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Abstract

In this paper, we use a white noise approach to Malliavin calculus to prove the
generalization of the Clark-Ocone formula

F(w)=E[F)+[ E[DF| F]oW (1)dz,

where E[F| denotes the generalized expectation, D,F (a))=(;£ is the
®

(generalized) Malliavin derivative, 0 is the Wick product and W (z) is the

1-dimensional Gaussian white noise.
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1. Introduction

In 1975, Hida introduced the theory of white noise with his lecture note on
Brownian functionals [1]. After that H. Holden ef al [2] emphasized this theory
with stochastic partial differential equations (SPDEs) driven by Brownian
motion.

In 1984, Ocone proved the Clark-Ocone formula [3], to give an explicit
representation to integral in It6 integral representation theorem in the context of
analysis on the Wiener space Q=C, ([O,T ]) , the space of all real continuous

functions on [0,7] starting at 0. He proved that

F(w)=E[F]+ | E[D,F|F]dB(r), (11)

where D, is the Malliavin derivative and B(¢) is the one dimensional
Brownian motion on the Winer space. In [4] the authors proved the
generalization of Clark-Ocone formula (see, e.g., [5] [6]). This theorem has
many interesting application, for example, computing the replicating portfolio of

call option in Black & Scholes type market. They proved that
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F(w)=E[F]+ [ E[DF | E])oW (1)dr, (1.2)

where E[F]| denotes the generalized expectation, D,F(a))=;£ is the
®

(generalized) Malliavin derivative, ¢ is the Wick product and W (r) is the
one dimensional Gaussian white noise. This formula holds for all F € G", where
G is a space of stochastic distribution. In particular, if FeL’(u) then

equation (1.2) turns out to be
F(w)=E[F]+ .[OTE[DtF | % ]dB(1).

The purpose of this papper is to generalize the well known Clark-Ocone
formula to generalized functions of white noise, ie, to the space G ”. The

generalization has the following form

F(w)=E[F]+ [ E[DF | E])oW (1)dr,

dr
where E[F| denotes the generalized expectation, DtF((o)zd— is the
®

(generalized) Malliavin derivative, ¢ is the Wick product, and W(t) is the
1-dimensional Gaussian white noise.

The paper is organized as follows. In Section 2 and 3, we recall necessary
definitions and results from white noise and prove a new results that we will
need. Finally in Section 4, we generalize the Clark-Ocone formula, ie., to the

space G 7.

2. White Noise

In this section we recall necessary definitions and results from white noise. For
more information about white noise analysis (see e.g, [7]-[14]).

Given Q=S(RR) be the space of tempered distribution on the set R of real
number and let g be the Gaussian white noise probability measure on Q
such that

1

J.Qei<“”¢>d,u( w)=e?

where (w,¢) denotes the action of weS'(R) on ¢. It follows from (2.1)
that

H¢H2. @2.1)

', peS(R)

E[(.#)]=0, E[(.#)] =y

where E=E, denotes the expectation with respect to . This isometry allows

us to define a Brownian motion B(¢)=B(t,®) as the continuous version of
B= E(t,a)) = <a), Xon) ()> where
1 if 1<s<1,
;([O,t](s): -1 if-¢<s<0,
0 otherwise.

t

Then, (a),(o>:_fR(o(t)dB(t) for all peL’(R). Let F be the o algebra
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generated by {B(s,.)} £ £ttt el (R”), ie, f, is symmetric

0<s<t

and
Al = o )t <o,
then the iterated It integral is given by
[L.f,dB® = n!j:(j_’;---(j_’;f(tl,---,tn )dB(tl))---)dB(tn). (22)

In the following we let

g (2
h (x)=(-1) e? e? [;n=0,12,--- 2.3
gl .
be the Hermite polynomials and let {fn}il be the basis of I’ (R) consiting

& (x)=x4((n —1)!)% ei%hnf1 (ﬁx), n=1,2, (2.4)

The set of multi-indices «=(a,,a,,--,,) of nonnegative integers is
denoted by ./~ = (NON )c' Where N={1,2,---} is the set of all natural number
and N, =NU{0}.If z=(z,z,,--) is a sequence of number or function, we

use the multi-induces notation

a _ o0 9 1 = e
2 =zz i ifa=(ay,,0,) €./

Theorem 2.1. ([15]) Let ¢,,¢,,--,@, be are an orthonormal function in
I’ (Q) . Then for all multi-indices a =(e,*+,@,) €./, we have

[ 0™ aBY (x) =, ((0.00))- -, ({.0,))-
Corollary 2.2.
(HQOHﬂ)zHMﬂ(a));a,,Be/‘.
where 0 denote the Wick product, and extend linearly. Then if

1, el? (R" ),gn el’ (R"’) , we have

(oo (e s fr

m,n

Proof.
da 1 p®la 84 1p%®M
g dB o e B
_ _ _ ®(a+/i) ®|a+p|
=H,O0H,=H, ;= &P dB%"
= [y BB,

3. Stochastic Test Function and Stochastic Distribution
(Konddratiev Spaces)

1) Stochastic test function spaces
Suppose keN,for 0< <1, let (S)ﬂ consist of those

f :anHa’
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such that

171, = Xe2 (@) (28)“ vk eN,

a

where

(ZN)kaZﬁ(zi)kai, fora:(al’...’am). (3.1

i=l

2) Stochastic distribution
For 0<p8<1, let (S); be the space of Kondratiev space of stochastic
distribution, consist of all formal expansions

F = ZbaHa b
such that
"F"ﬂ,,,,; =20, (Ol)l_ﬂ (2N)™, for someg €N,

where (ZN)a is defined in (3.1).
Note that (S); is the dual of (S) , and we can define the action of

F=Y b,H, e(S)*ﬂ on f=) cH,e(S), by
(F,f)zZa!(ba,ca),
where (b,,c,) isthe usual inner productin R.

Definition 3.1. Let Fe(S)*ﬂ be the random variable and let ye L’ (R)
Then we say that Fhas directional derivative in the direction y if

D,F(w):= liml(F(a)+67)—F(a))) (3.2)

e—0 ¢

if the limit existin F (S ); .
Definition 3.2. A function ®:R — (S )ﬂ -integrable if
(©(.).9)e L (R), forallge(S),.

Then the (S); -integrable of ®(r), denoted by J.]RCD(t)dt, is the unique
(S)*ﬁ element such that

< IRQ(t)dt,¢>: [ (@.4)(c)dr.p<(5),.

Definition 3.3. Consider ¢(f,0):R — (S); such that

@(t,0)y(t)is ¢(t,w)-integrable
and
D,F (@)= [ ¢(t,0)y(t)dt, forall y e I* (R),
then we say that Fis (Hida) Malliavin differentiable and we put

DF (o) :=%(l,a)) =¢(t,0),reR.

D, is called the Hida-Malliavin derivative or stochastic gradient of Fat ¢
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The set of all differentiable is denoted by D).
Definition 3.4. Consider F(w)=) c,H,(®)e (S);. Then we define the
stochastic derivative of Fat ¢by

DF(0) =40 (t0)=Ye, Sl (0)-4()
-3( e, 050 | 0

Lemma 3.5.

1) Let Fe(S)*ﬁ.Then DtFe(S); foraa. teR.

2) Suppose F,F, € (S); forall meN and
F,—Fin (S ) 5
Then there exist a subsequence { }j such that

1

D.F, —>DF1n(S) ,foraat>0

Proof. 1) Suppose F(w)=) c,H,(w)e (S);. Then
DF(w)= ;ca ZaiHH(,.) (w)-&.(1)
-3 Se 0 (14050}, (0)
—Zy:gy( )H, (o).
V(7 +1)E ().

We want to prove that for some geN,

||DF|| g —Z(Z ( ) ﬂJ(ZN)_y(q+l)<oofora.a.t.

where g (t)=>c

pae?

[y|=m
Note that
g 0a=L[Se (60| =52 (71
Moreover,

(2N) " <(2N) " =T(2:) " <[]e rillog2) _ 7]

where 7 =(log2)y, forall iel.Hence,
[IDFLE, ., dr

=Z(cj+€(,.)(}/i+l)2( ) )(ZN) #a+1)
‘Z(%+l)( )7 (2N)70D S 2al

addFrin

X (e ¥ e (a)(@n)”

m |f=m |e|=(1og2) " m+1
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Using the fact that (m+1)e™ <1 for all m, we get

J'R||DIF||2ﬁ’qldt<Z[ > cZa!J(ZN T<F, < (33)

m ‘a‘:(log2)711n+l

Therefore,

DFe(S).,_, foraat

2) To prove this part, it suffices to prove that if F, -0 in (S) ,_, then

there exist a subsequence {ka}:_l such that D,F, -0 in (S ); as k— o,

for a.a. t. We have prove that

[ IDFl,  de<|E], , —o.
Therefore,
ID.F,| pgs 0 in I* (R).
So, there exists a subsequence {" ) n"}m e —0 for
a.a.tas k — oo. This complete the proof.
Suppose &,&,,-+ is the Hermite functions, and put
X, =X, ( j (s (3.4)
and
j (s );i=12,- (3.5)
and
X=(x, X0 =(xf, x0,).

)
()= (XO“‘O SOX )( )=H,(w) forall
multi indices o where a=(a,,-,a,,).

Definition 3.6. 1) Let £ eN,0< 3 <1. We say that

=§I,,<f,,)

With this notation we have, X°¢

belong to the space g,f if

an
"F"gﬂ - ( ) LZ(]R ) <o,
n=0
we define
keN
and equip G” with the projective topology.
2) We say that
G = Zln (gn)
n=0

_ﬂ .

belong to the space g_q if
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2

||G||;{, = ge’z"” (n!)lfﬂ /s p(sr) <%
we define
G*=NG?*
geN

and equip G/ with the inductive topology. Then G is the dual of G”,

with action

<G,F>:§m<gn,fn>.

4. The Generalized Clark-Ocone Formula

Now we are prepared to present the main result of this paper. It generalizes the

well know Clark-Ocone formula to generalized functions, Ze., to the space G™*.
Definition 3.1. Suppose F = Z:ioln (f,)€G” . Then the conditional

expectation of Fwith respectto F, is given by

E[F|F]= 2]t 1, 9B

n=0

(4.1)

Note that this coincides with usual conditional expectation if F € I’ (x), and

"E[F \ .7-:]"9{, < "F"%” ,for some k € N.

In particular
E[F|7]eG”
Lemma 4.2. Suppose F,GeG”.Then
E[FOG|F|=E[F|F]0E[G| F]
Proof. Assume that, without loss of generality,
— ®n _ ®n ®n
F=[ /48" =%  c[, "B
and similarly G. By Corollary 2.2 and Definition 4.1, we have
E[FOG|F]=E[[,,..f, 2,d8°""| %, |
_ S . ®(m+n)
- .[IRNH»Nf;l ® gm /’{0 t]m+ndB

[0,
_ S A ®(m+n)
- J‘JR"an;' ® z[oyt]n ® gm : %[O,I]mdB
=E[F|F]0E[G| F].
Lemma 4.3.

Let FeG?.Then D,F eG”? foraa. teR.
Consider F,F, eG” forall meN and

F —>Fing™*.

m

Then there exists a subsequence {ka}; such that

D,F, — D,FinG”, foraat>0

= m,

(4.2)

(4.3)
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Proof. 1) Suppose F(w)=Y ¢, H,(w)eG” . Then

DF (@)= e, Xt (0)-4(0)

-3(Ze 0 0a 0|8, (0)
= ;gy (I)Hy ().

where

& (0=3e (7 +1& (1)

Choose g <o such that ||F||gﬁ—z Z\a\_ (al) T con . We will
prove that

10, = [ S0 7 < o

[7l=n

Note that

Jug? (1)dr = LR(ZCWM (7 +1)& (’)j di=3.c o7+ 1y
So

H,,,(J g (0)dr)(r)"”
-3¢ (e[ e
< Z(n+1)20 o+ )((7+e("))!)l+ﬂ

[rl=n

<(n+1) 3 ().

laf=rl+1
Hence, using the fact that (n+1)e™ <1 for all 1, we get

2
IR "DtF”g:(/;H) dr
[ 2(2,8 () )e e
sz<n+l)(z\a\:\,\ﬂcz<a!>‘*ﬂ)e-2<q*‘>"
<3Sy (@) <l <

(4.4)

Therefore,

||DtF ||;:({7,H) <o fora.a.t

and

DFeG,cG’ foraat

2) It suffices to prove that if G, >0 in gjf, then there exists a
subsequence {Gmk}:_l such that D,G, >0 in G/ as k-, for a.a. t. By
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(4.4) we can see that ||D,Gm ||g,ﬁ —0 in L’(R). So there exists a subsequence
-4

Bamy

such that
||D,Gm ||g:qu — 0 fora.a.task — . (4.5)

Therefore,
DG, —0in G foraa.task — .
The last assertion follows from (4.2).

Theorem 4.4. Suppose 1 denote Lebesque measure on R . Let
F(w)e’(u) be F -measurable. Then

(t,w)—> E[D,F | F](w)e L’ (A% p)
and
F(w)=E[F]+|[ E[D,F|F]dB().

Proof. Let F(w)=) ¢, H,(w) be the chaos expansion of Fand put

ae. /

F = Z:cmH!Z (a))z ZC[IXO(Z,

aes. /- ae./,

where ./ = {a €./ |a| <n & length (a) < n} . Then by Lemma 3.8 (see [4]), we

n

have
n

F,(@)=E[F,]+ [ E[D,F,| F]dB(r).

By Itd representation theorem there is a unique u(f,w) which is 7%
adapted and such that

E[.[()Tu2 (1, a))dt} <o
and such that
F(0)=E[F]+ [ u(r.0)dB(1),
since F, >F in L’(u), we conclude that
EUOT(E[D[Fn | F]-u(t,0)) dt}
~E[F,~F=E[F]+E[F] |50 asn >,
Therefore,

E[DF,|F]->u(t,®) in *(Ax u),

" n
on the other hand, by Lemma 4.1, we have
E[D/F,|F]—>E[D,| %] inG” fora.at.
By taking another subsequence, we obtain that

E[D,F,| 7] > u(t,®) in I’ (u)foraat.
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We conclude that
u(t,w)=E[D,F|F] foraat.

This completes the proof.
Lemma 4.5. Suppose FeG” and feG”.Then

(Ol E T4 P 1 P

A q
where ¢g=——.
1 In2

Proof. Let F(w)=) a,H,(®).f(0)=3
g‘aabaa! [Za b a!]

|afem

bH, (0w ( ) Then

(F.f)]=

1

{elzeer)e-ezser)-]

+ G |2

<Al @); (0} (2 j

=[Flp 171,
Lemma 4.6. Suppose FeG’, f e (S)ﬁ. Then

[ (E[DFIF].f) di<on.

Proof. By Lemma 4.3 and (4.4), we have

J(EFI7L ) @< [ EDFIEN, 11,

< ||f||(M _[R ||[DtF | ]—"t]";]ﬁ < oo, for some ¢ € N.
Lemma4.7.Let F,,FeG” and F, > F in (S);. Then

[[E[D,F,| F1oW (t)dt — [ E[D,F | )00 (¢)dr. (4.6)

Proof. In case of f=0 a complete proof is given in [4]. The proof for
general 0< <1 isa simple modification. Note that both integral in (4.6) exist
by Lemma 4.7. Hence, by Lemma 4.6 and (4.4), we have

KITE[D[Fﬂm]ow( )de — j E[D,F|F]oW (¢ )dt,f>‘

= ‘E[D (F,-F)| %], f>‘

SOTMIN CICEGIES

dt)2 —0asn—> oo.

This completes the proof.
Theorem 4.8. Let F(w)eG” be F -measurable. Then E[D,F|F|0W (¢)
is integrable in (S ); and

F(w)=E[F)+ [ E[DF| 7]0W (t)dr.
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where, E[F| denotes the generalized exsection of F.
Proof. Let F,(w)=)" c¢,H,(w).Then, by Lemma 3.8 (see [4]), we have

F,(0)=E[F,]+[ E[DF,| 7]oW (t)d,

n

therefore,

F(@)=E[F]+lim [ E[D,F, | 7]0W (r)dt,

the limit existin G and hence in (S )ﬂ . The result follows from Lemma 4.7.
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