

On Tate's Proof of a Theorem of Dedekind

Shiv Gupta

Department of Mathematics, West Chester University, West Chester, PA, USA Email: sguptai@wcupa.edu

How to cite this paper: Gupta, S. (2018) On Tate's Proof of a Theorem of Dedekind. Open Journal of Discrete Mathematics, 8, 73-78. https://doi.org/10.4236/ojdm.2018.83007

Received: March 13, 2018 Accepted: June 29, 2018 Published: July 2, 2018

Copyright © 2018 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

۲ **Open Access**

Abstract

In this note we give a complete proof of a theorem of Dedekind.

Keywords

Galois Group of a Polynomial

1. Introduction

In this note we give a complete proof of the following theorem of Dedekind. Our proof is a somewhat detailed version of the one given in Basic Algebra by http://creativecommons.org/licenses/by/4.0/ Jacobson, Volume I, [1] and we shall keep the notations used in that proof.

> **Theorem 1** Let $f(x) \in \mathbb{Z}[x]$ be square-free monic polynomial of degree n and p be a prime such that p does not divide the discriminant of f(x). Let $G \subset S_n$ be the Galois group of f(x) over the field \mathbb{Q} of rational numbers. Suppose that $f_p = \overline{f} = f \pmod{p} \in \mathbb{Z}_p[x]$ factors as:

$$f_p = \overline{f} = \prod_{i=1}^r \overline{f_i}$$

where $\overline{f_i}$ are distinct monic irreducible polynomials in $\mathbb{Z}_p[x]$, degree $(f_i) = d_i$, $1 \le i \le r$, and $d_1 + d_2 + \dots + d_r = n$.

Then there exists an automorphism $\sigma \in G$ which when considered as a permutation on the zeros of f(x) is a product of disjoint cycles of lengths d_1, d_2, \cdots, d_r .

2. Preliminary Results

We shall assume that the reader is familiar with the following well-known results.

1) Let \mathbb{F} be a field and $f(x) \in \mathbb{F}[x]$ be a polynomial of degree $n \ge 2$. Then any two splitting fields of f(x) are isomorphic.

2) A finitely generated Abelian group is direct sum of (finitely many) cyclic

groups. (This is the fundamental theorem of finitely generated Abelian groups).

3) A system of *n* homogeneous equation in m > n variables has a non-trivial solutions.

4) Let \mathbb{E}/\mathbb{F} be an algebraic extension. Then any subring of \mathbb{E} containing \mathbb{F} is a subfield of \mathbb{E} . **Proof:** Let K be a ring such that $\mathbb{F} \subset K \subset \mathbb{E}$. Let $\alpha \in K - \mathbb{F}$. As α is algebraic over \mathbb{F} , $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$. So $\alpha^{-1} \in \mathbb{F}(\alpha) \subset K$.

5) (Dedekind's Independence Theorem). Distinct characters of a monoid (a set with associative binary operation with an identity element) into a field are linearly independent. That is if $\chi_1, \chi_2, \dots, \chi_n$ are distinct characters of a monoid into a field \mathbb{F} , then the only elements $a_i \in \mathbb{F}$, $1 \le i \le n$, such that

$$a_1\chi_1(h) + a_2\chi_2(h) + \dots + a_n\chi_n(h) = 0$$

for all $h \in H$ are $a_i = 0$, $1 \le i \le n$.

6) Let p be a prime and $GF(p^m)$ be a finite field with p^m elements. Then the group $\operatorname{Aut}(GF(p^m)) = \langle \sigma \rangle$ is cyclic of order m and the generating automorphism σ maps $\alpha \in GF(p^m)$ to α^p .

7) If *R* is a commutative ring with identity and *M* is a maximal ideal of *R* then R/M is a field.

8) Let $\sigma, \eta \in S_n$. Then σ and $\eta^{-1}\sigma\eta$ have same cyclic structure.

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree $n \ge 1$, and p a prime number. Then $f_p(x) \in \mathbb{Z}_p[x]$ will denote the polynomial obtained by reducing the coefficients of f(x) modulo p.

Theorem 2 Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree $n \ge 1$ and p be a prime number which does not divide the discriminant of f(x). Let \mathbb{E} be a splitting field of f(x) over \mathbb{Q} . Let \mathbb{E}_p be a splitting field of $f_p(x)$ over $\mathbb{Z}_p = \mathbb{Z}/(p)$. Let

$$f(x) = (x - r_1)(x - r_2) \cdots (x - r_n), \quad r_i \in \mathbb{E} \subset \mathbb{C}, 1 \le i \le n$$
$$R = \{r_1, r_2, \cdots, r_n\},$$
$$R_p = \{\overline{r_1, r_2}, \cdots, \overline{r_n}\} \subset \mathbb{E}_p$$

where $\overline{r_i}$, $1 \le i \le n$ are the roots of $f_p(x) \in \mathbb{Z}_p[x]$ and

$$\mathbb{E} = \mathbb{Q}(r_1, r_2, \cdots, r_n), \quad \mathbb{E}_p = \mathbb{Z}_p(\overline{r_1, r_2}, \cdots, \overline{r_n})$$

Let $D = \mathbb{Z}[r_1, r_2, \dots, r_n]$ be the subring generated by the roots of r_1, r_2, \dots, r_n of f(x) in \mathbb{C} . Then

• 1) There exists a homomorphism ψ of D onto \mathbb{E}_{p} .

• 2) Any such homomorphism ψ gives a bijection of the set R of the roots of f(x) in \mathbb{E} onto the set R_p of the roots of the $f_p(x)$ in \mathbb{E}_p .

• 3) If ψ and ψ' are two such homomorphisms then there exist $\sigma \in Aut(\mathbb{E}/\mathbb{Q}) = Gal(f(x))$, such that $\psi' = \psi \cdot \sigma$. (Note that the restriction of σ to D is an automorphism of D).

Proof 1) One has that:

$$\mathbb{E} = \mathbb{Q}(r_1, r_2, \cdots, r_n) = \mathbb{Q}[r_1, r_2, \cdots, r_n]$$

We claim that $D = \mathbb{Z}[r_1, r_2, \dots, r_n]$ is a finitely generated (additive) Abelian group. Since each r_i is a root of the monic polynomial $f(x) \in \mathbb{Z}[x]$ of degree n any positive power of $r_i, 1 \le i \le n$ can be expressed as an integral linear combination of $1, r_i, r_i^2, \dots, r_i^{n-1}$. It follows that

$$D = \sum_{0 \le e_i \le n-1} \mathbb{Z} r_1^{e_1} r_2^{e_2} \cdots r_n^{e_n}$$

Therefore *D* is a finitely generated (additive) Abelian group generated by at most n^a elements. By the *Fundamental Theorem for Finitely Generated Abelian Groups D* is a direct sum of finitely many cyclic groups. Since $D \subset \mathbb{C}$, none of these cyclic groups is finite. So *D* is a direct sum of finitely many infinite cyclic groups. Let $\{u_1, u_2, \dots, u_N\}$ be a set consisting of an independent generating system of *D*. We have

$$D = \mathbb{Z}u_1 \oplus \mathbb{Z}u_2 \oplus \cdots \oplus \mathbb{Z}u_N, \quad N \le n^n.$$

We claim that $\{u_1, u_2, \dots, u_N\}$ is a basis of \mathbb{E}/\mathbb{Q} . Obviously $\{u_1, u_2, \dots, u_N\}$ is linearly independent over \mathbb{Q} . Let $\mathbb{Q}D = \sum_{1 \le i \le N} \mathbb{Q}u_i$. Then $\mathbb{Q}D$ is a ring and $\mathbb{Q} \subset \mathbb{Q}D \subset \mathbb{E}$ therefore $\mathbb{Q}D$ is a field. Since $r_i \in D$ for $1 \le i \le n$, by (4) $\mathbb{Q}D = \mathbb{E}$ and $\{u_1, u_2, \dots, u_N\}$ is a basis of E/\mathbb{Q} . As $D = \mathbb{Z}u_1 \oplus \mathbb{Z}u_2 \oplus \dots \oplus \mathbb{Z}u_N$,

$$pD = \mathbb{Z}(pu_1) \oplus \mathbb{Z}(pu_2) \oplus \cdots \oplus \mathbb{Z}(pu_N)$$

is an ideal of $D \, {\rm and}$

$$D/pD = \left\{ \overline{a_1 u_1 + a_2 u_2 + \dots + a_N u_N} : 0 \le a_i \le p - 1 \right\}.$$

Therefore the D/pD is finite of order p^N . Let M be a maximal ideal of D containing pD. That is $pD \subset M \subset D$ and D/M is a finite field of characteristic p and so it has a subfield isomorphic to $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ which we will identify as \mathbb{Z}_p in what follows. As

$$D/M \approx \frac{D/pD}{M/pD}$$

the order of D/M is $p^m, \ 1 \le m \le N$. Consider the canonical epimorphism

$$v: D \to D/M$$

whose kernel is M and $p\mathbb{Z} \subset M$. Therefore $\nu(\mathbb{Z}) = \mathbb{Z}_p$. We note that as $D = \mathbb{Z}[r_1, r_2, \dots, r_n]$ we have for $1 \le i \le n$

$$v(r_i) = r_i + M = \overline{r_i}, \quad v(D) = \mathbb{Z}_p\left[\overline{r_1, r_2, \cdots, r_n}\right]$$

As v is an epimorphism we have

$$v(D) = D/M = \mathbb{Z}_p\left[\overline{r_1, r_2, \cdots, r_n}\right]$$

is a splitting field of $f_p(x)$ over \mathbb{Z}_p . As both D/M and \mathbb{E}_p are splitting fields of $f_p(x)$ over \mathbb{Z}_p they are isomorphic. Let

$$\phi: D/M \to \mathbb{Z}_p$$

be such an isomorphism. Then $\psi = \phi \cdot v$ is a homomorphism of *D* onto \mathbb{E}_p .

2) Let $\psi: D \to \mathbb{E}_p$ be a homomorphism. So $\psi(1) = 1$. As $\mathbb{Z} \subset D$, and \mathbb{E}_p has characteristic p, $\psi(p) = 0$, so $\psi(\mathbb{Z}) = \mathbb{Z}_p \subset \mathbb{E}_p$. ψ can be extended to a homomorphism of the polynomial rings $D[x] \to \mathbb{E}_p[x]$. Under this mapping $f(x) \to f_p(x)$. As

$$f(x) = (x - r_1)(x - r_2)\cdots(x - r_n)$$
$$\psi(f(x)) = f_p(x) = (x - \psi(r_1))(x - \psi(r_2))\cdots(x - \psi(r_n)),$$

 $\psi(r_i), 1 \le i \le n$ are the roots of the $f_p(x)$ in \mathbb{E}_p and therefore the restriction of ψ to R

$$\psi_{|R}: \{r_1, r_2, \cdots, r_n\} \to \{\overline{r_1}, \overline{r_2}, \cdots, \overline{r_n}\}$$

is a bijection of the set *R* of roots of f(x) in \mathbb{E} to the set R_p of the roots of $f_p(x)$ in \mathbb{E}_p .

3) We have seen that given a homomorphism $\psi: D \to \mathbb{E}_p$, and $\sigma \in Gal(f) = Aut(\mathbb{E}/\mathbb{Q}), \ \psi' = \psi \cdot \sigma$ is also a homomorphism from D to \mathbb{E}_p . We note that the restriction of $\sigma \in Aut(\mathbb{E}/\mathbb{Q})$ to $D = \mathbb{Z}[r_1, r_2, \dots, r_n]$ is also an automorphism of the ring D. Since $[\mathbb{E}:\mathbb{Q}] = N$, the group $Aut(\mathbb{E}/\mathbb{Q})$ has order N. Let

$$Aut(\mathbb{E}/\mathbb{Q}) = \{\sigma_1, \sigma_2, \cdots, \sigma_N\}$$

So given a non-trivial homomorphism $\psi: D \to \mathbb{E}_p$, we get N distinct homomorphisms $\psi_j = \psi \cdot \sigma_j$, $1 \le j \le N$, from D to \mathbb{E}_p . We claim that these are all the homomorphisms from D to \mathbb{E}_p . Suppose that there is a homomorphism from D to \mathbb{E}_p which is different from ψ_j , $1 \le j \le N$. Let us denote it by ψ_{N+1} . By *Dedekind Independence Theorem* the set

 $\{\psi_1, \psi_2, \dots, \psi_N, \psi_{N+1}\}$ of N+1 homomorphisms from D to \mathbb{E}_p is linearly independent over the field \mathbb{E}_p .

Consider the following system of N homogeneous equations in N+1 variables $\{x_1, x_2, \dots, x_N, x_{N+1}\}$,

$$\sum_{i=1}^{N+1} x_i \psi_i\left(u_j\right) = 0, \quad 1 \le j \le N.$$

Since there are more variables than the equations this system of equations has a non-trivial solution. Let this non-trivial solution be $x_i = a_i \in \mathbb{E}_p$, $1 \le i \le N+1$. So we have

$$\sum_{i=1}^{i=N+1} a_i \psi_i\left(u_j\right) = 0, \quad 1 \le j \le N.$$

Let $y \in D = \mathbb{Z}u_1 \oplus \mathbb{Z}u_2 \oplus \cdots \oplus \mathbb{Z}u_N$. So $y = n_1u_1 + n_2u_2 + \cdots + n_Nu_N$, $n_k \in \mathbb{Z}$, $1 \le k \le N$. Then for $1 \le i \le N + 1$ we have

$$\psi_i(y) = \overline{n_i}\psi_i(u_1) + \overline{n_2}\psi_i(u_2) + \dots + \overline{n_N}\psi_i(u_N) = \sum_{j=1}^{j=N}\overline{n_j}\psi_i(u_j)$$

where $\overline{n_j} = n_j + (p)$. We shall show that

$$\sum_{i=1}^{N+1} a_i \psi_i(y) = 0,$$

which will contradict the linear independence of $\{\psi_1, \psi_2, \dots, \psi_N, \psi_{N+1}\}$ over \mathbb{E}_p .

$$\sum_{i=1}^{i=N+1} a_{i} \psi_{i} (y)$$

$$= \sum_{i=1}^{i=N+1} a_{i} \sum_{j=1}^{j=N} \overline{n_{j}} \psi_{i} (u_{j})$$

$$= \sum_{i=1}^{i=N+1} a_{i} (\overline{n_{i}} \psi_{i} (u_{1}) + \overline{n_{2}} \psi_{i} (u_{2}) + \dots + \overline{n_{N}} \psi_{i} (u_{N}))$$

$$= \overline{n_{1}} \sum_{i=1}^{i=N+1} a_{i} \psi_{i} (u_{1}) + \overline{n_{2}} \sum_{i=1}^{i=N+1} a_{i} \psi_{i} (u_{2}) + \dots + \overline{n_{N}} \sum_{i=1}^{i=N+1} a_{i} \psi_{i} (u_{N})$$

$$= 0.$$

3. Proof of the Main Theorem

Since the field \mathbb{E}_p has order p^m , the group $Aut(\mathbb{E}_p)$ has order m and $\pi:\mathbb{E}_p\to\mathbb{E}_p$ where $\pi(a)=a^p$ for all $a\in\mathbb{E}_p$, is the generating automorphism of $Aut(\mathbb{E}_p)$. So if $\psi:D\to\mathbb{E}_p$ is any homomorphism then so is $\pi\cdot\psi$. Since ψ and $\pi\cdot\psi$ are two homomorphisms from D to \mathbb{E}_p there exist $\sigma\in Aut(\mathbb{E}/\mathbb{Q})$ such that $\pi\cdot\psi=\psi\cdot\sigma$ or $\psi^{-1}\cdot\pi\cdot\psi=\sigma$. This proves that the action on σ on $\{r_1,r_2,\cdots,r_n\}$ is similar to the action of π on $\{\overline{r_1,\overline{r_2},\cdots,\overline{r_n}\}$. Note: In the following diagram the mapping

$$D \xrightarrow{\sigma} D$$

is the restriction of $\sigma \in Aut(\mathbb{E}/\mathbb{Q})$ to D and we are only concerned with the effect of the mappings σ , ψ and π on $\{r_1, r_2, \dots, r_n\}$ and $\{\overline{r_1, r_2}, \dots, \overline{r_n}\}$. Clearly

$$\begin{cases} r_1, r_2, \cdots, r_n \end{cases} \xrightarrow{\sigma} \{r_1, r_2, \cdots, r_n \} \\ \{\overline{r_1}, \overline{r_2}, \cdots, \overline{r_n} \} \xrightarrow{\pi} \{\overline{r_1}, \overline{r_2}, \cdots, \overline{r_n} \} \\ \{r_1, r_2, \cdots, r_n \} \xrightarrow{\psi} \{\overline{r_1}, \overline{r_2}, \cdots, \overline{r_n} \} \\ D \xrightarrow{\sigma} D \\ \psi \downarrow \qquad \qquad \downarrow \psi \\ \mathbb{E}_p \xrightarrow{\pi} \mathbb{E}_p \end{cases}$$

As $\psi^{-1} \cdot \pi \cdot \psi = \sigma$ and $\psi \cdot \sigma \cdot \psi^{-1} = \pi$ the effect of σ on $\{r_1, r_2, \dots, r_n\}$ is similar to the effect of π on $\{\overline{r_1, r_2, \dots, r_n}\}$. This is further illustrated by the following:

$$\sigma(r_i) = r_j \Rightarrow \pi(\overline{r_i}) = \overline{r_j}$$

$$\overline{r_i} \xrightarrow{\psi^{-1}} r_i \xrightarrow{\sigma} r_j \xrightarrow{\psi} \overline{r_j}$$

$$\pi(\overline{r_i}) = \overline{r_j} \Rightarrow \sigma(r_i) = r_j$$

$$r_i \xrightarrow{\psi} \overline{r_i} \xrightarrow{\pi} \overline{r_j} \xrightarrow{\psi^{-1}} r_j$$

DOI: 10.4236/ojdm.2018.83007

References

[1] Jacobson, N. (2014) Basic Algebra. 2nd Edition, Dover Publications, Inc., Mineola, New York.