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Abstract 
The nonlinear multidimensional knapsack problem is defined as the minimi-
zation of a convex function with multiple linear constraints. The methods de-
veloped for nonlinear multidimensional programming problems are often ap-
plied to solve the nonlinear multidimensional knapsack problems, but they 
are inefficient or limited since most of them do not exploit the characteristics 
of the knapsack problems. In this paper, by establishing structural properties 
of the continuous separable nonlinear multidimensional knapsack problem, 
we develop a multi-tier binary solution method for solving the continuous 
nonlinear multidimensional knapsack problems with general structure. The 
computational complexity is polynomial in the number of variables. We pre-
sented two examples to illustrate the general application of our method and 
we used statistical results to show the effectiveness of our method. 
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1. Introduction 

The nonlinear multidimensional knapsack problem is defined as minimizing a 
convex function with multiple linear constraints. The nonlinear knapsack prob-
lem is a class of nonlinear programming, and some methods designed for nonli-
near programming can be applied for solving the nonlinear multidimensional 
knapsack problems. The general nonlinear programming problems have been 
intensively studied in the last decades, and some different methods have been 
developed, such as Newton method [1] [2] [3], branch and bound method [4] 
[5], interior point method [6] [7], sequential quadratic programming method [8] 
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[9] and the filter method [10] [11]. These methods are designed for nonlinear 
programming problems, and some of them are inefficient or limited for solving 
the nonlinear knapsack problems since they do not consider the characteristics 
of the knapsack problems. 

Generally, it is much faster and more reliable to solve knapsack problems with 
specialized methods than with standard methods [12]. Many researchers studied 
the solution methods for the nonlinear knapsack problems based on the specia-
lized knapsack structures. Most of the research studied the problems with single 
constraint. Two basic specialized methods are mainly applied for solving the 
single-constraint nonlinear knapsack problem. One is the multiplier search me-
thod [13], and another is the pegging method [14] [15]. Recently, some new 
methods are proposed for efficiently solving the single-constraint nonlinear 
knapsack problem. Zhang and Hua developed a united method for solving a 
class of continuous separable nonlinear knapsack problems [16]. Kiwiel devel-
oped the breakpoint searching method for the continuous quadratic knapsack 
problem [17]. Sharkey et al. studied a general class of nonlinear non-separable 
continuous knapsack problem [18]. 

Most research of nonlinear knapsack problems studied the one-dimensional 
problems with continuous or integer variables, and the proposed methods can-
not be directly extended for solving multi-dimensional problems. Some re-
searchers attempted to solve multi-dimensional problems with integer-valued 
variables. Morin and Marsten firstly studied the nonlinear multidimensional 
knapsack problems and developed the imbedded state space approach [19]. 
Some researchers investigate the efficiency of other methods, such as smart 
greedy method [20], cut method [21] [22], branch and bound method [23] and 
branch and cut method [24]. Other research studied different applications of 
multidimensional knapsack, e.g., multi-product newsvendor problems with 
multiple constraints [10] [25] [26] [27]. The continuous separable nonlinear 
multidimensional knapsack problems with general structure have not been well 
studied due to its complexity, and the specialized methods are very limited.  

This paper establishes some structural properties of the continuous separable 
nonlinear multidimensional knapsack problem, and develops a multi-tier binary 
solution method for solving a class of continuous nonlinear multidimensional 
knapsack problems with general structure. The computational complexity is po-
lynomial in the number of variables. We presented two examples to illustrate the 
application of our method, and the statistical study with the randomly generated 
instances for different problem sizes are reported to show the effectiveness of 
our method. 

The paper is organized as follows. In Section 2, the nonlinear multidimen-
sional knapsack problem is described. Section 3 studies the structural properties 
of the problem, and develops the algorithm. Section 4 presents the illustrative 
examples and the statistical results. Finally, the concluding remarks are given in 
Section 5. All proofs are listed in Appendix. 
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2. Problem Formulation 

The continuous separable nonlinear multidimensional knapsack problem stu-
died in this paper is as follows (denoted as problem P): 

( ) ( )
1

Min  
N

i i
i

f x
=

= ∑f x ,                     (1) 

Subject to 

,
1

, 1, , ,
N

i j i j
i

c x C j M
=

≤ =∑ �                     (2) 

, 1, ,i i il x u i N≤ ≤ = � .                      (3) 

The notation used in this paper is listed in Table 1.  
In problem P, all objective functions ( ) , 1, ,i if x i n= �  are convex and diffe-

rentiable, the unit resource coefficient , 0i jc >  for all 1, , , 1, ,i N j M= =� � , 
the resource constraints 0jC >  for all 1, ,j M= � , and the lower and upper 
bounds satisfy 0 i il u≤ <  for all 1, ,i N= � .  

Since the objective functions and the feasible domain in problem P are all 
convex, the optimality condition for problem P can be characterized using KKT 
conditions. Let ( )1, , Mλ λ= �λ , 0,  1, ,j j Mλ ≥ = � , be the Lagrange multiplier 
vector for the constraints given in Equation (2), and ( )1, , Nw w=w � ,  

0, 1, ,iw i N≥ = � , ( )1, , Nv v=v � , 0, 1, ,iv i N≥ = �  be the Lagrange multiplier 
vectors for the constraints in Equation (3). Thus, the Lagrange function for 
problem P can be written as: 

( ) ( ) ( ) ( ),
1 1 1 1 1

, , ,
N M N N N

i i j j i j i i i i i i i
i j i i i

L f x C c x w x l v x uλ
= = = = =

 = − − − − + − 
 

∑ ∑ ∑ ∑ ∑x w νλ . (4) 

 
Table 1. Notation. 

Notations Definitions 

N total number of variables 

M total amount of resource 

i variable index 

j resource index 

X decision variable vector 1( , , )Nx x=x �  

( )i if x  the objective function related to variable ix  

( )i ig x  the derivative function of ( )i if x , ( ) ( )d di i i i ig x f x x=  

( )i ik x  the derivative function of ( )i ig x , ( ) ( )d di i i i ik x g x x=  

( )ih ⋅  the inverse function of ( )i ig x , ( ) ( )1
i ih g −⋅ = ⋅  

,i jc  coefficient of variable i of resource j 

jC  available amount of resource j 

λ  the Lagrange multiplier vector for the resource constraints 

w  the Lagrange multiplier vector for the variable constraints 

v  the Lagrange multiplier vector for the variable constraints 

( )⋅f  The objective function vector 
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Let ( ) ( )d di i i i ig x f x x= , 1, ,i N= � . The KKT conditions for problem P can 
be summarized as the following proposition. 

Proposition 1: The KKT conditions for problem P are: 

( ) ,
1

0, 1, , ,
M

i i j i j i i
j

g x c w v i Nλ
=

+ − + = =∑ �               (5) 

( ) ( )
1 1

0,
N N

i i i i i i
i i

w x l v x u
= =

− + − =∑ ∑                   (6) 

,
1

0, 1, , .
N

j i j i j
i

c x C j Mλ
=

 − = = 
 
∑ �                  (7) 

Since ( )i if x  is convex in ix , ( )i ig x  is an increasing function of ix . Let 

ix  be the point that satisfies ( ) 0i ig x =  if ( )0 0ig ≤  and ( )lim 0
i

i ix
g x

→+∞
≥ . If 

( )0 0ig > , we let 0ix = . If ( )lim 0
i

i ix
g x

→+∞
< , we set ix = +∞ . Then ix  is the 

optimal solution to the objective function in Equation (1) without any constraint. 
We summarize it as 

( ){ }

( )
( ){ } ( ) ( )

( )

arg min ,0

0,                              if 0 0,

arg 0 ,    if 0 0 and lim 0,

,                            if lim 0.
i

i

i i i i

i

i i i i i ix

i ix

x f x x

g

x g x g g x

g x
→+∞

→+∞

= ≤ ≤ +∞


>


= = ≤ ≥

+∞ <


        (8) 

3. Structural Properties and Solution Method 

In this section, we first investigate the structural properties of the optimal solu-
tion to problem P. Then we develop a solution method based on the structural 
properties for solving problem P. 

3.1. Structural Properties 

We denote by problem PR the knapsack relaxation problem from problem P, 
in which the constraints in Equation (2) are relaxed. This implies that we do 
not consider Equation (2) in problem PR. By analyzing the solution to prob-
lem PR, we can find the way to construct the solution to problem P. We let 
ˆix  ( 1, ,i N= � ) be the optimal solution to problem PR, then ˆix  ( 1, ,i N= � ) 

has the following property. 
Proposition 2: The optimal solution to problem PR is  

{ }{ }ˆ min max , ,i i i ix x l u= . 

If ,
1

ˆ
N

i j i j
i

c x C
=

≤∑  holds for some 1, ,j M= � , then the corresponding con-

straints in problem P are inactive, which can be removed from problem P. In 

the following, without loss of generality, we assume that ,
1

ˆ
N

i j i j
i

c x C
=

>∑  for all 

1, ,j M= � . The KKT conditions in Equation (7) are met at either 0jλ = , or 

,
1

N

i j i j
i

c x C
=

=∑ . The condition 0jλ =  implies that there is enough resource j at 
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the optimal solution, and hence the j-th constraint is inactive. ,
1

N

i j i j
i

c x C
=

=∑   

means that the j-th constraint is active, and knapsack space of the j-th con-
straint must be fully utilized at the optimal solution. 

We denote by *x  the optimal solution to problem P and *λ  the corres-
ponding Lagrange multiplier vector. Let ( )ix λ  be a solution of the KKT 
conditions in Equation (5) and Equation (6). We denote by ( ) ( )1

i ih g−⋅ = ⋅ , 
then we have the following proposition.  

Proposition 3. (a) ( ) ,
1

min max , ,
M

i i j i j i i
j

x h c l uλ
=

      = −    
     

∑λ , 1, ,i N= � . 

(b) If ( )( ),x λ λ  satisfies 0jλ =  or ,
1

N

i j i j
i

c x C
=

=∑ , 1, ,j M= � , then we 
have ( )* =x x λ . 

For any given 0Mλ ≥ , we let ( )Mλx  and 1 1, , Mλ λ −�  be the optimal so- 

lution of Equations (5) and (6) and ,
1

0
N

j i j i j
i

c x Cλ
=

 − = 
 
∑ , 1, , 1j M= −� . For  

ease of exposition, we denote problem P as ( ),P Mf , where ( ), ,i Nf f=f �  
is the objective function vector. Problem ( )( )ˆ , 1MP Mλ −f  with  
( ) ,î M i M i M if f c xλ λ= + , 1, ,i N= � , is an 1M −  constraint problem with the 

objective function ( )î Mf λ  and the first 1M −  knapsack constraints of problem 
P. 

By analyzing the structural properties of ( )Mλx  and ( )( )ˆ , 1MP Mλ −f , 
we can prove the following proposition. 

Proposition 4. (a) If ( )( ),M Mλ λx  satisfies 0Mλ =  or ( ),
1

N

i M i M M
i

c x Cλ
=

=∑ , 

then we have ( )*
Mλ=x x . 

(b) ( )Mλx  is the optimal solution to problem ( )( )ˆ , 1MP Mλ −f  with  
( ) ,î M i M i M if f c xλ λ= + , 1, ,i N= � . 
From Proposition 4(a), we know that the optimal solution to problem 

( )( )ˆ , 1MP Mλ −f  is obtained in two possible cases: 1) 0Mλ = , which means  

that the constraint ( ),
1

N

i M i M M
i

c x Cλ
=

≤∑  is not binding and it can be removed  

from problem ( ),P Mf . Therefore, *x  can be obtained by solving problem 
( ), 1P M −f , which has the same structure as problem ( ),P Mf ; 2)  

( ),
1

N

i M i M M
i

c x Cλ
=

=∑ , which implies that ( ),
1

N

i M i M M
i

c x Cλ
=

≤∑  is an active con-

straint, and the optimal solution must be obtained at ( ),
1

N

i M i M M
i

c x Cλ
=

=∑  

with 0Mλ > .  

Since problem ( ),P Mf  can be solved by solving problem ( ), 1P M −f  
in the case of 0Mλ = . In the following, we study the case of 0Mλ > . Proposi-
tion 4(b) indicates that problem ( )( )ˆ , 1MP Mλ −f  determines the optimal 
values of ( )Mλx  and jλ , 1, , 1j M= −� . For any 0Mλ > , the 1M −  re-
source constraints could be active or inactive, and the N decision variables 
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could take bound values or non-bound values.  
If 0jλ > , 1, , 1j M= −� , constraint j will be active, thus we denote by 
( ) { }| 0, 1, ,M jJ j j Mλ λ= > = �  the active constraint set for the given Mλ . 

Note that ( )MJ λ  includes at least one active constraint for the case of 
0Mλ > . 

From Equation (5), we know ( )i M ix lλ >  if ( ) ,
1

0
M

i i j i j
j

g l cλ
=

− − >∑ ,  

1, ,i N= � , and ( )i M ix uλ <  if ( ) ,
1

0
M

i i j i j
j

g u cλ
=

− − >∑ , 1, ,i N= � . For the 

given Mλ , we define the non-bound variable set ( )MI λ , and lower and up-

per bound variable sets ( )L MI λ  and ( )U MI λ  as 

( ) ( ) ( ),
1

| , 1, ,
M

M i i j i j i i
j

I i g l c g u i Nλ λ
=

 
= < − < = 
 

∑ � ,        (9) 

( ) ( ),
1

| , 1, ,
M

L M j i j i i
j

I i c g l i Nλ λ
=

 
= − ≤ = 
 

∑ � ,         (10) 

( ) ( ),
1

| , 1, ,
M

U M j i j i i
j

I i c g u i Nλ λ
=

 
= − ≥ = 
 

∑ � .         (11) 

Let ( )Mm J λ= , ( )Mn I λ= , ( )L L Mn I λ= , and ( )U U Mn I λ= . For the 
given 0Mλ > , without changing the orders of indices j and i, we re-index the 
constraints in the active constraint set ( )MJ λ  as 1, ,j m= � , and we re-index 
the variables in the non-bound variable set ( )MI λ  as 1, ,i n= � , and re-index 
the variables in ( )L MI λ  and ( )U MI λ  as 1, , Li n= � , and 1, , Ui n= � , re-
spectively. As a result, constraint M in the original problem is re-indexed as 
constraint m, and Mλ  is also restated as mλ . 

We define ( ) ( )1 ,
1

, , 0
N

j m i j i j
i

G c x Cλ λ
=

≡ − =∑� λ , 1, , 1j m= −� , and substitute  

( ) ,
1

min max , ,
M

i i j i j i i
j

x h c l uλ
=

      = −    
     

∑λ  

into ( )1, ,j mG λ λ� , then we have  

( ) ( ) ( )1 , , , ,1 1 1 1, , 0L Un m n n
j m i j i s i s j i j i i j ii s i iG c h c C c l c uλ λ λ

= = = =
≡ − − − − =∑ ∑ ∑ ∑� , (12) 

Taking the derivative of Equation (12), we get 

( )
( )( )

( )( )

1 ,
,

1 11

, ,

1 1 1

d , , d
d d, ,

d
d, ,

0, 1, , 1

n m
j m i j s

i s
i sm mi i m

m n
i j i s s

s i mi i m

G c
c

k x

c c
k x

j m

λ λ λ
λ λλ λ

λ
λλ λ

= =

= =

 
= −  

  

= −

= = −

∑ ∑

∑∑

�

�

�

�

,      (13) 

where ( ) ( )d dii i i ixk x g x= . 
Since ( )i if x , 1, ,i n= �  are differentiable convex, we know ( )i ig x  is 

increasing and ( )( )1, , 0i i mk x λ λ >� . Note that ( ) ,î M i M i M if f c xλ λ= +  has 
the same structure as ( )i if x . So we define  
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( )( )1

1 0
, ,i

i i mk x
ρ

λ λ
= >

�
,  

1, ,i n= � , and , ,1
n

js i i j i sia c cρ
=

=∑ , , 1, ,j s m= � , then Equation (13) can be 
rewritten in matrix form: 

( ) ( ) ( )

11 12 1 1

21 22 2

1

1 1 1 2 1

d d 0
0

.
d d

1 0

m m

m

m m

m m m m

a a a
a a a

a a a

λ λ

λ λ−

− − −

    
    
    =    
         

�
� �

� � � � �
�

         (14) 

In order to solve 
d
d

j

m

λ
λ

, 1, , 1j m= −� , from Equation (14), we further define 

11 12 1

21 22 2

1 2

m

m
m

m m mm

a a a
a a a

H

a a a

=

�
�

� � � �
�

,                  (15) 

and denote by ( )1j mH − , 1, , 1j m= −�  the m-1 dimensional determinant in 
which the j column of 1mH −  is replaced by ( )( )T

1 2 1, , ,m m m ma a a −� . We have 
the following formula from Equation (14) and Equation (15): 

( )1

1

d
,  1, , 1,  1

d
j mj

m m

H
j m m

H
λ
λ

−

−

= − = − >� .             (16) 

Notice that the above results have similar structures as the results in Zhang 
[27]. Using the similar way, we can prove that  

( )

( )

, 1
1

, , ,
1 1

1 1
, , ,

1 1 1 1

d d
d d

0

n

i m i m n m
ji

i i m i j i m
i jm m

n m j m m
i i m i j i m

i j m m

c x
c c c

H Hc c c
H H

λ λ
ρ

λ λ

ρ

−
=

= =

−
−

= = − −

 
= − + 

 
 

= − − + = − <  
 

∑
∑ ∑

∑ ∑

.        (17) 

Since constraint M in the original problem is re-indexed as constraint m, 
and Mλ  is also restated as mλ , then ( ),1

n
i m i mi c x λ

=∑  is equivalent to  
( ),1

N
i M i Mi c x λ

=∑  in problem P with the original index, thus we know that 
( ),1

N
i M i Mi c x λ

=∑  is a decreasing in Mλ . 
Therefore, there are three possible cases: 1) When 0Mλ = , we get the op-

timal solution to problem ( ),P Mf  by solving problem ( ), 1P M −f ; 2) If 
0Mλ >  and 1m = , we obtain the optimal solution to problem ( ),P Mf  by 

setting ( ) ( ){ }{ },min max , ,i M i M i M i ix h c l uλ λ= − ; 3) When 0Mλ >  and 1m > , 
we can solve problem ( ),P Mf  by studying problem ( )( )ˆ , 1MP Mλ −f , 
with ( ) ,î M i M i M if f c xλ λ= + . 

3.2. Solution Method 

According to Proposition 2, we can solve *x  by searching the optimal value of 
λ . Before presenting the solution method, we first study the bounds for λ . The 
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lower bound for λ  is 0, and the upper bound for λ  is given in the following 
proposition.  

Proposition 5. The upper bound of iλ  is ( ){ }( )1, , ,max 0,maxi N i i i Mg l c= −� . 
From Proposition 4, we get the optimal value of *x  if the optimal solution 
( )Mλx  to problem ( )( )ˆ , 1MP Mλ −f  satisfies  

( ),
1

0
N

M i M i M M
i

c x Cλ λ
=

 − = 
 
∑ . 

Since ( ),1
N

i M i Mi c x λ
=∑  is decreasing in Mλ , the optimal solution can be found 

by applying the binary search over ( ){ }( )1, , ,0,max 0,max i N i i i Mg l c=
 − � . Since 

Problem ( )( )ˆ , 1MP Mλ −f  has the same structure as problem ( ),P Mf , we 
can use a multi-tier binary search method to solve problem P. Main steps of the 
multi-tier binary search method are given in Algorithm 1. 

Algorithm 1: ( )SloveP , Mf  
Step 1: If 0M = , then let ( ){ }{ }{ }* min max arg 0 , ,i i i i ix g x l u= = , stop; 
Step 2: Let 0L

Mλ = , ( ){ }( )1, , ,max 0,maxU
M i N i i i Mg l cλ == −� ; 

Step 3: Let ( ) 2L U
M M Mλ λ λ= + ; 

Step 4: If 0Mλ = , then let ( )* SolveP , 1ix M= −f  and * 0Mλ = , stop; 
Step 5: If 1M = , then let ( ) ( ){ }{ },min max , ,i M i M i M i ix h c l uλ λ= − ; 
      If 1M > , then let ( ) ( )( )ˆSolveP , 1i M Mx Mλ λ= −f  
Step 6: If ( ),1

N
i M i M Mi c x Cλ

=
>∑ , then let L

M Mλ λ= , go to Step 3; 
      If ( ),1

N
i M i M Mi c x Cλ

=
<∑ , then let U

M Mλ λ= , go to Step 3; 
Step 7: Let ( )*

i i Mx x λ=  and *
M Mλ λ= , stop. 

In the algorithm, we first solve the unconstrained problem with bounded va-
riables (Step 1) to obtain *x . If the constraints are active, we apply the binary 
search procedure (Step 2 - 7) over interval ,L U

M Mλ λ    to determine *
Mλ . If ei-

ther 0Mλ =  or ( ),1
N

i M i M Mi c x Cλ
=

=∑ , the binary search procedure terminates. 
If ( ),1

N
i M i M Mi c x Cλ

=
≤∑  is not binding, then the iterating process will end in 

Step 4 with 0Mλ = . Therefore, we can get the optimal solution *
ix  by solving 

problem ( ), 1P M −f . If the constraint ( ),1
N

i M i M Mi c x Cλ
=

≤∑  is active, the so- 
lution procedure will stop at Step 7 with ( ),1

N
i M i M Mi c x Cλ

=
=∑ . Step 5 derives  

( )i Mx λ  by solving problem ( )( )ˆ , 1MP Mλ −f  with ( ) ,î M i M i M if f c xλ λ= +  
for the given 0Mλ > . If 1M = , problem ( )( )ˆ , 1MP Mλ −f  has no knapsack  

constraint, and hence we have ( ) ( ){ }{ },min max , ,i M i M i M i ix h c l uλ λ= − . If  

1M > , we can solve the problem recursively. Problem ( )( )ˆ , 1MP Mλ −f  has 
the same structure as problem ( ),P Mf , and hence the algorithm can call itself 
recursively to solve the problem ( )( )ˆ , 1MP Mλ −f .  

The algorithm is a recursive algorithm with M tiers of binary search loop. The 
computational complexity of M-tier binary search procedure is  

( )( )( )2log 1
M

O ε , where ε  is the error target for the binary search. The com-
putational complexity of the last recursive step is ( )O N . Therefore, the pro-
posed algorithm has the computational complexity ( )( )( )2log 1

M
O Nε , which 

is polynomial in the number of decision variables N. 
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4. Numerical Study 

The solution method developed in this paper can be used for solving the conti-
nuous nonlinear multidimensional knapsack problems with general structure, so 
many application problems with different objective functions summarized in 
Zhang and Hua with multiple constraints can be used to show the application of 
our method [16].  

In our numerical study, we first show the application of our method using two 
examples: quadratic multidimensional knapsack problem (QMK) and the pro-
duction planning problem presented in Bretthauer and Shetty [12]. Then we use 
the statistical study to show the efficiency of our method. All computational ex-
periments are conducted on a laptop (dual processor 2.00 GHz, memory 2.96G) 
with Matlab R2011a. 

4.1. The Illustrative Examples 

The first illustrative example is a separable quadratic knapsack problem. We set 
the objective function as ( ) ( )2

i i i i if x a x b= − , 0, 1, ,ia i N> = � . It has two re-
source constraints: C1 = 12,000 and C2 = 10,000. Table 2 gives the relevant infor-
mation for this example. *

ix  is the optimal solution obtained by applying our al-
gorithm. To show the efficiency of our method, we plot the values of ,L U

M Mλ λ  and 

Mλ  in the iteration process for solving the example in Figure 1. Figure 1 shows 
our algorithm can solve the problem within very limited iterations.  

In the second example, we solve the production planning problem in Bret-
thauer and Shetty [12]. The objective function was set as  

( )
1

min
n

i
i i i i i

i i

ef x h d x
x=

 
= + + 

 
∑ , 

1, ,i N= � . There are three resource constraints: C1 = 200, C2 = 300, and C3 = 
500. We use the same parameters used in Bretthauer and Shetty [12]. The relevant 
 
Table 2. Parameters and solution for the first example. 

i ai bi ci,1 ci,2 li ui 
*
ix  

1 12 20 50 100 6.7 10 10.0000 

2 15 18 50 80 1 20 13.4020 

3 20 8 50 100 2 30 3.6894 

4 10 28 150 100 2.5 40 19.3787 

5 10 10 100 80 5 5.6 5.0000 

6 20 30 100 80 3 20 20.0000 

7 18 25 100 100 8 25 20.2104 

8 15 30 100 88 3 20 20.0000 

*λ    0.0092 1.7243    

*f        6795 
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Figure 1. , ,L U

M M Mλ λ λ  in the iteration process for solving the first example. 
 
information for this example is listed in Table 3. *

ix  is the optimal solution 
obtained by applying our algorithm. 

4.2. The Statistical Results 

In this subsection, we present two numerical experiments to show the effective-
ness of our method for solving problems with different scale and objective func-
tions. In the first experiment, parameters of the QMK problems are all randomly 
generated. We use the notation ( )~ ,z U α β  to denote that z is uniformly gen-
erated over [ ],α β . The parameters of QMK instances are generated as follows: 

( )~ 1, 2ia U , ( )~ 5,10ib U , ( ), ~ 1,10i jc U , ( )~ 5,15il U , ( )~ 20,30iu U  and 
( )~ 100000,200000jC N U× , for 1, , ; 1, ,i N j M= =� � . 

In this experiment, we set problems with different sizes, respectively with M = 
4 and N = 10, M = 2 and N = 100, M = 3 and N = 100, M = 2 and N = 1000. For 
each problem size, 50 test instances are randomly generated. The statistical re-
sults on number of iterations and computation time (in seconds) are reported in 
Table 4. 

In the Second experiment, we solve the production planning problem with 
randomly generated parameters. The parameters of the instances are generated 
as follows: ( )~ 30,50id U , ( )~ 100,200ie U , ( ), ~ 10,50i jc U , ( )~ 1,5il U , 

( )~ 20,30iu U  and ( )~ 100000,200000jC N U× , for 1, , ; 1, ,i N j M= =� � . 
In this experiment, we set problems with different sizes, respectively with M = 

4 and N = 10, M = 2 and N = 100, M = 3 and N = 100, M = 2 and N = 1000. For 
each problem size, we randomly generated 50 test instances. The statistical re-
sults on number of iterations and computation time (in seconds) are presented 
in Table 5. 

From Table 4 and Table 5, we observe that the standard deviations of number 
of iterations and computation times are quite low. It implies that our method is 
quite effective with different objective functions. We also observe that the  
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Table 3. Parameters and solutions for the second example. 

i hi di ei ci,1 ci,2 ci,3 li ui 
*
ix  

1 10 30.2 83 10 1 11 1 20 1.6578 

2 20 5 15 12 2 2 5 20 5.0000 

3 14 42.5 63 1 2 4 2 25 2.0000 

4 13 48 81 5 5 5 4.4 22 4.4000 

5 4 42 65 3 1 6 2.3 25 2.3000 

6 5 36 75 8 2 3 2.2 24 2.2000 

7 13 41.4 94 5 2 2 1 24 1.5068 

8 27 22.5 20 1 3 3 3.5 22 3.5000 

9 40 31.6 12 2 5 5 1.6 30 1.6000 

10 23 44 55.5 3 8 8 1.9 32 1.9000 

*λ     0.0051 0.0064 0.0064    
*f          1261.5 

 
Table 4. Statistical results for randomly generated QMK problems. 

 # of iterations Computation time 

N, M 10, 4 100, 2 100, 3 1000, 2 10, 4 100, 2 100, 3 1000, 2 

Mean 15.30 16.82 16.92 17.86 1.1713 0.0073 0.1044 0.0225 

Std.dev. 1.0926 0.7475 0.8041 0.3505 0.2811 0.0026 0.0365 0.0083 

95% C.I. 
Lower 13 15 15 17 0.6012 0.0028 0.0405 0.0082 

Upper 17 18 18 18 1.7729 0.0118 0.1575 0.0381 

 
Table 5. Statistical results for randomly generated production planning problems. 

 # of iterations Computation time 

N, M 10, 4 100, 2 100, 3 1000, 2 10, 4 100, 2 100, 3 1000, 2 

Mean 22.46 23.82 23.92 24.02 9.2210 0.0292 0.6762 0.1025 

Std.dev. 1.4458 0.3881 0.2740 0.1414 2.3702 0.0120 0.2538 0.0456 

95% C.I. 
Lower 18 23 23 24 2.5809 0.0113 0.2713 0.0457 

Upper 24 24 24 25 13.5177 0.0456 1.0566 0.1750 

 
computation time is more sensitive to the number of the resource constraints ra-
ther than the number of variables. Since the application problems often have much 
more variables than knapsack constraints, our algorithm is useful in practice. 

5. Conclusions 

In this paper, we study a class of continuous separable nonlinear multidimen-
sional knapsack problems. By analyzing the structural properties of the optimal 
solution, we develop a multi-tier binary solution method. The proposed method 
has following advantages. 1) It is applicable for solving the nonlinear multidi-
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mensional knapsack problems with general structure. 2) It has computational 
complexity of polynomial in the number of variables. 

This research can be further extended in several ways. One is to study 
non-separable multidimensional knapsack problems using the similar idea. 
Another way is to develop exact solution methods or heuristics for solving the 
integer multidimensional knapsack problems based on our method. Finally, the 
idea used in this study can be extended for investigating other complex optimi-
zation problems with multiple constraints. 
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Appendix 

A.1 Proof of Proposition 2 
It is defined that 0 i il u≤ <  for all 1, ,i N= � . The optimal solution to prob-

lem PR should satisfy Equation (1) and Equation (3). If i i il x u≤ ≤ , it means that 
the bound constraint is inactive. Therefore, we have ˆi ix x= . Since ( )i ig x  is 
increasing in ix , and ( ) 0i ig x = , we have ( ) 0i ig x ≥  if i ix x> . If  

i i ix l u< < , then ( ) 0i ig x ≥  if i i il x u≤ ≤ . Thus for any [ ],i i ix l u∈ , we have 
( ) ( )i i i if l f x≤ , and ˆi ix l= . If i i il u x< < , we have ˆi ix u= . It can be proved 

similar to the condition of i ix l< . 
A.2 Proof of Proposition 3 

1) If ( ) ( ),1
M

i i j i j i ijg l c g uλ
=

≤ − ≤∑ , then we have ( ),1
M

i i j i j ijl h c uλ
=

≤ − ≤∑ , 

and 0i iw v= = , which implies ( ) ( ),1
M

i i j i jjx h cλ
=

= −∑λ . If ( ),1
M

j i j i ij c g lλ
=

− <∑ , 

then we have ( ) ( ), ,1 1 0M M
i i j i j i i j i jj jg x c g l cλ λ

= =
+ ≥ + >∑ ∑ , and hence 0iw > , 

( )i ix l=λ .  

If ( ),1
M

j i j i ij c g uλ
=

− >∑ , we have  

( ) ( ), ,1 1 0M M
i i j i j i i j i jj jg x c g u cλ λ

= =
+ ≤ + <∑ ∑ , which means 0iv > , and  

( )i ix u=λ . Therefore, we have 

( )

( )

( ) ( )

( )

,
1

, ,
1 1

,
1

,                         if ,

,    if ,

,                        if .

M

i j i j i i
j

M M

i i j i j i i j i j i i
j j

M

i j i j i i
j

l c g l

x h c g l c g u

u c g u

λ

λ λ

λ

=

= =

=

 − <

  = − ≤ − ≤  

 

 − >


∑

∑ ∑

∑

λ       (A1) 

2) 0jλ =  or ( ),1
N

i j i ji c x C
=

=∑ λ  implies  

( ),
1

0, 1, ,
N

j i j i j
i

c x C j Mλ
=

 − = = 
 
∑ �λ . 

Because ( )x λ  satisfies Equation (5) and Equation (6), ( )x λ  will satisfy all 
KKT conditions. Therefore, ( )* =x x λ  if ( )( ),x λ λ  satisfies 0jλ =  or  

,1
N

i j i ji c x C
=

=∑ , 1, ,j M= � . 
A.3 Proof of Proposition 4 
1) 0Mλ =  or ( ),1

N
i M i M Mi c x Cλ

=
=∑  implies ( ),1 0N

M i M i Mi c x Cλ
=

− =∑ . Since 
( )( ),M Mλ λx  satisfies Equation (5) and Equation (6), it will satisfy all KKT 

conditions. Therefore, ( )*
Mλ=x x  if ( )( ),M Mλ λx  satisfies 0Mλ =  or 

( ),1
N

i M i M Mi c x Cλ
=

=∑ . 
2) KKT conditions for problem ( )( )ˆ , 1MP Mλ −f  are 

( ) 1

,
1

ˆd
0, 1, , ,

d

M
i i

j i j i i
ji

f x
c w v i N

x
λ

−

=

+ − + = =∑ �           (A2) 

( ) ( )
1 1

0,
N N

i i i i i i
i i

w x l v x u
= =

− + − =∑ ∑                (A3) 
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,
1

0, 1, , 1
N

j i j i j
i

c x C j Mλ
=

 − = = − 
 
∑ � .             (A4) 

Notice that ( )î if x  is a parameter-adjusted function of ( )i if x , with  
( ) ,î M i M i M if f c xλ λ= + . These conditions in Equations (A2)-(A3) are the same as 

KKT conditions given in Equations (5)-(7) without ( ),1 0N
M i M i Mi c x Cλ

=
− =∑ . 

Since ( )Mλx  is the optimal solution of the KKT conditions in Equations (5)-(7) 
without ( ),1 0N

M i M i Mi c x Cλ
=

− =∑ , it must be the optimal solution to problem 
( )( )ˆ , 1MP Mλ −f . 

A.4 Proof of Proposition 5 
Let ( ){ }( )1, , ,max 0,maxM i N i i i Mg l cλ == −� . If *

M Mλ λ> , then we have 
( )*

, , 1, ,M i M i ic g l i Nλ > − = � . From Equation (5), we have 

( ) ( )* *
, ,

1
0,  1, ,

M

i i i j i j i i i M i M i
j

w g x c v g x c v i Nλ λ
=

= + + > + + > =∑ � .  (A5) 

Since 0iw > , from Equation (6), we know i ix l=  and 0iv = . Thus, we have 

* * *
, ,

1 1
0

N N

M i M i M M i M i M
i i

c x C c l Cλ λ
= =

   − = − ≠   
   
∑ ∑ .            (A6) 

Equation (A6) violates the slackness condition ,
1

0
N

M i M i M
i

c x Cλ
=

 − = 
 
∑  in 

Equation (7). Therefore, there must be *
M Mλ λ< . 
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