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Abstract

In this paper, we consider an impulsive competitive system with infinite delay
and diffusion. Firstly, on basis of inequality estimation techniques and com-
parison theorem of impulsive differential equations, we obtain some sufficient
conditions for the permanence and extinction of the system. Then, we estab-
lish sufficient conditions for the globally attractive of the system by con-
structing appropriate Lyapunov function. Besides, under different impulsive
conditions, we discuss the effect of time delay and diffusion on dynamic be-

havior of the competitive system.
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1. Introduction

In practical world, owing to many natural and man-made factors (e.g., fire,
drought, flooding, crop-dusting, deforestation, hunting, harvesting, etc.), the bi-
ological species or ecological environments usually undergo some discrete
changes of relatively short duration at some fixed times. Such sudden changes
can often be characterized mathematically in the form of impulses. With the de-
velopment of impulsive differential equations, many experts have adequate ma-
thematical models to investigate the dynamical behaviors of such ecosystems
with impulsive effects [1] [2] [3] [4] [5]. On the other hand, the Lotka-Volterra
competition systems are very important and significant mathematical models in
a non-autonomous environment. Many interesting results of the competitive
systems on the existence of positive periodic solutions, permanence, extinction,
global stability had been studied extensively (see [6] [7] [8] [9] [10]). For exam-
ple, Wang [10] investigated the following competitive system with impulsive ef-
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fects:

The author obtained sufficient conditions on the uniform persistence and ex-
tinction of the system by applying the theorem of differential equations.

In ecological environment, because of the natural enemy, severe competition,
deterioration of the patch environment, spatial heterogeneity and human activi-
ties, species dispersal in two or more patches becomes one of widespread phe-
nomena of nature. It is an important subject to study the effects of dispersion on
the dynamics of species living in patchy environments. Many works on popula-
tion dynamics in patch environment have been investigated [11] [12] [13] [14].
Moreover, in real ecology environment, the existed number on the history will
affect indirectly the number of the species at the moment. Therefore, in order to
establish more realistic models, the past history of systems should be taken into
account, which has led to the introduction of time-delays in differential equa-
tions. Such biological system with infinite delay can be found in [15] [16] [17].

Motivated by above arguments, we establish an impulsive competitive system

with infinite delay and diffusion as follows:

xl’(t):xl()( ()=, (1) 5, ()=, (1) R (t+sds)
+D12(t)(x2(t)—x](t)) oy

X (£) =2, (1) (a, (1) - () () + D ()5 ()-x(0) |7

Y (6)=y(t )( () =0 () p() = ()] e ()3 (1 5)ds ) (L1)

(
xl(t ) kxl
xz(t ) 2ka k=12,

y(t) =g ()

where x,(¢)(i=1
respectively. Let 0=t¢, <t <t,,,,k=12,-

,2) and y(r) represent the population densities at time ¢
and #, —>o as k—>o . Species
x, competes with y in patch 1, while x, can disperse between patch 1 and
patch 2, and yis confined to patch 1. D, (¢),D,,(¢) denotes the diffusion coef-
ficients of species x. A, ,h,, and g, are impulsive coefficients at time ¢, , re-
spectively.

We consider system (1.1) with the following initial conditions

5(0)=4(0), x(0)=4(0). »(0)=4,(9),

1.2
¢ ePC (R,R,),i=123, R =(-»,0],R, =[0,+x). (1.2)

where PC.={¢=(4.4,.4,)€ PC}, 4,(6)>0 for all <R and 4,(0)>0
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for i=1,2,3. PC is the space of bounded function ¢(s): R.— R’ which is

continuous everywhere expect at the point 7=¢, €/ and ¢(t,: ) , ¢(t,;) exists
with ¢(t,;) = ¢(tk) and with norm ||¢|| = ZuRp ||¢g|| .

In this paper, for any continuous function f'(z), we denote
f(0)=max{ ()}, F(0)=min{7 (0}

Throughout this paper, we assume that the system (1.1) satisfies ((C1), (C2)
see [12], (C3) see [17]):

(C1) all functions are positive, continuous and bounded defined on R,,
0<Dy,(1),D,(t)<D.

(C2) hy,,h, and g, are positive constants forall k=1,2,--.

(C3) k(s)(i=1,2) is a non-negative, piece-wise continuous function de-
finedon R and satisfy L;wkl.(s)ds=1.

Applying some inequality techniques, comparison theorem of impulsive dif-
ferential equations and Lyapunov function, we study the dynamic behaviors of
an impulsive competitive system with infinite delay and diffusion, included
permanence, extinction and globally attractive. This paper is organized as fol-
lows. Section 2 contains some preliminaries and presents the proof of the lem-
ma. In Section 3, we establish some sufficient conditions which guarantee the
system is permanence. In finally section, we give some conditions on the extinc-

tion of the system. In Section 4, we study the globally attractive of system (1.1).

2. Preliminaries

We consider the following impulsive non-autonomous logistic model
2 () =x(0)(@()-BO)x(0). 171,

x(fz?)=hkx(tk), k=12,---, (2.1)

where «(t) and S() are bounded and continuous functions defined on R, ,
B(1)=0 for all teR, and impulsive coefficients %, are positive constants
for any k=1,2,---. Then we have the following Lemma 2.1.

Lemma 2.1. Suppose that there is a constant ¢ >0 such that

timin ("7 4(s)ds) >0 (22)
liminf{jt[+ga(s)ds+ 3 lnka>0 (23)
1<ty <t+o
and function
h(t, )= 2 Inh, (2.4)
ISt <t+p

isboundedon reR, and xe€[0,0). Then we have
1) There exist constant M >0 and m >0 such that

>0

m < liminf x(7)<limsupx(¢) <M (2.5)
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for any positive solution x(7) of system (2.1).
2) If all conditions of (1) hold, further if

limsup( [“ea(s)ds+ ¥ In fkjﬁ 0 (2.6)
t—o® 1<t <t+o

then we have limx(z)=0 for any positive solution x() of system (2.1).
>0
The proof of this Lemma can be found in [18], here we omit it.
Next we consider the following impulsive periodic single species logistic sys-

tem with diffusion

XKO=%UNMO—%O»+§¥%0AO—%ODJ¢%

X (6) =y (), =12, mk =1,2,0,

ik

(2.5)

Assume that 7(¢),q,(7),D,(t)(i,jel) are positive, continuous and
bounded functions defined on R, . D,>D,>D, >0(i#;), D,=0 for all
i,jel(I=12,-,n) and teR_, h, >0 for all iel, k=12,-, then we
have the following conclusions.

Lemma 2.2. Suppose that there is a positive constant & such that

liminf( I “a(s)as)>o0 (2.6)

t—®

liminf£_|.:+67(t)—zn:Dij(z)dt+ > 1naj>o (2.7)
Jj=1

o (<t <t+&
and function

h(t,u)= >, Inh,, }T(t,y)z > In /, (2.8)

1<t <t+pu 1St <t+pu
isboundedon r€R, and pe[0,5).Then we have
1) There are constants M >0 and m >0 such that

m < liminf x, (1) <limsupx, (t) <M

t—w0

for any positive solution x,(¢) of system(2.1). reR,,iel.
2) If all conditions of (1) hold, further if

timinf (7 4 () dt) >0, (2.9)
n D (t

where ﬂl(t)=mi1n{a[(l)—zﬁ}20 for all teR,,i,jel, then system
s ]:1 m

(2.2) is globally attractive.

Proof: Firstly, we prove system (2.5) is permanent. Let (xl(t),---,xi(t)) be
any solution of system (2.5). Define the function Vl(t):nl_lgx{xl.(t)}, when
t#1, calculating the upper-right derivative of V;(r), we have

D (1) <x (1) (1 (1) = (1) (1)) <V (1) (1) =@ (1) (1)

when ¢=t,, we have
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|4 (t;) = max {xi (t; )} = max {hx, (1)} < max {hik}rrlygx {x. ()} =hVi (1)
Consider the following auxiliary system
{D*w(r) =w(t)(r(t)-a(e)w(r)).t =1,

(2.10)
w(t )= how(t, ).k =1,2,---

with initial condition w(0)=¥;(0). Obviously, from condition (2.6), (2.8) and
Lemma 2.1, there exists a constant M >0 such that limsupw(7)<M . Then
according to comparison theorem of impulsive differential tf?(iouations, we derive
limsupx, () <limsup¥, (1) <limsupw(t) <M for iel. (2.11)
e 15 N
Now we prove there is a constant m >0 such that liminf x, (¢)>m . Defined
V,(1)= nllelln {xl. (t)} , calculating the right-lower derivative of V,(¢) when

t #1t, , similar to above conclusion, we can obtain
DV,(1)2 5 (1) (1 (1)=a,(6)5 () 2 V2 () (F (6)-a(0) 4 ()

when ¢=t¢_, we have

v (65) = min 1 (6)} = min Urex (40)) > min U} min {x (40)} = RV (1)

by comparison theorem of impulsive differential equations, we derive
V,(t)=v(t) forall teR, ,where v(¢) isthe solution of the auxiliary equation

{D*v(t) =v(t)(7(t)=a(t)v, (1))t %1,

_ (2.12)
v(t;) :hkv(tk),k =12,---,

with initial condition ¥, (0)=v(0). Clearly, from condition (2.7), (2.8) and
Lemma 2.1, there is a constant m >0 such that liminf v(t) > m . Therefore we
—0

have
liminf x, (¢) > liminf ¥, (¢) > liminf v(¢t)>m for iel.

Next we consider the globally attractive of system (2.5). Construct a Lyapunov
function
V()= |Inx(t)-In% (¢)|
i=1

when ¢=t,_, we always have
V()= |k, (6) - Inh % ()| =V ()
i=1

then 1/ (r) is continuous for all ¢ R, . In addition, when reR, and r#¢,

we have
1 - - 1 -
E|x, (1)-%, (t)| < |ln x,(1)-In¥, (t)| < Z|x,. (1)-%, (t)| (2.13)

Moreover, calculating the derivative of V'(7), we also have

(0=t 1

n n o n

<2 (=a ()] () =% () + 22D, (1)

i=1 i=l j=I

(2.14)

DOI: 10.4236/jamp.2018.66116

1392 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.66116

H. R. Chen, Y. F. Shao

xj(t)_~j(t)
(1) %)
o220

x50

~—

U (t)}x,.<r><x,.<f

For all feR,, we think about under the following two cases:
Case 1:if x,(7)>%,(¢), then

From Case 1, Case 2 and (2.14), we can obtain

n 71

DY) (a0 (-5 () + 232, (-5, 1)
S_i[ai(t)_j:%j|xi(t)_~i(t)| (2.15)

By (2.15) and condition (2.9), we have V(t)SV(O)eXp(—AI;ﬁ(S)dS)—)O

as t—> oo. Furthermore, by (2.13), we have 1im(xi(t)—5cl.(t)):0, that is, sys-

tem (2.5) has globally attractive positive solution. This completes the proof of
Lemma 2.2.

3. Permanence

Note that system (1.1) always has a positive solution for all #e R, if it has a
positive initial condition. Here we state and prove the permanent of system
(1.1).

Theorem 3.1. There exists a constant M >0 such that limsupx, (1)<M
and limsupy(f)<M for any positive solution of system (1.1) if there exists a

t—0
constant @ >0 such that

timinf (["*5 (s)ds >0 (3.1)
timin (b, (s)ds) >0 (3.2)
and function
h(t, )= Y. Inh, g(t,u)= D, Ing, (3.3)
1<ty <t+v 1<ty <t+u

are bounded on 7€ R, and ye[O,a)) forall teR ,k=12,--.
Proof. Firstly, we prove that there is a constant M, >0 such that
limsupx, (1)< M, (i=1,2). Define the function ¥ (¢)=max{x(),x,()}, we

11—
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have two cases when ¢=#¢,.
DIf V(t)=x/(t), wehave

DV ()= (1) (1) - <) 5(0) =6 ()] k() 3(c+5)s)
DL () 0)-5 (1) -
<, (1) (a (1) - ()l(f))
<v(e)(a(r)=b ()7 (7))
2)If V(t)=x,(t),we have
DV (e) =2, (1) (@ () = b, (1) %, (1)) + Doy () (3 (1) =, (1))
<x; (1)(ax (1) =B (1) %2 (1)) (3.5)
SV(t)(a(t)— (t)V(t))
clearly, from (3.4) and (3.5), we get
DV (t)<V(t)(a(t)=b(r)V(t)) forall teR,
On the other hand, when ¢ =, , we have
V() = masx () = max (v, (1)) < ma Uy mase (1)) = ()
Consider the following auxiliary equation
Dv(t)=v(t)(a(t)=b (e)v(t)).t 4,
v(t)=ho(t) k=12,

with initial condition v(0)=)(0). Since the condition of Lemma 2.1 holds
from (3.1) and (3.3), using Lemma 2.1, we get that there exists a constant

(3.6)

M, >0 such that limsupv(¢)<M,. Applying the comparison theorem of im-
—x©
pulsive differential equation, we obtain V' (#)<v(¢) for all ¢ R, . Finally, we

have

limsupx, (1) <limsup ¥ (¢) <limsupv(r) <M, for i=1,2 (3.7)

11— 11— 11—

Then we prove that there is a constant M, >0 such that limsupy(1)<M,.

From the third and sixth equations of system (1.1), we obtain
V()= (1)@ (0) =4 (1) (O] e () (1=5)ds
<y(1)(a (t)—b3(t)y(t)),t¢tk

y(6) =g (). =12,

considering the following subsystem
' (1) =u(t)(ay (6)=by (t)u(r)).t %1,
u(t;):gku(t),k =1,2,--

with initial condition u(0)=y(0). Obviously, the condition of Lemma 2.1
holds from (3.2) and (3.3), we obtain that there is a constant M, >0 such that

(3.8)
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lim supu(t) <M, . Similar to the prove process of the bounded of species x, we
have’ limsupy(t) <M,.
Let A =max {M,,M,}, evidently, we have
limsupx, (1)< M (i=1,2), limsupy(r)<M
t—0 t—0

The proof of Theorem 3.1 is completed.
Theorem 3.2. Assume that all conditions of Theorem 3.1 are satisfied. In ad-

dition, there is a constant @ >0 such that

1iminf(jl’*‘”a(s)ds+ y lni_zkj>0 (3.9)
1<t <t+@
lirtninf[rm(%(t)—cz(t)jo kz(s)(x;*(tﬂ))ds)dﬁ 3 lngkj>0 (3.10)
—® ! o )
llmlnf(_[tmﬂ2 ) >0 (3.11)
and function

%(t,,u): > lnf_lk , g(tu)= Y Ing, (3.12)

1<ty <t+u 1<ty <t+p

are bounded on € R, and ye[0,@), where

ﬁ2(z)=m32{ai(t)—22:DL(t)}20(i¢j) forall (cR,.

P

Then the system is permanent.

Proof. Above all, we must prove that there exists a constant m >0 such that
e (S (i =  limi S
liminf x, (t) > m(z 1,2) lntlllwnfy(t) m

t—0

Firstly, we prove liminf x, (¢) 2 m(i=1,2). Defined V(t)=min{x (¢),x,(t)}
and

H:sup{|x,.(t+s),y(t+s)|:teR+,seR7,i:1,2} (3.13)

When ¢ #t¢,, consider the following two cases.
Case 1: If V(r)=x/(t), we can choose a constant z>0 such that
Hj k,(s)ds <M , then we have

V(0)=x () @ () =By (0)5 ()= ()] & () (e +5) s
+ D, (1) (x, () (t))
=5 (0) @ (1)) 1) - ()(J B (5)(1+5)ds
[k (s)p(e+s ds))+D % ()=, (1))

t)(a, (1)-b,( ()(H] K (s) ds+jik](s)y(t+s)ds))
> x,(1)(a (1) —2¢, (¢ () (1))
()(@(t)-2¢ ()M - b(t)V(t)),
Case 2: If V(1) =x,(¢), we have
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2V (¢)(a(e)-b(e)V (1))
By Case 1 and Case 2, we derive V' (1)2V (t)(a(t)—b(1)V (1)).

When ¢=¢,, we can obtain

V(1) =min {x (5 )} = min U (4} > min (i} min

Research the following equation with impulsive
V(e)=v(t)(@(t)-b(e)v(t)).t =1,
v(t,:) :Ekv(t),k: 1,2,

By condition (3.9) and (3.12), we know that condition of Lemma 2.1 is satis-

(3.14)

fied. Consequently, there exists a constant m;, >0 such that

lirrlliwnf X, (t) > lirtllican(t) > lirtllionfv(t) >m, for i=12. (3.15)

Then we investigate the following system:

up (t) =, (£)(a, (£) =By (¢)u, (£)) + Dy, () (uy (£) =10, () } i
u;(t)=u2(t)(a2(t)—b2(t)u2(t))+D21(t)(u1(t)—u2(t))’ ¢
U (t;) = hyuy (tk)

k=12,
U, (t;) = hyuy (1)

From Lemma 2.2 and condition (3.1), (3.10), (3.12) and (3.13), we can know

that there are positive constants p and Psuch that

pr:(t)SP

(3.16)

where x; (1)(i=1,2) is globally attractive for the system (3.16). In addition, we
assume that (ul(t),MQ(Z)) is a positive solution of system (3.16) with initial
condition u,(0)=x,(0). Evidently, we obtain that there exists a constant

&, >0 small enough such that
x (1)=& <u,(1)<x; (1)+¢, (3.17)

Similar to the discussion in [18], we obtain that condition (3.10) is indepen-
dent of the choice of x; (¢).
From condition (3.10), there are constant &, >0 small enough and 7 >0

large enough such that

J.:Hu(a}(t) by(t) &, —2¢, (¢ cz(tj ky ( ( t+s))ds)ds

(3.18)
+ > Ing, >¢
1<t <t+@
forall ¢+>T7.By (3.12), we can get a positive constant G such that
lg(t.u)|=| ¥ Wg|<G. (3.19)
1<ty <t+u
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From system (1.1), we consider the following subsystem,

4(0)- ()(M (05 ()6 (0] ()5 (0--)as)
+Dy, (1) (x, (1) —x, (1)) JAFEL
(1) =2, (£)(as (1) (t))“LDzl( ) (3 (1) =x, (1))
( ) hl/rxl(tk)
xz( ) thxz( ) i

By (3.16), (3.17) and comparison theorem of impulsive differential equations,

=12,

we get that
x()<u(1)<x (t)+¢, forall t>2T,>T. (3.20)

Next we prove there is a constant m, >0 such that liminf y(z)>m,.

t—o©

In the beginning, we prove limsup y(t) > g, . Suppose that the proposition is

t—w©

not true, we have limsup y(¢)<¢,, that is y(t)<eg, for all t>T7,>T, . Fur-
thermore, we can ChO(;::a constant 7 >0 such that
H "k (s)ds <&, (3.21)
Consequently, we have
V(1)
> y(t)(a3 (1)=b, (1) (1) -c, (t)(H [Tk (s)as+ [k (s)(x; (t+s)+80)ds)) (3.22)
Zy(t)(a3(t)—b (1)2 - 26, 1 (O] o () (3 (e 5)) s

For any ¢>T7,+7 and ¢+t , we can choose an integer />0 such that
t=T,+7+lo+v, where ve[0,@) is a constant. Integrating (3.22) from
T, +7 to t dueto (3.18) and (3.19), we derive

y(0)= (1 H)eprT BEAORAGHG

A _[k s)x, (t+s ds)ds+ > 1ngkj

T +r<ty <t

> y(T, +z’)exp(.|';2”(a3 (1)=by ()&, —2¢, ()&,
—c(t fk (t+s ds)+ > lngk]

T+rsy <t

T+r+0 Th+r+lo t
y(T + T) exp[j 2+r et IT22+r+(l—l)w +IT2+r+lw(a3 (t) B b3 (t) 6‘0

—202 j k t+s ds)

Y s Y+ X lngkj

Lttty <h+r+o T2+r+(1—1)6£tk <h+r+Hlo  Thy+r+lost <t

> y(T, +7)exp(le, — po—G),
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where ﬂ:sup(|a3(t)|+b3( )&y +2¢, (1) gy +¢, (2 J. ky ( t+s)ds). There-
teR,

fore, we can get y(r)—>o as t—>oo , which is contradiction with

limsup y(¢) < &, . Obviously, we have

>0

limsup y(1)> ¢, .

[—0

Then we prove there exists a constant ¢ >0 such that liminf y(#)>a . As-

t—0©

sume that the proposition is not true, then there exists a sequence

{¢m (t)} € PC,,m=1,2,--- such that liItlliwnfy(t,(/ﬁk) S% forall k=12,
From (3.19), we have
e¥<g <e’. (3.23)
we choose an integer K >e® such that for all k> K and any solution y(1)
of system (1.1) satisfied:

& +
1) If y(t,)Z;o,then y(t,)zg,(y(t,)>e I:>k_2 for some /=1,2,---,

2)If y(y ) k , then y( ) gky(tl)éeG%ZE—;,forsome 1=1,2,

From above inequality, there exist two time sequences {s;k) } and {t;k)}
such that for each k=K +1,K+2,---, we have

k)

0<si) <M <5l <l <<l <) <
and
{sgk)}—mo,{tf,")}—mo as t—> o (3.24)
, & & " £
p(s )2 <o (s ) <2 (325)
g £ " £
k—gﬁy(tgk),¢k)<;°,y(t;k) ,¢k)sk—g, (3.26)
g g
k—gSy(t,qﬁk)S;O for all te(sgk),tgk)). (3.27)

Let H(k):sup{|xi(t+s,¢k),y(t+s,¢k)|:teR+,seR_,i:l,2} for each
k=K+1,K+2,---, we choose a constant ) >0 such that

_(%) (k)

[ k(s)x(t+s.4,)ds<HO[ " k(s)ds<s, (3.28)
by (3.20), for each k=K +1,K+2,---, thereisa Tl(k) >T such that
x(t,¢)<x (1) +e, for all r>7". (3.29)

Clearly, from (3.22), there is an N( )>0 such that s( ) >T 6 4 70 for
q= Nl( ). Hence for any te[sq,tJ and t#t, g N . By (3.27) and (3.28),

we can obtain
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y'(t,¢k)=y(t,¢k)(a3( )=by (1) y(t.8,) <, (¢ )_[Owkz(s)xl (t+s’¢k)ds)
> y(t,¢k)[a3 (0)=b, () (6.4) <, (t)[ [ k()3 (1 +5.4, ) ds

+J' (k) (xl t+s +go ds)j

>0, m[ (0)-b (0o 1]
+.[ (wk, (s)(x1 (t+5) +go ds j
> 3(t, )@ (1) =84 ()2 =2, (1) = [ e (5) (e 5) s ),

choose an integer llgk) such that t((Ik) :s;‘ +l‘;‘5. Integrating above inequality

from s‘(]k) to t((]k),we obtain
(k)
y(t‘g")+’¢k)2 (q ,¢k)exp‘|.’ [ )by (1) &, —2¢, (1),

_,[_(),(k)kz (S)xl* (t+s)ds+ Z lngk}

st <)
(k) 4
> y(sy s Jexp [y (-5 -26)

Consequently, from (3.25) and (3.26), we have
B _ 5 Ink

) st > 522G (3.30)
Forany 2 s(k) and g2 Nl(k) , we have
j 'y ( (u,¢, )du < HY jik)_tkz (s)ds (3.31)
and
j ) u ¢k du < H-[ s)ds. (3.32)
For each k=K +1,K+2,--, there exist an N} >N} and a constant L>0
such that
H(k)J._Tik)ﬂ'(’k) ky(s)ds < %50 for all g2 Ngk) (3.33)
and
H ::k2(s)dsS%go (3.34)
We can choose an integer r >0 such that t( )= ( ) +L+rq(k)5+ w;k) ,

where w[(] Ve [O,a)) is a constant. By (3.30), there exists a large enough K, > K
such that

~Bo-2G>¢,. (3.35)
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For all kZKl,qZNgk) s te[s((]k)JrL,t;kq and t#¢t, , by (3.27) and
(3.31)-(3.34), we have

y,(t’¢k)

I ()5 [k (o) (u)+50)duD
2y(t,¢k)(a3 ()b ()2~ (I)(%+%+80 +Iotk(s)x:(t+s)dsn

= ()@ (1) =04 ()2 =2, (1) ey = s (0) s (5)6 (1 5)ds ).
Integrating above system from sf]")+L to t;k),we derive
By

=S ( L ¢k)eXp(Lg))+L+w+'"+J.:g)):f@?i])w+,[:é:>)+L+,q(A>w(“3(t)_bz(t)go

=26, (1) =e(0) [ e (5) (3 (1 5)) ds s

+ oot + Ing,
s‘(Ik)+L§t§S‘(]k)+L+E sg’()+L+(rly‘)—I)QStSSEi/‘)+L+r-q(/‘)(E xgk)JrLJrr[;k)EStSt‘(zk)

& B _ & g
Zk—gexp(rq( e, —ﬁa)—ZG) Zk—gexp(go) >k—g,
which is a contradiction. This contradiction shows that there exists a constant
m, >0 such that liminf y(7)>m,. Hence, choose a constant m = min{m,,m,},
t—0

then we finally have
liminf x, (1) 2 m(i =1,2), liminf y(r)>

1> t—>w©

Therefore Theorem 3.2 holds. This completes the proof.

4. Extinction

In this section, we investigate the extinction of system (1.1). We note that, under
conditions of Theorem 3.2, system (1.1) is always permanent.

Theorem 4.1. Assume that there is a constant 7 >0 such that

llmsupU y(s)ds+ > lnh]SO (4.1)

[>® 1<ty <t+n
. 47
11msup(J‘t (as(s)=me,(s))ds+ Y lnngSO (4.2)
t—w 1<t <t+n
and function
DOI: 10.4236/jamp.2018.66116 1400 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.66116

H. R. Chen, Y. F. Shao

h(t, )= 2. Inh, (4.3)
ISt <t+p

g(t,u)= > Ing, (4.4)
1<ty <t+p

are bounded functionon reR, and ve[0,n), where
7(t)=a,(t)+a,(t)+D(z), then we can obtain

limx, (1) =0, limy(r)=0, (i=12) (4.5)

t—0

for any positive solution (xl (t),x2 (t),y(t)) of system (1.1).
Proof. Firstly, we prove the extinction of species x. Define V' (¢) = x, (¢)+x, (7).

When ¢ #1,, calculating the right-upper derivative of /() , we have
DV (1)=x(t)+x} (1)
= (0)@ (1) =B ()3 ()= () K (5) p (e +5) s
) (% (1) = (1)) +, (1) (@ (1) =y (1) %2 (1))
+D,,(t (x1 t))
< (6)(a (1) =, (6)x (1) =D <>+Dﬂ<>>

when ¢=t_, we get
V(t,:):xl(t )+x2( ) Iy, (8 ) + oy xy (8, ) S max {y by JV (8,) = BV (1)

By the comparison theory of impulsive differential equations, we have

V(t)<v(r) forall 1>0,where v(z) isa solution of the auxiliary equation
v (6)=v(e)(7(£)=2b (£)v(1)).t #
v(t0)=hv(8) k=12,

with the initial condition v(0)=¥(0). Since system (4.6) satisfies all conditions

(4.6)

of Lemma 2.1 from conditions (4.1) and (4.3), we obtain limv(t) =0 for any

t—o©

positive solution of system (4.6). Then we get
}Lrl;x[(t)ﬁ}LngV(t)S}Lrgv(t):o,(izl,2). (4.7)

In the following, we prove the extinction of species y. From third equation

and sixth equation of system (1.1), we have
y’(t):y(t)(%(t)_ f ky (s)x (t=s) ds),t;stk
y(’2)=gky(tk),k:1,2,.._

By Theorem 3.2, there exist m>0 and T, >0 such that x (z)>m for all

(4.8)
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t>T,. Obviously, when 7 #1, , for any t>T0,we obtain
¥(0)=r(0)a(0)-,(0) GIAGEYENEY
Sy(t)(%(t)—b3(t)y(t)—mcz(t))
Then we consider the following auxiliary system
w (t) =w(t)(ay (1) =by () w(t)—me, (1)), =1,
{w(t;):gkw(tk),k:I,Z,---

with the initial condition w(7,)=y(7,). Since all condition of Lemma 2.1

(4.9)

holds from condition (4.2) and (4.4), we can obtain lim w(t) =0 for any posi-

t—©

tive solution of system (4.9). Clearly, we have
i <l =
lim y(¢) < lim w(¢) = 0. (4.10)

From (4.7) and (4.10), we finally obtain (4.5) holds. This completes the proof
of Theorem 4.1.
5. Globally Attractive

In this section, by constructing appropriate Lyapunov function, we establish the
sufficient conditions on the globally attractive of system (1.1).

Theorem 5.1. Assume that all conditions of Theorem3.2 hold, further, there
exists a constant 4>0 such that

1iminf(j””y/(s)ds) >0, (5.1)

where

w (¢)=min {b, (1)- Dui (1) —_[OM ky(s)c, (t—s)ds,
bz(t) )=k (s)e (- sds}

and (¢)>0. Then system (1.1) is globally attractive, that is, for any two posi-
tive solutions ()c1 (1),x, (t),y(t)) and (fcl (1), %, (t),j/(t)) of system (1.1), the
following limit hold.

lim|x, (£) =, (¢)] = O,lim|x, (1) = %, (¢)| = 0.lim| y (1) - 5(¢) = 0. (5.2)

t—0 t—0

Proof. For any two positive solutions (xl (¢),x, (t),y(t)),(fc1 (1), %, (t),j/(t)) ,
by Theorem 3.2, we obtain that there exist constants m,, M, such that

m <x,(t),%(¢),y(¢), 5(¢)<M,i=12. (5.3)

Then we have forany teR, and r#¢,

L (0)-5 (0] <[l x, (1) - %, ()] | () -5 (D] (i=12) (5.0
m, M,
1 . - 1 -
—|y(t) —y(t)| < |lny(t)—1ny(t)| < —|y(t) —y(t)| (5.5)
m, M,
Define a Lyapunov function
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Vi(t)=|tnx (£)-In % (¢)|+|Inx, (1)~ In %, (¢)| +|In y (¢) = In 3(¢)|
for any impulsive time ¢, , we have

n(t)= il|1n by, (1) = In by %, (4 )| +|1n gy (t)-Ing3(y )| = (tlj)’

Vi(t) is continuous for all teR,. For any teR, and ¢#¢,, calculating

the derivative of V,(r), then we get

T

s )5 (0 £ E0 -5 2020

Ssgn(xl<r>—fl<r>>[—b1<r><xl<r>—a(r>)

X, (t
X, (t

N—
Ryl
—_
~
N—
—

-q (t)J-Omk1 (s)(y(t—s)—j/(t—s))ds+D12 (t)(

~—
=

+sgn(xz(r)—@(r)){(—bz(t)(xl (-5 ) 2o 20 (t)ﬂ 66
+sgn(y(6)= (1)) by (1) (»(1) - 7(1))
-c, (t)J'OHOk2 (s)(xl (Z—s)—JZ1 (t —s))ds}

Let

D, ()= sgn(x1 (t)-% (t))D12 (t)(ij E;; _ ’Ez (¢)

4(1) w)}

D, (t)=sgn(x,(t)-%,(¢)) D, (t)[

for D,,(t),D,, (t), we consider the following cases:
DIf x,(¢)>%(¢)(i=1,2) forall >0, then

By 020, (0 28 20 <205 )50« 22 -5
2)If x,(¢)<x(r)(i=1,2) forall 120, then

D020, 0 2020 205, ) )2 220 )50

B,y (1)< D, (r)[;‘; 8 -2 Ett ))J < 2((;)) (5()-x (1)) SD#(%I (-5,
3)If x,(1)=%(¢)(i=12) forall reR,, similar to the arguments above, we
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can get the same conclusion as (1) and (2). From (1), (2) and (3), we have

D, (t)SM|x2 (t)_)zz (t)|’

m

5.7
521(t)£DL(t)|xl(t)_;‘1(t)|' ()
m
Due to (5.6) and (5.7), we can obtain
D7, (t)s—bl(t)|xl(t |+c1 J. k |y t s (t s)|ds
+D";(t)|x2(t —)?z(t)|+—b2 ()| (1) - % (2)|

+

|x1 =5 (1)) +=b ()| (6) =5 (o)
+c2 J' k |)c1 l s x1 t s |ds
Moreover, we define

(¢ :Imk (s) 'ft ¢ (u-s |y u —N(u)|duds,

t=s

J. ky ( I (u—s) |x1 1(u)|duds.

Obviously, Vz(l) and V,(¢) are continuous for all +>0 and ¢#¢,. Cal-

culating the upper right derivative, we derive that

v, (t)=j;wk1 s)e (1—s) |y (t)|ds

_ %k

f |yt s (t s)| (5.9)
J ky(s)e, (- |Jc1 -5 (¢ |ds
—I Ky ( |x1 t—s)-%(1-s) |ds

Define V(1) =V,(1)+V, (t)+V3 (¢)» then we can follows from (5.8) and (5.9)
that

DV ()= DV, (t)+ DV, (1) + DV (1)
—b, (t)|x (1)-% (¢ | rwk s)e, t—s)|y(t)—)7(t)|ds
t

12(

/\

|x2 =%, (1) =y (1) |x, (1) - %, ()|

(502 (-5,
(B (0= [k (s)es (=) s )l () = 70
(r)m¥ (1)

Integrating above inequality, we further have
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V(t)<v(0) exp(—m1 J-(;z//(s)ds) for all reR, . Then from (5.1) we have
Igl//(s)ds —o0 as t—>oo. Thus, we have V' (1)—>0 as t— oo. Finally, from
(5.4) and (5.5) we know (5.2) holds. This completes the proof of Theorem 5.1.

6. Conclusions

In this paper, we investigated an impulsive competitive system with infinite de-
lay and diffusion, in which x, can disperse between patch 1 and patch 2, but
competitor yis confined to patch 1. We also gave some sufficient conditions on
permanence, extinction and global attractivity of system (1.1). From Theorem
3.1-Theorem 5.1, we can see that the impulse and dispersal have an influence on
permanence, extinction and global attractivity. Moreover, we note that the infi-
nite delay is harmless for the extinction, but it affects the permanence and global
attractivity of system (1.1).

Further, we can observe that impulsive perturbations play an important role
in the permanence and extinction from Theorem 3.1-Theorem 4.1. In ecological
environment, many natural and man-made factors which can be described im-
pulse in mathematical always lead to rapid decrease or increase of the population
number. So we consider the following two cases.

Theorem 3.1 shows that if the density-coefficients 5, (7)(i=1,2) are greater
than zero and the impulsive coefficients #, (i=1,2) are bounded, the species x
and y are always ultimately bounded. In following discussion, we also assume
that satisfies this condition.

Discuss 1 On condition that the impulses lead to decrease of the number of
species (such as fire, drought, hunting, harvesting, flooding deforestation), then the
impulsive coefficients satisfy 0<#, <1 and 0<g, <1 forall (i=1,2,k=1,2, ) .

1) Theorem 3.2 shows that if the impulsive perturbations 4, ,h,, are rela-
tively small compared to the intrinsic growth rate of x, the species x can keep
permanence; if the impulsive perturbations g, are relatively small, in addition,
the delay, competition coefficients of y and dispersal coefficients of x relatively
small make the intrinsic growth rate of y to increase, then the species y keeps
permanence.

2) Theorem 4.1 shows that if the impulsive perturbations #,,4,, are rela-
tively large compared to the intrinsic growth rate and dispersal coefficient of x,
then the species x tends to extinction; if the impulsive perturbations g, are
relatively large and the intrinsic growth rate of yis relatively small, the species y
tends to extinction.

Discuss 2 On condition that impulses lead to increase of the number of spe-
cies (such as feed, replenishment, input or other protective measures from hu-
man), that is the impulsive coefficients satisfy 4, ,4,,,g, 21 forall k=12,---.

1) Theorem 3.2 shows that the species x always keep permanence; if the delay,
competition coefficients of y and dispersal coefficients of x are relatively small
making the intrinsic growth rate of yto increase; regardless of impulsive influ-

ence which is large or small, the species y keeps permanence.
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2) Theorem 4.1 shows that the species x never tends to extinction; if the im-
pulsive perturbations g, and the intrinsic growth rate are relatively small; be-
sides, the competition coefficient is relatively large, then the species y tends to

extinction.
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