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Abstract 
In this paper, we use a white noise approach to Malliavin calculus to prove the 
generalization of the Clark-Ocone formula  

( ) [ ] [ ] ( )
0

| d ,
T

t tF E F E D F W t tω = + ◊∫   

where [ ]E F  denotes the generalized expectation, ( ) d
dt

FD F ω
ω

=  is the 

(generalized) Malliavin derivative, ◊  is the Wick product and ( )W t  is the 
1-dimensional Gaussian white noise. 
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1. Introduction 

In 1975, Hida introduced the theory of white noise with his lecture note on 
Brownian functionals [1]. After that H. Holden et al. [2] emphasized this theory 
with stochastic partial differential equations (SPDEs) driven by Brownian 
motion. 

In 1984, Ocone proved the Clark-Ocone formula [3], to give an explicit 
representation to integral in Itô integral representation theorem in the context of 
analysis on the Wiener space [ ]( )0 0,C TΩ = , the space of all real continuous 
functions on [ ]0,T  starting at 0. He proved that  

( ) [ ] [ ] ( )
0

| d ,
T

t tF E F E D F B tω = + ∫           (1.1) 

where tD  is the Malliavin derivative and ( )B t  is the one dimensional 
Brownian motion on the Winer space. In [4] the authors proved the 
generalization of Clark-Ocone formula (see, e.g., [5] [6]). This theorem has 
many interesting application, for example, computing the replicating portfolio of 
call option in Black & Scholes type market. They proved that  
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( ) [ ] [ ] ( )
0

| d ,
T

t tF E F E D F W t tω = + ◊∫             (1.2) 

where [ ]E F  denotes the generalized expectation, ( ) d
dt

FD F ω
ω

=  is the  

(generalized) Malliavin derivative, ◊  is the Wick product and ( )W t  is the 
one dimensional Gaussian white noise. This formula holds for all *F ∈ , where 

*  is a space of stochastic distribution. In particular, if ( )2F L µ∈  then 
equation (1.2) turns out to be  

( ) [ ] [ ] ( )
0

| d .
T

t tF E F E D F B tω = + ∫   

The purpose of this papper is to generalize the well known Clark-Ocone 
formula to generalized functions of white noise, i.e., to the space β− . The 
generalization has the following form 

( ) [ ] [ ] ( )
0

| d ,
T

t tF E F E D F W t tω = + ◊∫   

where [ ]E F  denotes the generalized expectation, ( ) d
dt

FD F ω
ω

=  is the  

(generalized) Malliavin derivative, ◊  is the Wick product, and ( )W t  is the 
1-dimensional Gaussian white noise. 

The paper is organized as follows. In Section 2 and 3, we recall necessary 
definitions and results from white noise and prove a new results that we will 
need. Finally in Section 4, we generalize the Clark-Ocone formula, i.e., to the 
space β− .  

2. White Noise 

In this section we recall necessary definitions and results from white noise. For 
more information about white noise analysis (see e.g, [7]-[14]). 

Given ( )SΩ =   be the space of tempered distribution on the set   of real 
number and let µ  be the Gaussian white noise probability measure on Ω  
such that  

( )
21

, 2e d e .i φω φ µ ω
−

Ω
=∫                     (2.1) 

where ,ω φ  denotes the action of ( )Sω ′∈   on φ . It follows from (2.1) 
that  

( )2 2., 0,   ., ,E E Sφ φ φ φ  =   = ∈      

where E Eµ=  denotes the expectation with respect to µ . This isometry allows 
us to define a Brownian motion ( ) ( ),B t B t ω=  as the continuous version of 

( ) ( ) ( )0,, , .tB B t ω ω χ= =   where  

[ ] ( )0,

1     if  1 ,
1   if 0,

0     otherwise.
t

s t
s t sχ

≤ ≤
= − − ≤ ≤



 

Then, ( ) ( ), dt B tω ϕ ϕ= ∫  for all ( )2Lϕ∈  . Let t  be the σ  algebra 
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generated by ( ){ }0
,.

s t
B s

≤ ≤
. If ( ) ( )2

1 2
ˆ, , , n

nf t t t L∈  , i.e., nf  is symmetric 

and  

( ) ( )2
2

1 1, , d d ,n nn n n nLf f t t t t= < ∞∫   
 

then the iterated Itô integral is given by  

( ) ( )( )( ) ( )2
1 1d : ! , , d d .n

n

t tn
n n nf B n f t t B t B t

∞⊗

−∞ −∞ −∞
=∫ ∫ ∫ ∫  


      (2.2) 

In the following we let 

( ) ( )
2 2

2 2d1 e e ; 0,1,2,
d

x xn
n

n nh x n
x

− 
 = − =
 
 

             (2.3) 

be the Hermite polynomials and let { } 1n n
ξ ∞

=
 be the basis of ( )2L   consiting 

( ) ( )( ) ( )
21 1

4 22
11 ! e 2 , 1,2,

x

n nx n h x nξ π
− −−

−= − =           (2.4) 

The set of multi-indices ( )1 2, , , nα α α α=   of nonnegative integers is 
denoted by ( )0= 


T . Where { }1,2,=   is the set of all natural number 

and { }0 0=   . If ( )1 2, ,z z z=   is a sequence of number or function, we 
use the multi-induces notation  

( )1 2
1 2 1if , ,n

n nz z z zαα αα α α α= = ∈  T  

Theorem 2.1. ([15]) Let 1 2, , , nϕ ϕ ϕ  be are an orthonormal function in 
( )2L Ω . Then for all multi-indices ( )1, , nα α α= ∈ T , we have  

( ) ( ) ( )1

ˆ
1d , , .

n nB x h hα
αα

α αϕ ω ϕ ω ϕ⊗⊗ =∫ 


 

Corollary 2.2.  

( ) ( ); , .H H Hα β α β ω α β+◊ = ∈T  

where ◊  denote the Wick product, and extend linearly. Then if 

( ) ( )2 2ˆ ˆ,n m
n nf L g L∈ ∈  , we have  

( )

,

ˆd d dn m m n
m nn m

n m n m
n m m n

f B g B f g B+
⊗ +⊗ ⊗   ◊ = ⊗   

   
∑ ∑ ∑∫ ∫ ∫

  

 

Proof.  

( )

ˆ ˆ

ˆ

ˆ ˆ

d d

d

ˆ d .

B B

H H H B

B

α β

α β

α β

α βα β

α βα β
α β α β

α βα β

ξ ξ

ξ

ξ ξ

+

+

⊗ ⊗⊗ ⊗

⊗ +⊗ +
+

⊗ +⊗ ⊗

◊

= ◊ = =

= ⊗

∫ ∫
∫

∫

 





 

3. Stochastic Test Function and Stochastic Distribution  
(Konddratiev Spaces) 

1) Stochastic test function spaces 
Suppose k∈ , for 0 1β≤ < , let ( )S

β
 consist of those  

,f c Hα α
α

= ∑  
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such that  

( ) ( )12
, 2 , ,k

kf c kβ α
αβ

α
α += ∀ ∈∑    

where  

( ) ( ) ( )1
1

2 2 , for , , .i
m

k k
m

i
iα α α α α

=

= =∏               (3.1) 

2) Stochastic distribution 
For 0 1β≤ < , let ( )*S

β
 be the space of Kondratiev space of stochastic 

distribution, consist of all formal expansions  

,F b Hα α
α

= ∑  

such that  

( ) ( )12
, 2 , for some ,q

qF b qβ α
αβ

α
α − −

− −
= ∈∑    

where ( )2 α  is defined in (3.1). 
Note that ( )*S

β
 is the dual of ( )S

β
 and we can define the action of 

( )*F b H Sα αα β
= ∈∑  on ( )f c H Sα αα β

= ∈∑  by  

( ), ! , ,F f b cα α
α
α=∑  

where ( ),b cα α  is the usual inner product in  . 
Definition 3.1. Let ( )*F S

β
∈  be the random variable and let ( )2Lγ ∈  . 

Then we say that F has directional derivative in the direction γ  if  

( ) ( ) ( )( )
0

1: limD F F Fγ ω ω γ ω
→

= + −





              (3.2) 

if the limit exist in ( )*F S
β

∈ . 
Definition 3.2. A function ( )*: S

β
Φ → -integrable if  

( ) ( ) ( )1. , , for all .L S
β

φ φΦ ∈ ∈  

Then the ( )*S
β

-integrable of ( )tΦ , denoted by ( )dt tΦ∫ , is the unique 
( )*S

β
 element such that  

( ) ( ) ( )d , , d , .t t t t S
β

φ φ φΦ = Φ ∈∫ ∫ 
 

Definition 3.3. Consider ( ) ( )*, :t S
β

ϕ ω →  such that  

( ) ( ) ( ), is , -integrablet t tϕ ω γ ϕ ω  

and  

( ) ( ) ( ) ( )2= , d , for all ,D F t t t Lγ ω ϕ ω γ γ ∈∫   

then we say that F is (Hida) Malliavin differentiable and we put  

( ) ( ) ( )d: , , , .
dt

FD F t t tω ω ϕ ω
ω

= = ∈  

tD  is called the Hida-Malliavin derivative or stochastic gradient of F at t.  
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The set of all differentiable is denoted by  . 
Definition 3.4. Consider ( ) ( ) ( )*F c H Sα αα β

ω ω= ∈∑ . Then we define the 
stochastic derivative of F at t by  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

d: , :
d

1

i

i

t i i
i

i i
i

FD F t c H t

c t H

α α
α

γγ
γ

ω ω α ω ξ
ω

γ ξ ω

−

+

= = ⋅

 = + 
 

∑ ∑

∑ ∑





 

Lemma 3.5.  
1) Let ( )*F S

β
∈ . Then ( )*tD F S β∈  for a.a. t∈ . 

2) Suppose ( )*, mF F S β∈  for all m∈  and  

( )* in .mF F S
β

→  

Then there exist a subsequence { }
1km k

F
∞

=
 such that  

( )* in , for . 0
kt m tD F D F S a a tβ→ >  

Proof. 1) Suppose ( ) ( ) ( )*F c H Sα αα β
ω ω= ∈∑ . Then  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

.

i

i

t i i
i

i i
i

D F c H t

c t H

g t H

α α
α

γγ
γ

γ γ
γ

ω α ω ξ

γ ξ ω

ω

−

+

= ⋅

 = + 
 

=

∑ ∑

∑ ∑

∑




 

where ( ) ( ) ( ) ( )1 .i i i
i

g t c tγ γ
γ ξ

+
= +∑ 

 

We want to prove that for some q∈ ,  

( ) ( ) ( )2 1 12
, 1

! 2  for . . .q
t q

m m
D F g a a tβ γ

γβ
γ

γ − − +

− − −
=

 
= < ∞  

 
∑ ∑   

Note that  

( ) ( ) ( ) ( ) ( ) ( )
2

22 2d 1 d 1 .i ii i i
i

g t t c t t cγ γ γ
γ ξ γ

+ +

 = + = + 
 
∑ ∑∫ ∫   

 

Moreover,  

( ) ( ) ( ) ( )log22 2 2 e ei iq

i i
iγ γ γ γγ− − − −−< = ⋅ ≤ =∏ ∏    

where ( )log 2 iγ γ=  for all i I∈ . Hence,  

( ) ( ) ( )( )( ) ( )

( )( ) ( ) ( )

( )
( )

( ) ( )
1

2

, 1

2 1 12

1 2

, , 1

2

log 2 1

d

1 ! 2

1 ! 2 !

1 e ! 2 .

i

t q

q
i

q
i

i

qm

m m m

D F t

c

c

m c

β

β γ

γ
γ

β γ
α

γ α α γ

α
α

γ α

γ γ

γ γ α

α
−

− − −

− − +

+

− − +

= +

−−

= = +

= +

= +

< +

∫
∑

∑ ∑

∑∑ ∑
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Using the fact that ( )1 e 1mm −+ ≤  for all m, we get  

( )
( )

1

2 2
,, 1

log2 1

d ! 2 .q
t qq

m m

D F t c Fα
α ββ

α

α
−

−

− −− − −
= +

 
 < < < ∞
 
 

∑ ∑∫


    (3.3) 

Therefore,  

( ) , 1 for a.a. t qD F S t
β− − −

∈  

2) To prove this part, it suffices to prove that if 0mF →  in ( ) , qS
β− −

, then 

there exist a subsequence { }
1km k

F
∞

=
 such that 0t mD F →  in ( )*S

β
 as k →∞ , 

for a.a. t. We have prove that  
2 2

, 1 ,
d 0.t nq qD F t F

β β− − − − −
≤ →∫  

Therefore,  

( )2
, 1

0 in .t n qD F L
β− − −

→   

So, there exists a subsequence { } 1t n k
D F

≥
 such that 

, 1
0

kt n q
D F

β− − −
→  for 

a.a. t as k →∞ . This complete the proof. 
Suppose 1 2, ,ξ ξ   is the Hermite functions, and put  

( ) ( ) ( ), d ; 1, 2,i i i iX X s B s iω ω ξ ξ= = = =∫


         (3.4) 

and  
( ) ( ) ( ) ( )

0
d ; 1,2,

tt
i iX s B s iω ξ= =∫                 (3.5) 

and  

( ) ( ) ( ) ( )( )1 2 1 2, , , , , .t t tX X X X X X= =   

With this notation we have, ( ) ( )( ) ( )1
1

m
mX X X Hααα

αω ω ω◊◊◊ = ◊ ◊ =  for all 
multi indices α  where ( )1, , mα α α=  . 

Definition 3.6. 1) Let ,0 1k β∈ ≤ < . We say that  

( )
0

n n
n

F I f
∞

=

= ∑  

belong to the space k
β  if  

( ) ( )2
22 12

0
e ! ,n

k

kn
n L

n
F n fβ

β
∞

+

=

= < ∞∑ 
 

we define  

,k
k

β β

∈

=



   

and equip β  with the projective topology. 
2) We say that  

( )
0

n n
n

G I g
∞

=

= ∑  

belong to the space q
β−

−  if  
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( ) ( )2
22 12

0
e ! ,n

q

qn
n L

n
G n fβ

β
−
−

∞
−−

=

= < ∞∑ 
 

we define  

q
q

β β− −
−

∈

=



   

and equip β−  with the inductive topology. Then β−  is the dual of β , 
with action  

0
, ! , .n n

n
G F n g f

∞

=

= ∑  

4. The Generalized Clark-Ocone Formula 

Now we are prepared to present the main result of this paper. It generalizes the 
well know Clark-Ocone formula to generalized functions, i.e., to the space β− . 

Definition 3.1. Suppose ( )0 n nnF I f β∞

=
= ∈∑  . Then the conditional 

expectation of F with respect to t  is given by  

[ ] [ ],
0

| dnn
n

t n o t
n

E F f Bχ
∞

⊗

=

= ⋅∑∫                (4.1) 

Note that this coincides with usual conditional expectation if ( )2F L µ∈ , and  

[ ]| , for some .
kk

tE F F kββ ≤ ∈


             (4.2) 

In particular  

[ ]| tE F β−∈                       (4.3) 

Lemma 4.2. Suppose ,F G β−∈ . Then  

[ ] [ ] [ ]| | |t t tE F G E F E G◊ = ◊    

Proof. Assume that, without loss of generality,  
ˆd dn n

n n n
n nF f B c Bαα ξ⊗ ⊗ ⊗

=
= =∑∫ ∫

 

  

and similarly G. By Corollary 2.2 and Definition 4.1, we have  

[ ] ( )

[ ]
( )

[ ] [ ]
( )

[ ] [ ]

0,

0, 0,

ˆ| d |

ˆ d

ˆ ˆ d

| | .

m n

m nm n

n mm n

m n
t n m t

m n
n m t

m n
n mt t

t t

E F G E f g B

f g B

f g B

E F E G

χ

χ χ

+

++

+

⊗ +

⊗ +

⊗ +

 ◊ = ⊗ 

= ⊗ ⋅

= ⊗ ⊗ ⋅

= ◊

∫
∫

∫







 

 

 

Lemma 4.3.  
Let F β−∈ . Then tD F β−∈  for a.a. t∈ .  
Consider , mF F β−∈  for all m∈  and  

 in .mF F β−→   

Then there exists a subsequence { }
1mk k

F
∞

=
 such that  

 in , for .  0
kt m tD F D F a a tβ−→ >  
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Proof. 1) Suppose ( ) ( )F c H β
α ααω ω −= ∈∑  . Then  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

.

i

i

t i i
i

i i
i

D F c H t

c t H

g t H

α α
α

γγ
γ

γ γ
γ

ω α ω ξ

γ ξ ω

ω

−

+

= ⋅

 = + 
 

=

∑ ∑

∑ ∑

∑




 

where  

( ) ( ) ( ) ( )1 .i i i
i

g t c tγ γ
γ ξ

+
= +∑ 

 

Choose q < ∞  such that ( )2 12 2! e
q

qm
m mF cβ

β
αα α−

−

− −
=

= < ∞∑ ∑
. We will 

prove that  

( ) ( )
1

2 1 2 12 ! e for . .
q

q n
t

n n
D F g a a tβ

β
γ

γ
γ−

− −

− − +

=

 
= < ∞  

 
∑ ∑

 

Note that  

( ) ( ) ( ) ( ) ( ) ( )
2

22 2d 1 d 1 .i ii i i
i

g t t c t t cγ γ γ
γ ξ γ

+ +

 = + = + 
 
∑ ∑∫ ∫   

 

So  

( )( )( )

( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( ) ( )

12

1
2

1
2

12

1

d !

1 !

1 1 !

1 ! .

i

i

n

i
i

i
i

n i

g t t

c

n c

n c

β
γ

γ

β

γ

β

γ
γ

β
α

α γ

γ

γ γ

γ γ

α

+

=

+

+

+

+
=

+

= +

= + +

≤ + + +

≤ +

∑ ∫

∑

∑ ∑

∑










 

Hence, using the fact that ( )1 e 1nn −+ ≤  for all n, we get  

( )

( )( ) ( )

( ) ( )( ) ( )

( )( )

1

2

1 2 12

1 2 12
1

212 2
1

d

! e d

1 ! e

! e < .

q

q

t

q n
n

n

q n

n

qn

n

D F t

g t

n c

c F

β

β

β
γγ

β
αα γ

β
αα γ

γ

α

α

−
− +

−
−

− − +
=

− − +
= +

− −
= +

=

≤ +

≤ ≤ ∞

∫

∑ ∑∫

∑ ∑

∑ ∑









            (4.4) 

Therefore,  

( )1

2 for . . 
q

tD F a a tβ−
− +

< ∞


 

and  

( )1  for . . t qD F a a tβ β− −
− +∈ ⊂   

2) It suffices to prove that if 0mG →  in q
β−

− , then there exists a  

subsequence { }
1km k

G
∞

=
 such that 0t mD G →  in β−  as k →∞ , for a.a. t. By 
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(4.4) we can see that 0
qt mD G β−

−
→


 in ( )2L  . So there exists a subsequence  

{ }
0qt m

k
D G β−

−

∞

=


 

such that  

0 for . . as .
qt mD G a a t kβ−

−
→ →∞


               (4.5) 

Therefore,  

0 in for . .  as .
kt mD G a a t kβ−→ →∞  

The last assertion follows from (4.2). 
Theorem 4.4. Suppose λ  denote Lebesque measure on  . Let 
( ) ( )2F Lω µ∈  be t -measurable. Then  

( ) [ ]( ) ( )2, |t tt E D F Lω ω λ µ→ ∈ ×  

and  

( ) [ ] [ ] ( )
0

| d .
T

t tF E F E D F B tω = + ∫   

Proof. Let ( ) ( )F c Hα ααω ω
∈

=∑ T
 be the chaos expansion of F and put  

( ) ,
n

nF c H c X α
α α α

α α
ω ◊

∈ ∈

= =∑ ∑
T T

 

where ( ){ };  & length n n nα α α= ∈ ≤ ≤T T . Then by Lemma 3.8 (see [4]), we 
have  

( ) [ ] [ ] ( )
0

| d .
T

n n t n tF E F E D F B tω = + ∫   

By Itô representation theorem there is a unique ( ),u t ω  which is t  
adapted and such that  

( )2
0

, d
T

E u t tω  < ∞  ∫  

and such that  

( ) [ ] ( ) ( )
0

, d ,
T

F E F u t B tω ω= + ∫  

since nF F→  in ( )2L µ , we conclude that  

[ ] ( )( )

[ ] [ ]

2

0

2

| , d

0 as .

T
t n t

n n n

E E D F u t t

E F F E F E F n

ω −  
 = − − + → →∞ 

∫ 
 

Therefore,  

[ ] ( ) ( )2| , in ,t n tE D F u t Lω λ µ→ ×  

on the other hand, by Lemma 4.1, we have  

[ ] [ ]| | in  for a.a .t n t t tE D F E D tβ−→    

By taking another subsequence, we obtain that  

[ ] ( ) ( )2| , in  for a.a .t n tE D F u t L tω µ→  
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We conclude that  

( ) [ ], | for a.a .t tu t E D F tω =   

This completes the proof. 
Lemma 4.5. Suppose F β−∈  and f β∈ . Then  

, ˆ,, ;
q qF f F f

β β− −
≤ ⋅


 

where 
2ˆ .
ln 2

qq =  

Proof. Let ( ) ( ) ( ) ( ),F a H f b Hα α α αα αω ω ω ω= =∑ ∑ . Then  

( ) ( )

( ) ( )
,

1 1
2 2

1 12 2 2 2

1
2ˆ12

ˆ,

, ! !

e e

2

.

q

q

m m

qm qm
i i

m m m m

q
i

q

F f a b a b

a b

F b

F f

β

β

α α α α
α α

β β
α α

α α

β α
α

α

β

α α

α α

α
− −

−
−

=

− +−

= =

+

 
= =   

 

      
≤                   

 ≤  
 

= ⋅

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ 




 

Lemma 4.6. Suppose ( ),F f Sβ
β

∈ ∈ . Then  

[ ] 2
| , d .t tE D F f t < ∞∫   

Proof. By Lemma 4.3 and (4.4), we have  

[ ] [ ]

[ ]

2 2

ˆ,

2

ˆ,

| , d |

| < , for some .

q

q

t t t t q

t tq

E D F f t E D F f

f D F q

β

β

β

β

−
−

−
−

≤

≤ ∞ ∈

∫ ∫

∫

 








 


 

Lemma 4.7. Let ,nF F β−∈  and nF F→  in ( )*S
β

. Then  

[ ] ( ) [ ] ( )
0 0

| d | d .
T T

t n t t tE D F W t t E D F W t t◊ → ◊∫ ∫           (4.6) 

Proof. In case of 0β =  a complete proof is given in [4]. The proof for 
general 0 1β≤ <  is a simple modification. Note that both integral in (4.6) exist 
by Lemma 4.7. Hence, by Lemma 4.6 and (4.4), we have  

[ ] ( ) [ ] ( )

( )

( )

0 0

0

1
2 2

ˆ, 0

| d | d ,

| , d

| d 0 as .
q

T T
t n t t t

T
t n t

T
t n tq

E D F W t t E D F W t t f

E D F F f t

T f D F F t nββ −
−

◊ − ◊

 = − 

  ≤ − → →∞   

∫ ∫

∫

∫ 

 





 

This completes the proof. 
Theorem 4.8. Let ( )F βω −∈  be t -measurable. Then [ ] ( )|t tE D F W t◊  

is integrable in ( )*S
β

 and  

( ) [ ] [ ] ( )
0

| d .
T

t TF E F E D F W t tω = + ◊∫   
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where, [ ]E F  denotes the generalized exsection of F. 
Proof. Let ( ) ( )nF c Hα ααω ω=∑ . Then, by Lemma 3.8 (see [4]), we have  

( ) [ ] [ ] ( )
0

| d ,
T

n n t n TF E F E D F W t tω = + ◊∫   

therefore, 

( ) [ ] [ ] ( )
0

lim | d ,
T

t n Tn
F E F E D F W t tω

→∞
= + ◊∫   

the limit exist in β−  and hence in ( )*S
β

. The result follows from Lemma 4.7. 

References 
[1] Hida, T. (1975) Analysis of Brownian Functionals. Carleton Mathematical Lecture 

Notes 13, Carleton University, Ottawa.  

[2] Oksendal, B., Uboe, J. and Zhang, T.S. (1996) Stochastic Partial Differential Equa-
tions-A Modeling, White Noise Functional Approach. Birkhauser, Boston. 

[3] Ocone, D. (1994) Malliavin Calculus and Stochastic Integral Representations of 
Diffusion Processes. Stochastics, 12, 161-185.  
https://doi.org/10.1080/17442508408833299 

[4] Aase, K., Oksendal, B., Privault, N. and Uboe, J. (2000) White Noise Generalizations 
of the Clark-Haussmann-Ocone Theorem with Application to Mathematical 
Finance. Finance Stochastic, 4, 465-496. https://doi.org/10.1007/PL00013528 

[5] Kachanovsky, N.A. (2011) Clark-Ocone Type Formulas in the Meixner White Noise 
Analysis. Carpathian Mathematical Publications, 3, 56-72.  

[6] Okur, Y.Y. (2012) An Extension of the Clark-Ocone Formula under Benchmark 
Measure for Lévy Processes. Stochastics—An International Journal of Probability 
and Stochastic Processes, 84, 251-272.  
https://doi.org/10.1080/17442508.2010.542817 

[7] Hida, T., Kuo, H.H., Potthoff, J. and. Streit, L (1995) White Noise: An Infinite Di-
mensional Calculus. Kluwer Academic Publishers, Dordrecht.  

[8] Kuo, H.H., Potthoff, J. and Streit, L. (1990) A Characterization of White Noise Test 
Functionals. Nagoya Mathematical Journal, 119, 93-106.  

[9] Obata, N. (1994) White Noise Calculus and Fock Space. Lecture Notes in Mathe-
matics, Springer-Verlag, 1577. https://doi.org/10.1007/BFb0073952 

[10] Kondratiev, Y.G. and Streit, L. (1993) Spaces of White Noise Distributions Con-
structions, Descriptions, Applications I. BiBoS Preprint No. 510. Reports on Ma-
thematical Physics, 33, 341-366. https://doi.org/10.1016/0034-4877(93)90003-W 

[11] Kondratiev, Y.G., Leukert, P. and Streit, L. (1996) Wick Calculus in GAUSSIAN 
analysis. Acta Applicandae Mathematicae, 44, 269-294.  

[12] Kuo, H.H. (1997) Stochastic Integration via White Noise Analysis. Nonlinear Anal-
ysis: Theory, Methods & Applications, 30, 317-328.  
https://doi.org/10.1016/S0362-546X(96)00221-0 

[13] Kuo, H.H. (1996) White Noise Distribution Theory. CRC Press, Boca Raton.  

[14] Potthoff, J. and Timpel, M. (1995) On a Dual Pair of Spaces of Smooth and Genera-
lized Random Variables. Potential Analysis, 4, 637-654.  
https://doi.org/10.1007/BF02345829 

[15] Ito, K. (1951) Multiple Wiener Integral. Journal of the Mathematical Society of Ja-
pan, 3, 157-169. https://doi.org/10.2969/jmsj/00310157 

https://doi.org/10.4236/jamp.2018.67121
https://doi.org/10.1080/17442508408833299
https://doi.org/10.1007/PL00013528
https://doi.org/10.1080/17442508.2010.542817
https://doi.org/10.1007/BFb0073952
https://doi.org/10.1016/0034-4877(93)90003-W
https://doi.org/10.1016/S0362-546X(96)00221-0
https://doi.org/10.1007/BF02345829
https://doi.org/10.2969/jmsj/00310157

	A Generalization of the Clark-Ocone Formula
	Abstract
	Keywords
	1. Introduction
	2. White Noise
	3. Stochastic Test Function and Stochastic Distribution (Konddratiev Spaces)
	4. The Generalized Clark-Ocone Formula
	References

