequence, we obtain that

$$
E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right] \rightarrow u(t, \omega) \text { in } L^{2}(\mu) \text { for a.a } t
$$

We conclude that

$$
u(t, \omega)=E\left[D_{t} F \mid \mathcal{F}_{t}\right] \text { for a.a } t
$$

This completes the proof.
Lemma 4.5. Suppose $F \in \mathcal{G}^{-\beta}$ and $f \in \mathcal{G}^{\beta}$. Then

$$
|\langle F, f\rangle| \leq\|F\|_{\mathcal{G}_{-\beta,-q}} \cdot\|f\|_{\beta, \dot{q}}
$$

where $\hat{q}=\frac{2 q}{\ln 2}$.
Proof. Let $F(\omega)=\sum_{\alpha} a_{\alpha} H_{\alpha}(\omega), f(\omega)=\sum_{\alpha} b_{\alpha} H_{\alpha}(\omega)$. Then

$$
\begin{aligned}
|\langle F, f\rangle| & =\left|\sum_{\alpha} a_{\alpha} b_{\alpha} \alpha!\right|=\left|\sum_{m}\left(\sum_{|\alpha|=m} a_{\alpha} b_{\alpha} \alpha!\right)\right| \\
& \leq\left(\sum_{m}\left(\sum_{|\alpha|=m} a_{\alpha}^{2}\left(\alpha_{i}\right)^{1-\beta}\right) \mathrm{e}^{-2 q m}\right)^{\frac{1}{2}}\left(\sum_{m}\left(\sum_{|\alpha|=m} b_{\alpha}^{2}\left(\alpha_{i}\right)^{1+\beta}\right) \mathrm{e}^{2 q m}\right)^{\frac{1}{2}} \\
& \leq\|F\|_{\mathcal{G}_{-\beta,-q}}\left(\sum_{\alpha} b_{\alpha}^{2}\left(\alpha_{i}\right)^{1+\beta}(2 \mathbb{N})^{\hat{q} \alpha}\right)^{\frac{1}{2}} \\
& =\|F\|_{\mathcal{G}_{-q}^{-\beta}} \cdot\|f\|_{\hat{q}, \beta} .
\end{aligned}
$$

Lemma 4.6. Suppose $F \in \mathcal{G}^{\beta}, f \in(S)_{\beta}$. Then

$$
\int_{\mathbb{R}}\left\langle E\left[D_{t} F \mid \mathcal{F}_{t}\right], f\right\rangle^{2} \mathrm{~d} t<\infty
$$

Proof. By Lemma 4.3 and (4.4), we have

$$
\begin{aligned}
& \int_{\mathbb{R}}\left\langle E\left[D_{t} F \mid \mathcal{F}_{t}\right], f\right\rangle^{2} \mathrm{~d} t \leq \int_{\mathbb{R}}\left\|E\left[D_{t} F \mid \mathcal{F}_{t}\right]\right\|_{\mathcal{G}_{-q}^{-\beta}}^{2}\|f\|_{\hat{q}, \beta} \\
& \left.\leq\|f\|_{\hat{q}, \beta} \int_{\mathbb{R}} \| D_{t} F \mid \mathcal{F}_{t}\right] \|_{\mathcal{G}_{-q}^{-\beta}}^{2}<\infty, \text { for some } q \in \mathbb{N} .
\end{aligned}
$$

Lemma 4.7. Let $F_{n}, F \in \mathcal{G}^{-\beta}$ and $F_{n} \rightarrow F$ in $(S)_{\beta}^{*}$. Then

$$
\begin{equation*}
\int_{0}^{T} E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right] \diamond W(t) \mathrm{d} t \rightarrow \int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \diamond W(t) \mathrm{d} t \tag{4.6}
\end{equation*}
$$

Proof. In case of $\beta=0$ a complete proof is given in [4]. The proof for general $0 \leq \beta<1$ is a simple modification. Note that both integral in (4.6) exist by Lemma 4.7. Hence, by Lemma 4.6 and (4.4), we have

$$
\begin{aligned}
& \left|\left\langle\int_{0}^{T} E\left[D_{t} F_{n} \mid \mathcal{F}_{t}\right] \diamond W(t) \mathrm{d} t-\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{t}\right] \diamond W(t) \mathrm{d} t, f\right\rangle\right| \\
& =\int_{0}^{T}\left|\left\langle E\left[D_{t}\left(F_{n}-F\right) \mid \mathcal{F}_{t}\right], f\right\rangle\right| \mathrm{d} t \\
& \leq \sqrt{T}\|f\|_{\hat{q}, \beta}\left(\int_{0}^{T} \|\left.\left[D_{t}\left(F_{n}-F\right) \mid \mathcal{F}_{t}\right]\right|_{\mathcal{G}_{-q}^{-\beta}} ^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

This completes the proof.
Theorem 4.8. Let $F(\omega) \in \mathcal{G}^{-\beta}$ be \mathcal{F}_{t}-measurable. Then $E\left[D_{t} F \mid \mathcal{F}_{t}\right] \diamond W(t)$ is integrable in $(S)_{\beta}^{*}$ and

$$
F(\omega)=E[F]+\int_{0}^{T} E\left[D_{t} F \mid \mathcal{F}_{T}\right] \diamond W(t) \mathrm{d} t
$$

where, $E[F]$ denotes the generalized exsection of F.
Proof. Let $F_{n}(\omega)=\sum_{\alpha} c_{\alpha} H_{\alpha}(\omega)$. Then, by Lemma 3.8 (see [4]), we have

$$
F_{n}(\omega)=E\left[F_{n}\right]+\int_{0}^{T} E\left[D_{t} F_{n} \mid \mathcal{F}_{T}\right] \diamond W(t) \mathrm{d} t
$$

therefore,

$$
F(\omega)=E[F]+\lim _{n \rightarrow \infty} \int_{0}^{T} E\left[D_{t} F_{n} \mid \mathcal{F}_{T}\right] \diamond W(t) \mathrm{d} t,
$$

the limit exist in $\mathcal{G}^{-\beta}$ and hence in $(S)_{\beta}^{*}$. The result follows from Lemma 4.7.

References

[1] Hida, T. (1975) Analysis of Brownian Functionals. Carleton Mathematical Lecture Notes 13, Carleton University, Ottawa.
[2] Oksendal, B., Uboe, J. and Zhang, T.S. (1996) Stochastic Partial Differential Equa-tions-A Modeling, White Noise Functional Approach. Birkhauser, Boston.
[3] Ocone, D. (1994) Malliavin Calculus and Stochastic Integral Representations of Diffusion Processes. Stochastics, 12, 161-185. https://doi.org/10.1080/17442508408833299
[4] Aase, K., Oksendal, B., Privault, N. and Uboe, J. (2000) White Noise Generalizations of the Clark-Haussmann-Ocone Theorem with Application to Mathematical Finance. Finance Stochastic, 4, 465-496. https://doi.org/10.1007/PL00013528
[5] Kachanovsky, N.A. (2011) Clark-Ocone Type Formulas in the Meixner White Noise Analysis. Carpathian Mathematical Publications, 3, 56-72.
[6] Okur, Y.Y. (2012) An Extension of the Clark-Ocone Formula under Benchmark Measure for Lévy Processes. Stochastics-An International Journal of Probability and Stochastic Processes, 84, 251-272. https://doi.org/10.1080/17442508.2010.542817
[7] Hida, T., Kuo, H.H., Potthoff, J. and. Streit, L (1995) White Noise: An Infinite Dimensional Calculus. Kluwer Academic Publishers, Dordrecht.
[8] Kuo, H.H., Potthoff, J. and Streit, L. (1990) A Characterization of White Noise Test Functionals. Nagoya Mathematical Journal, 119, 93-106.
[9] Obata, N. (1994) White Noise Calculus and Fock Space. Lecture Notes in Mathematics, Springer-Verlag, 1577. https://doi.org/10.1007/BFb0073952
[10] Kondratiev, Y.G. and Streit, L. (1993) Spaces of White Noise Distributions Constructions, Descriptions, Applications I. BiBoS Preprint No. 510. Reports on Mathematical Physics, 33, 341-366. https://doi.org/10.1016/0034-4877(93)90003-W
[11] Kondratiev, Y.G., Leukert, P. and Streit, L. (1996) Wick Calculus in GAUSSIAN analysis. Acta Applicandae Mathematicae, 44, 269-294.
[12] Kuo, H.H. (1997) Stochastic Integration via White Noise Analysis. Nonlinear Analysis: Theory, Methods \& Applications, 30, 317-328. https://doi.org/10.1016/S0362-546X(96)00221-0
[13] Kuo, H.H. (1996) White Noise Distribution Theory. CRC Press, Boca Raton.
[14] Potthoff, J. and Timpel, M. (1995) On a Dual Pair of Spaces of Smooth and Generalized Random Variables. Potential Analysis, 4, 637-654. https://doi.org/10.1007/BF02345829
[15] Ito, K. (1951) Multiple Wiener Integral. Journal of the Mathematical Society of Japan, 3, 157-169. https://doi.org/10.2969/jmsj/00310157

