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Abstract 

Hornik, Stinchcombe & White have shown that the multilayer feed forward 
networks with enough hidden layers are universal approximators. Roux & 
Bengio have proved that adding hidden units yield a strictly improved mod-
eling power, and Restricted Boltzmann Machines (RBM) are universal ap-
proximators of discrete distributions. In this paper, we provide yet another 
proof. The advantage of this new proof is that it will lead to several new 
learning algorithms. We prove that the Deep Neural Networks implement an 
expansion and the expansion is complete. First, we briefly review the basic 
Boltzmann Machine and that the invariant distributions of the Boltzmann 
Machine generate Markov chains. We then review the θ-transformation and 
its completeness, i.e. any function can be expanded by θ-transformation. We 
further review ABM (Attrasoft Boltzmann Machine). The invariant distribu-
tion of the ABM is a θ-transformation; therefore, an ABM can simulate any 
distribution. We discuss how to convert an ABM into a Deep Neural Network. 
Finally, by establishing the equivalence between an ABM and the Deep Neural 
Network, we prove that the Deep Neural Network is complete. 
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1. Introduction 

Neural networks and deep learning currently provide the best solutions to many 
supervised learning problems. In 2006, a publication by Hinton, Osindero, and 
Teh [1] introduced the idea of a “deep” neural network, which first trains a sim-
ple supervised model; then adds on a new layer on top and trains the parameters 
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for the new layer alone. You keep adding layers and training layers in this fa-
shion until you have a deep network. Later, this condition of training one layer 
at a time is removed [2] [3] [4] [5]. 

After Hinton’s initial attempt of training one layer at a time, Deep Neural 
Networks train all layers together. Examples include TensorFlow [6], Torch [7], 
and Theano [8]. Google’s TensorFlow is an open-source software library for da-
taflow programming across a range of tasks. It is a symbolic math library, and 
also used for machine learning applications such as neural networks [3]. It is 
used for both research and production at Google. Torch is an open source ma-
chine learning library and a scientific computing framework. Theano is a nu-
merical computation library for Python. The approach using the single training 
of multiple layers gives advantages to the neural network over other learning al-
gorithms. 

One question is the existence of a solution for a given problem. This will often 
be followed by an effective solution development, i.e. an algorithm for a solution. 
This will often be followed by the stability of the algorithm. This will often be 
followed by an efficiency study of solutions. Although these theoretical ap-
proaches are not necessary for the empirical development of practical algorithms, 
the theoretical studies do advance the understanding of the problems. The theo-
retical studies will prompt new and better algorithm development of practical 
problems. Along the direction of solution existence, Hornik, Stinchcombe, & 
White [9] have shown that the multilayer feedforward networks with enough 
hidden layers are universal approximators. Roux & Bengio [10] have shown the 
same, Restricted Boltzmann machines are universal approximators of discrete 
distributions. 

Hornik, Stinchcombe, & White [9] establish that the standard multilayer 
feedforward networks with hidden layers using arbitrary squashing functions are 
capable of approximating any measurable function from one finite dimensional 
space to another to any desired degree of accuracy, provided sufficiently many 
hidden units are available. In this sense, multilayer feedforward networks are a 
class of universal approximators. 

Deep Belief Networks (DBN) are generative neural network models with 
many layers of hidden explanatory factors, recently introduced by Hinton, 
Osindero, and Teh, along with a greedy layer-wise unsupervised learning algo-
rithm. The building block of a DBN is a probabilistic model called a Restricted 
Boltzmann machine (RBM), used to represent one layer of the model. Restricted 
Boltzmann machines are interesting because inference is easy in them and be-
cause they have been successfully used as building blocks for training deeper 
models. Roux & Bengio [10] proved that adding hidden units yield a strictly im-
proved modeling power, and RBMs are universal approximators of discrete dis-
tributions. 

In this paper, we provide yet another proof. The advantage of this proof is that 
it will lead to several new learning algorithms. We once again prove that Deep 
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Neural Networks are universal approximators. In our approach, Deep Neural 
Networks implement an expansion and this expansion is complete. 

In this paper, a Deep Neural Network (DNN) is an Artificial Neural Network 
(ANN) with multiple hidden layers between the input and output layers. The 
organization of this paper is as follows. 

In Section 2, we briefly review how to study the completeness problem of 
Deep Neural Networks (DNN). In this approach, given an input A, an output B, 
and a mapping from A to B, one can convert this problem to a probability dis-
tribution [3] [4] of (A, B): p(a, b), a A∈ , b B∈ . If an input is a A∈  and an 
output is b B∈ , then the probability p(a, b) will be close to 1. One can find a 
Markov chain [11] such that the equilibrium distribution of this Markov chain, 
p(a, b), realizes, as faithfully as possible, the given supervised training set. 

In Section 3, the Boltzmann machines [3] [4] are briefly reviewed. All possible 
distributions together form a distribution space. All of the distributions, imple-
mented by Boltzmann machines, define a Boltzmann Distribution Space, which 
is a subset of the distribution space [12] [13] [14]. Given an unknown function, 
one can find a Boltzmann machine such that the equilibrium distribution of this 
Boltzmann machine realizes, as faithfully as possible, the unknown function. 

In Section 4, we review the ABM (Attrasoft Boltzmann Machine) [15] which 
has an invariant distribution. An ABM is defined by two features: 1) an ABM 
with n neurons has neural connections up to the nth order; and 2) all of the con-
nections up to nth order are determined by the ABM algorithm [15]. By adding 
more terms in the invariant distribution compared to the second order 
Boltzmann Machine, ABM is significantly more powerful in simulating an un-
known function. Unlike Boltzmann Machine, ABM’s emphasize higher order 
connections rather than lower order connections. Later, we will discuss the rela-
tionships between the higher order connections and DNN. 

In Section 5, we review θ-transformation [12] [13] [14]. 
In Section 6, we review the completeness of the θ-transformation [12] [13] 

[14]. The θ-transformation is complete; i.e. given a function, one can find a 
θ-transformation to convert it from the x-coordinate system to the θ-coordinate 
system. 

In Section 7, we discuss how the invariant distribution of an ABM implements 
a θ-transformation [12] [13] [14], i.e. given an unknown function, one can find 
an ABM such that the equilibrium distribution of this ABM realizes precisely the 
unknown function. Therefore, an ABM is complete. 

The next two sections are the new contributions of this paper. In section 8, we 
show that we can reduce an ABM to a DNN, i.e. we show that a higher order 
ANN can be replaced by a lower order ANN by increasing layers. We do not 
seek an efficient conversion from a higher order ANN to a lower order ANN 
with more layers. We will merely prove this is possible. 

In Section 9, we prove that the DNN is complete, i.e. given an unknown func-
tion, one can find a Deep Neural Network that can simulate the unknown func-
tion. 
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2. Basic Approach for Completeness Problem 

The goal of this paper is to prove that given any unknown function from A to B, 
one can find a DNN such that it can simulate this unknown function. It turns 
out that if we can reduce this from a discrete problem to a continuous problem, 
it will be very helpful. In this section, we introduce the basic idea of how to study 
the completeness problem. 

The basic supervised learning [2] problem is: given a training set {A, B}, where 
{ }1 2, ,A a a=   and { }1 2, ,B b b=  , find a mapping from A to B. The first step 

is to convert this problem to a probability [3] [4]: 

( ), , , .p p a b a A b B= ∈ ∈  

If a1 matches with b1, the probability is 1 or close to 1. If a1 does not match 
with b1, the probability is 0 or close to 0. This can reduce the problem of infe-
rencing a mapping from A to B, to inferencing a distribution function. 

An irreducible finite Markov chain possesses a stationary distribution [11]. 
This invariant distribution can be used to simulate an unknown function. It is 
the invariant distribution of the Markov Chain which eventually allows us to 
prove that the DNN is complete. 

3. Boltzmann Machine 

A Boltzmann machine [3] [4] is a stochastic neural network in which each neu-
ron has a certain probability to be 1. The probability of a neuron to be 1 is de-
termined by the so called Boltzmann distribution. The collection of the neuron 
states: 

( )1 2, , , nx x x x=   

of a Boltzmann machine is called a configuration. The configuration transition is 
mathematically described by a Markov chain with 2n configurations x X∈ , 
where X is the set of all points, ( )1 2, , , nx x x  When all of the configurations 
are connected, it forms a Markov chain. A Markov chain has an invariant dis-
tribution [11]. Whatever initial configuration a Boltzmann machine starts from, 
the probability distribution converges over time to the invariant distribution, 
p(x). The configuration x X∈  appears with a relative frequency p(x) over a 
long period of time. 

The Boltzmann machine [3] [4] defines a Markov chain. Each configuration 
of the Boltzmann machine is a state of the Markov chain. The Boltzmann ma-
chine has a stable distribution. Let T be the parameter space of a family of 
Boltzmann machines. An unknown function can be considered as a stable dis-
tribution of a Boltzmann machine. Given an unknown distribution, a Boltzmann 
machine can be inferred such that its invariant distribution realizes, as faithfully 
as possible, the given function. Therefore, an unknown function is transformed 
into a specification of a Boltzmann machine. 

More formally, let F be the set of all functions. Let T be the parameter space of 
a family of Boltzmann machines. Given an unknown f F∈ , one can find a 
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Boltzmann machine such that the equilibrium distribution of this Boltzmann 
machine realizes, as faithfully as possible, the unknown function [3] [4]. There-
fore, the unknown, f, is encoded into a specification of a Boltzmann machine, 
t T∈ . We call the mapping from F to T, a Boltzmann Machine Transformation: 
F T→  [12] [13] [14]. 

Let T be the parameter space of a family of Boltzmann machines, and let FT be 
the set of all functions that can be inferred by the Boltzmann Machines over T; 
obviously, FT is a subset of F. It turns out that FT is significantly smaller than F 
and that it is not a good approximation for F. The main contribution of the 
Boltzmann Machine is to establish a framework for inferencing a mapping from 
A to B. 

4. Attrasoft Boltzmann Machines (ABM) 

The invariant distribution of a Boltzmann machine [3] [4] is: 

( ) e ij i ji j M x xp x   b <∑=                         (1) 

If the threshold vector does not vanish, the distributions are: 

( ) e .ij i j i ii j M x x T xp x  b < −∑ ∑=                      (2) 

By rearranging the above distribution, we have: 

( ) e i i ij i ji jc T x  M x xp x <− +∑ ∑=                      (3) 

It turns out that the third order Boltzmann machines have the following type 
of distributions: 

( ) e i i ij i j ijk i j ki j i j kc T x   M x x M x x xp x < < <− + +∑ ∑ ∑=                   (4) 

An ABM [12] [13] [14] is an extension of the higher order Boltzmann Ma-
chine to the maximum order. An ABM with n neurons has neural connections 
up to the nth order. All of the connections up to the nth order are determined by 
the ABM algorithm [15]. By adding additional higher order terms to the inva-
riant distribution, ABM is significantly more powerful in simulating an un-
known function. 

By adding additional terms, the invariant distribution for an ABM is, 

( ) eHp x = , 

1 2 31 1 2
1 2 1 2 31

12
0 1 2 3 1 2

i i ii i i n
i i i i i niH x x x x x x x xθ θ θ θ θ= + ∑ + ∑ + ∑ + + 

            (5) 

ABM is significantly more powerful in simulating an unknown function. As 
more and more terms are added, from the second order terms to the nth order 
terms, the invariant distribution space will become larger and larger. Like 
Boltzmann Machines of the last section, ABM implements a transformation, 

BF T→ . Our goal ultimately that this ABM transformation is complete so that 
given any function f F∈ , we can find an ABM, t T∈ , such that the equili-
brium distribution of this ABM realizes precisely the unknown function. We 
show that this is exactly the case. 
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5. θ-Transformation 

5.1. Basic Notations 

We first introduce some notations used in this paper [12] [13] [14]. There are 
two different types of coordinate systems: the x-coordinate system and the 
θ-coordinate system [12] [13] [14]. Each of these two coordinate systems has 
two representations, x-representation and θ-representation. An N-dimensional 
vector, p, is: 

( )0 1 1, , , Np p p p −=  , 

which is the x-representation of p in the x-coordinate systems. 
In the x-coordinate system, there are two representations of a vector: 

• { }ip  in the x-representation and 
• { }1 2 mi i i

mp   in the θ-representation. 
In the θ-coordinate system, there are two representations of a vector: 

• { }iθ  in the x-representation and 
• { }1 2 mi i i

mθ
  in the θ-representation. 

The reason for two different representations is that the x-representation is 
natural for the x-coordinate system, and the θ-representation is natural for the 
θ-coordinate system. 

The transformations between { }ip  and { }1 2 mi i i
mp  , and those between { }iθ  

and { }1 2 mi i i
mθ
 , are similar. Because of the similarity, in the following, only the 

transformation between { }ip  and { }1 2 mi i i
mp   will be introduced. Let N = 2n be 

the number of neurons. An N-dimensional vector, p, is: 

( )0 1 1, , , .Np p p p −=   

Consider px, because { }0,1, , 1 2 1nx N∈ − = −  is the position inside a dis-
tribution, then x can be rewritten in the binary form: 

1 1 0
2 12 2 2 .n

nx  x  x  x−= + + +  

Some of the coefficients xi might be zero. In dropping those coefficients which 
are zero, we write: 

2 1
1 2

1 1 12 2 2 .m
m

i i i
i i ix x x x  − − −= = + + +   

This generates the following transformation: 
1 2

1 1 12 12 2 2
m

i i im
i i i
m x  

p p p − − −+ + +
= =



where 

1 21 .m i i i n≤ < < < ≤  

In this θ-representation, a vector p looks like: 

{ }1 2 3 12 13 23 123
0 1 1 1 2 2 2 3, , , , , , , , , ,p p p  p p p p p                  (6) 

The 0-th order term is 0p , the first order terms are: 1 2 3
1 1 1, , ,p p  p  ,  … The 

first few terms in the transformation between { }ip  and { }1 2 mi i i
mp   are: 

1 2
0 0 1 1 1 2
12 3 13
2 3 1 14 2 5
23 123 4
2 6 3 7 1 8

, , ,

, ,

, , ,

p p      p p      p p

p p     p   p     p p

p p     p  p    p p

= = =

= = =

= = = 

 

The x-representation is the normal representation, and the θ-representation is 

https://doi.org/10.4236/ajcm.2018.82014


Y. Liu, S. Wang 
 

 

DOI: 10.4236/ajcm.2018.82014 190 American Journal of Computational Mathematics 

 

a form of binary representation. 
Example Let n = 3, N = 2n = 8, and consider an invariant distribution: 

{ }0 1 2 3 4 5 6 7, , , , , , ,p p p p p p p p , 

where p0 is the probability of state x = 0,  . There are 8 probabilities for 8 dif-
ferent states, { }0,1,2, ,7x =  . In the new representation, it looks like: 

{ }1 2 3 12 13 23 123
0 1 1 1 2 2 2 3, , , , , , ,p p p  p p p p p . 

Note that the relative positions of each probability are changed. The first vec-
tor, { }0 1 2 3 4 5 6 7, , , , , , ,p p p p p p p p , is in the x-representation and the second 
vector { }1 2 3 12 13 23 123

0 1 1 1 2 2 2 3, , , , , , ,p p p  p p p p p  is in the θ-representation. These two 
representations are two different expressions of the same vector. 

5.2. θ-Transformation 

Denote a distribution by p, which has a x-representation in the x-coordinate 
system, p(x), and a θ-representation in the θ-coordinate system, p(θ). When a 
distribution function, p(x) is transformed from one coordinate system to anoth-
er, the vectors in both coordinates represent the same abstract vector. When a 
vector q is transformed from the x-representation q(x) to the θ-representation 
q(θ), and then q(θ) is transformed back to q'(x), q'(x) = q(x). 

The θ-transformation uses a function F, called a generating function. The 
function F is required to have the inverse: 

1, .FG  GF I    G  F −= = =                        (7) 

Let p be a vector in the x-coordinate system. As already discussed above, it can 
be written either as: 

( ) ( )0 1 1, , , Np x p p p −=                       (8) 

Or 

( ) ( )1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , .n n n n

np x p p  p p p p p−= 

             (9) 

The θ-transformation transforms a vector from the x-coordinate to the 
θ-coordinate via a generating function. The components of the vector p in the 
x-coordinate, p(x), can be converted into components of a vector p(θ) in the 
θ-coordinate: 

( ) ( )1 12 1, 123 12
0 1 1 2 2 3; , , ; , , ; , , ,n n n n

np  θ θ θ θ θ θ θ θ−= 

          (10) 

Or 

( ) ( )0 1 1, , , .Np  θ θ θ θ −=                       (11) 

Let F be a generating function, which transforms the x-representation of p in 
the x-coordinate to a θ-representation of p in the θ-coordinate system. The 
θ-components are determined by the vector F[p(x)] as follows: 

( ) 1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nF p x   x x x x x x x x xθ θ θ θ θ= + ∑ + ∑ + ∑ + +  



   (12) 
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where 

1 21 .m i i i   n≤ < < < ≤  

Prior to the transformation, p(x) is the x-representation of p in the 
x-coordinate; after transformation, F[p(x)] is a θ-representation of p in the 
θ-coordinate system. 

There are N components in the x-coordinate and N components in the 
θ-coordinate. By introducing a new notation X: 

2 2 12
0 0 1 1 1 1 2 2 2 3 1 2
3 13 23
1 4 3 2 5 1 3 2 6 2 3
123 4
3 7 1 2 3 1 8 1 2 3 4

1, , , ,

, , ,

,

X X      X X x     X X  x    X X x x

X X   x    X  X x x     X X  x x  

X X x x x X  X  x x x x

= = = = = = = =

= = = = = =

= = = = 

 

then the vector can be written as: 

( ) J JF p x  Xθ= ∑                           (13) 

By using the assumption GF = I, we have: 

( ) { }J Jp x  G Xθ= ∑                         (14) 

where J denotes the index in either of the two representations in the 
θ-coordinate system. 

The transformation of a vector p from the x-representation, p(x), in the 
x-coordinate system to a θ-representation, p(θ), in the θ-coordinate system is 
called θ-transformation [12] [13] [14]. 

The θ-transformation is determined by [12] [13] [14]: 
1 2 1 2 1 2 3

1 1 2 1 3

2 2 4

1 1 3

m m m m

m m m

i i i i i i i i i i
m m m m m

i i i i i i
m m m

 F p  F p  F p  F p  

F p  F p F p  

θ −

− −

− − −

− − −

       = + + + + +      
     − − − − −     

    

  

 

 

    (15) 

The inverse of the θ-transformation [12] [13] [14] is: 

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2 .m m m m mi i i i i i i i i i ii i i i

m mp   G    θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

    (16) 

5.3. An Example 

Let an ANN have 3 neurons: 

( )1 2 3, ,x x x  

and let a distribution be: 

( )0 1 2 3 4 5 6 7, , , , , , , .p p p p p p p p  

Assume that the generating functions are: 

( ) ( ) ( ) ( )log , exp .F y y G y y= =  

By θ-transformation, the components are [12] [13] [14]: 

1 2
0 0 1 2

0 0

log , log , log ,p pp
p p

θ θ θ= = =  

3 0 5 0 6 04
3 4 5 6

1 2 0 1 4 2 4

log , log , log , log ,
p p p p p pp      
p p p p p p p

θ θ θ θ= = = =  
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123 2 2 3
123 3 1 1 1 7 1 2 4

4 3 12 13 23
3 5 6 02 2 2 0

log log
p p p p p p p p      

p p p pp p p p
θ θ= = =  

The inverse are: 

( ) ( ) ( ) ( )0 0 1 0 1 2 0 2 3 0 1 2 3exp , exp , exp , exp ,p p p pθ θ θ θ θ θ θ θ θ= = + = + = + + +  

( ) ( ) ( )4 0 4 5 0 1 4 5 6 0 2 4 6exp , exp , exp ,p p pθ θ θ θ θ θ θ θ θ θ= + = + + + = + + +  

( )7 0 1 2 3 4 5 6 7exp .p θ θ θ θ θ θ θ θ= + + + + + + +  

Because of the nature of the exponential function, the 0 probability is 0 = e−∞, 
so the minimum of the probability, pi, will be some very small value, ε, rather 
than 0 to avoid singularity. 

Example 
Let { }2,7,3,8, 2,5,5,6p = , then  
{ }0.693,1.252,0.405, 0.271,0, 0.336,0.510, 0.462θ = − − − . 

Example 
Let { }0,0,0,0,0,0,0,2.302θ = , then { }1,1,1,1,1,1,1,10p = . 
Example 
Let { }2.302, 0.223, 1.609,1.832, 0.510, 0.875,1.763, 1.581θ = − − − − − , then  
{ }10,8, 2,10,6, 2,7,3p = . 

6. θ-Transformation Is Complete 

Because the θ-transformation is implemented by normal function, FG = GF = I, 
as long as there is no singular points in the transformation, any distribution 
function can be expanded. For example, in the last section, we require ip ε≥ , 
which is a predefined small number. 

7. ABM Is Complete 

An ABM with n neurons has neural connections up to the nth order. The inva-
riant distribution is: 

( ) eHp x = , 

1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2 .i i ii i i n

i i i i i i n nH  x  x x x x x x x xθ θ θ θ θ= + ∑ + ∑ + ∑ + + 

    (17) 

An ABM implements a θ-transformation [12] [13] [14] with: 

( ) ( ) ( ) ( )log , exp .F y y G y y= =               (18) 

Furthermore, the “connection matrix” element can be calculated as follows [6] 
[7] [8]: 

1 2 1 2 3
1 2

1 1 2 1 3

2 2 4

1 1 3

log
m m m

m
m m m

i i i i i i i
i i i m m m m
m i i i i i i

m m m

p p p p   
p p p

θ
−

− −

− − −

− − −

=
   



  



 

           (19) 

The reverse problem is as follows: given an ABM, the invariant distribution 
can be calculated as follows [12] [13] [14]: 

( )1 2 1 3 1 1 21 2 1 2
0 1 1 1 2 2 2exp .m m m m mi i i i i i i i i i ii i i i

m mp    θ θ θ θ θ θ θ θ−= + + + + + + + + + + 

   (20) 
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Therefore, an ABM can realize a θ-expansion, which in turn can approximate 
any distribution. ABM is complete [12] [13] [14]. 

8. Reduction of ANN from Higher Order to Lower Order 

In this section, we show that we can reduce a higher order ANN to a lower order 
ANN by introducing more layers. We start with the base case, three neurons; 
then we go to the inductive step of the mathematical induction. 

8.1. Third Order ABM 

Assume that we have a first ANN with three neurons in one layer, 
{ }1 2 3, ,x x x x= ; the higher order distribution is: 

( ) eHp x = , 

1 1 2
1 1 2

1 1 2 1

3 3
123

0 1 2 3 1 2 3
1 , 1

i i i
i i i

i i i i
H x x x x x xθ θ θ θ

= < =

= + + +∑ ∑               (21) 

There is only one third order term in the above distribution for 3 neurons. 
We simulate the first network with a second ANN with two layers, 
{ }1 2 3, ,x x x x=  and { }1 2 3 4, , ,y y y y y= . The transition from the first layer to the 

second layer is: 

1 1 2 2 3 3 4 1 2,  ,  ,  y x y x y x y x x= = = = ∗ . 

Let { }1 2 3, ,y y y  be the same network as the first ANN without the higher or-
der term. The neuron, y4, has 4 additional connections, which will be defined as 
follows: 

4 34 123 14 24
1 2 3 2 20, , 0  θ θ θ θ θ= = = = . 

The second order distribution of { }1 2 3 4, , ,y y y y  is: 

( ) eHp y = , 

1 1 2
1 1 2

1 1 2 1

4 4

0 1 2
1 , 1

.i i i
i i i

i i i i
H y y yθ θ θ

= < =

= + +∑ ∑  

There are only connections up to the second order. Separating y4, we have: 

1 1
1 1

1 1

4 3
4

1 1 1 4
1 1

i i
i i

i i
y x yθ θ θ

= =

= +∑ ∑ , 

1 2 1 2
1 2 1 2

1 2 1 1 2 1

4 3
34 14 24

2 2 2 3 4 2 1 4 2 2 4
, 1 , 1

i i i i
i i i i

i i i i i i
y y x x y y y y y yθ θ θ θ θ

< = < =

∑ = + + +∑ ∑ . 

Using the conditions: 
4 34 123 14 24

1 2 3 2 20, , 0  θ θ θ θ θ= = = = , 

and substituting y-neurons by x-neurons: 
4 34 123 14 24

1 4 2 3 4 3 1 2 3 2 1 4 2 2 40,  ,  0,  0y  y y x x x y y y yθ θ θ θ θ= = = = , 

we have: 

1 1 2
1 1 2

1 1 2 1

3 3
123

0 1 2 3 1 2 3
1 , 1

i i i
i i i

i i i i
H x x x x x xθ θ θ θ

= < =

= + + +∑ ∑ . 
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So in this base case, we have proven that the invariant distribution of a higher 
order ANN can be precisely duplicated by the invariant distribution of a lower 
order ANN with multiple layers. 

8.2. Higher Order ABM 

We now show how to reduce the nth order term to the (n − 1) order term. 
Consider a first ANN has neural connections up to the nth order. There is only 

one nth-order term: 
12

1 2
n

n nx x xθ 

 . 

The rest of the connections are at most (n − 1) order. 
We simulate the first network with a second ANN with additional layers, 

which has an additional layer { }1 2 3 1, , , , ,n ny y y y y y +=   added on the top of the 
first ANN. This second ANN has neural connections up to the (n − 1) order. 
The transitions from the first layer to the second layer are defined as: 

1 1 2 2 1 1 2, , , , .n n ny x y x y x y x x+= = = = ∗  

Based on the same approach in the last section, we can reduce this term from 
the order of n to the order of n − 1. The neuron, yn+1, has many additional con-
nections. With the exception of the following term: 

34 1 12
1

n n
n nθ θ+
− =  , 

all other connections will be defined as 0: 
1 1 1 2 1 12 1 13 1

1 2 2 3 30, 0, , 0,n n n n nθ θ θ θ θ+ + + + += = = = = = =     

The (n − 1) order distribution of { }1 2 3 1, , , , ,n ny y y y y +  is: 

( ) eHp y = , 

1 1 2 1 2
1 1 2 1 2

1 1 2 1 1 2 1

1 1 1

0 1 2 1
1 , 1 , 1

n n n
i i i i i

i i i n i i
i i i i i i i

H y y y y yθ θ θ θ
+ + +

−
= < = < =

= + + + + +∑ ∑ ∑ 

   

Separating yn+1 from the other first order term, substituting y-neurons by 
x-neurons, and using the condition 1

1 0nθ + = , we have: 

1 1 1
1 1 1

1 1 1

1
1

1 1 1 1 1
1 1 1

n n n
i i in

i i n i
i i i

y x y xθ θ θ θ
+

+
+

= = =

= + =∑ ∑ ∑  

Separating yn+1 from the other second order term, substituting y-neurons by 
x-neurons, and using the conditions, 1 1 2 1

2 2 0n nθ θ+ += = = , we have: 

1 2 1 2
1 2 1 2

1 2 1 1 2 1

1 2
1 2

1 2 1

1
1 1 2 1

2 2 2 1 1 2 2 1
, 1 , 1

2
, 1

n n
i i i i n n

i i i i n n
i i i i i i

n
i i

i i
i i i

y y y y  y y y y

y y

θ θ θ θ

θ

+
+ +

+ +
< < = < =

< < =

= + + +

=

∑ ∑

∑



 

… 
Separating yn+1 from the (n − 1) order term, substituting y-neurons by 

x-neurons, and using the condition: 
34 1 12 12 1 13 1

1 1 1, 0,n n n n
n n n nθ θ θ θ+ + +
− − −= = = =   
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we have: 

1 2 1 2
1 2 1 2

1 2 1 1 2 1

1
12

1 1 1 2
, 1 , 1

n n
i i i i n
n i i n i i n n

i i i i i i
y y x x x x xθ θ θ

+

− −
< < = < < =

= +∑ ∑  

    

Combine all of the above terms, we have: 

( ) eHp x =  

1 2 31 1 2
1 1 2 1 2 3

12
0 1 2 3 1 2

i i ii i i n
i i i i i i n nH x x x x x x x x xθ θ θ θ θ= + ∑ + ∑ + ∑ + + 

      (22) 

Now, we have proven that the invariant distribution of an nth order ANN can 
be precisely duplicated by the invariant distribution of a (n − 1) order ANN with 
multiple layers. 

We have shown both reduction from n = 3 to n = 2 and reduction from arbi-
trary n to n − 1. 

9. Completeness of Deep Neural Networks 

Given an unknown function, one can find a θ-expansion to convert it from the 
x-coordinate system to the θ-coordinate system using the following generating 
function: 

( ) ( ) ( ) ( )log , exp .F y y G y y= =  

This expansion can be represented by an ABM.  
ABM is a higher order ANN which can be expanded into multiple layers with 

only second order terms. Therefore, a Deep Neural Network can realize a 
θ-expansion, which in turn can approximate any distribution. Therefore, the 
Deep Neural Network is complete. 

We stress that we merely provide the proof for the existence of a solution for 
simulating any mapping from A to B. We did not seek for an effective imple-
mentation of a Deep Neural Network from supervised training data, (A, B). We 
have merely proved that this is possible.  

10. Conclusions 

Hornik, Stinchcombe, & White have shown that the multilayer feed forward 
networks with enough hidden layers are universal approximators. Roux & Ben-
gio have shown the same. In this paper, we provide yet another proof. The ad-
vantage of this proof is that it will lead to several new learning algorithms, which 
will be presented in our future publications. 

In conclusion, we have studied the completeness problem of the Deep Neural 
Networks. We have reviewed the Attrasoft Boltzmann Machine (ABM). An 
ABM with n neurons has neural connections up to the nth order. We have re-
viewed the θ-transformation and shown that the θ-transformation is complete, 
i.e. any function can be expanded by θ-transformation. We have further shown 
that the invariant distribution of the ABM is a θ-transformation; therefore, an 
ABM can simulate any distribution. An ABM with n neurons has neural connec-
tions up to the nth order. We have shown how to convert an ABM to a Deep 
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Neural Network. Finally, by establishing the equivalence between an ABM and 
the Deep Neural Network, we have proven that the Deep Neural Network is 
complete. In other words, the Deep Neural Network can simulate any mapping 
from A to B. 
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