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Abstract 

We study classical and quantum dynamics of the symmetric harmonic oscil-
lator and the symmetric bouncer defined in 2-D. For these systems we get 
each of them for two different constants of motion, two Lagrangians and two 
Hamiltonians which describe the same classical dynamics. However, the 
quantization of these systems (using Schrödinger equation), using their two 
equivalents Hamiltonian, describes different quantum dynamics for each of 
them. This represents an ambiguity on the Hamiltonian formulation of the 
Quantum Mechanics. 
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1. Introduction 

Modern Physics is based on Lagrangian or Hamiltonian [1] [2] [3] as mathe-
matical objects to formulate and study the correspondent behavior of the natural 
systems. In particular, Quantum Mechanics has its foundations based on the 
Hamilton operator (generated from the Hamilton function of Classical Mechan-
ics) and the Schrödinger’s equation, which describes the linear evolution of the 
wave function. It is known that for most of the systems (conservative or includ-
ing electromagnetic interaction) there is no problem to get a well unique Ha-
miltonian formulation [4] for the system. However, when one is dealing with 
dissipative systems, it has several problems [5] [6], and one of the main prob-
lems, which we are concerned, is that there can be two different Hamiltonian 
having the same classical behavior but different quantum behavior [7] [8]. In 

How to cite this paper: López, G.V., Gri-
selda, A. and Martínez-Prieto, C.R. (2018) 
About an Ambiguity Appearing on the 
Hamiltonian Formulation of Quantum 
Mechanics. Journal of Applied Mathemat-
ics and Physics, 6, 1382-1387.  
https://doi.org/10.4236/jamp.2018.66115  
 
Received: April 25, 2018 
Accepted: June 25, 2018 
Published: June 28, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2018.66115
http://www.scirp.org
https://doi.org/10.4236/jamp.2018.66115
http://creativecommons.org/licenses/by/4.0/


G. V. López et al. 
 

 

DOI: 10.4236/jamp.2018.66115 1383 Journal of Applied Mathematics and Physics 

 

this paper, we want to point out that this type of ambiguity not only appears on 
dissipative systems, but it can also appear on conservative systems, and we focus 
on two conservative symmetric systems with two degrees of freedom: the har-
monic oscillator and the bouncer. Firstly, we make the deduction of a pair of 
Hamiltonian for both systems, and this pair of Hamiltonians for each system 
describes the same classical dynamics. Then, we show that the associated quan-
tum dynamics of each pair of Hamiltonian is different for each system.  

2. Classical Hamiltonians 

For the symmetric harmonic oscillator with two degrees of freedom, it is well 
known that a constant of motion and Hamiltonian can be given by  

( ) ( )2 2 2 2 2
1

1
2 2x y
mK v v m x yω= + + +                 (1) 

and 

( )
2 2

2 2 2
1

1 ,
2 2

x yp p
H m x y

m
ω

+
= + +                  (2) 

where m is the mass of the particle, and ω  its angular frequency, being the 
same in both directions. However, it is not difficult to see that  

2
2 x yK mv v m xyω= +                       (3) 

is also a constant of motion ( 2d d 0K t = ) since it leads us to the equations of 
motion 2 0xmv m xω+ =  and 2 0ymv m yω+ = . Once we have this constant of 
motion, we use the known expression [9] [10] [11],  

( )2
2 2

, , ,
d ,xv x x

x x
x

K x y v cv
L v v

v
= ∫                  (4) 

to get the Lagrangian knowing the constant of motion. By substituting (3) in (4), 
one gets  

2
2 ,x yL mv v m xyω= −                      (5) 

and the associated Hamiltonian ( 2 2x x y yH v p v p L= + − ) is [12]  

2
2 .x yp p

H m xy
m

ω= +                      (6) 

In this way, we have obtained two different Hamiltonians which describe the 
same classical dynamics. 

Consider now a symmetric bouncer with two degrees of freedom, characte-
rized by the equations of motion  

and ,mx f my f= − = −                      (7) 

where f is a constant force, and m is the mass of the particle. The well known 
constant of motion and Hamiltonian for this system are [13]  

( ) ( )2 2
1 2 x y

mK v v x y f= + + +                   (8) 

and  
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( )
2 2

1 .
2

x yp p
H x y f

m
+

= + +                      (9) 

Now, it is not difficult to see that  

( )2 x yK mv v x y f= + +                      (10) 

is also a constant of motion of the system (7). Then, using (4), one gets the La-
grangian  

( )2 ,x yL mv v x y f= − +                      (11) 

and therefore, the new Hamiltonian of the system  

( )2 .x yp p
H x y f

m
= + +                      (12) 

So, once again we have obtained two different Hamiltonian which describe the 
same classical dynamics.  

3. Quantization 

The symmetric 2-D harmonic oscillator and symmetric 2-D bouncer represent 
autonomous systems (Hamiltonians do not depend explicitly on time). So, solv-
ing the Schrödinger’s equation [14],  

ˆ ,i H
t

∂ Ψ
= Ψ

∂
                        (13) 

for the associated Hermitian Hamiltonian operator Ĥ , is reduced through the 
transformation  

e ,iEt−Ψ = Φ                        (14) 

to an eigenvalue problem  
ˆ .H EΦ = Φ                        (15) 

Therefore, it is enough to know the eigenvalues of each pair of Hamiltonians 
to see whether or not the quantum dynamics described by these Hamiltonian are 
different.  

3.1. 2-D Harmonic Oscillator 

The solution of the 2-D symmetric harmonic oscillator eigenvalue problem is 
well known, and it is given by  

( ) ( ) ( )2

1 2

2
1 2

1 2
1

1 , e ,
i i

x
n n n n i

i
E n n n c H xαω α−

=

= + =∏ x          (16) 

where n is a non negative integer, 1 2n n n += + ∈ , 
inc  is a constant, 

π 2 !i
i

n
n ic nα= , and α  is the constant defined as mα ω=  . The full 

solution is  

( )
1 2 1 2

1 2 1 2

21
1 2

, 0 , 0
e | , with 1,i n t

n n n n
n n n n

C n n Cω− +

= =

Ψ = 〉 =∑ ∑          (17) 

where the coefficient 
1 2n nC  represents the amplitude of probability and can be 
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determined by the initial conditions. The system is degenerated because of the 
symmetry, and the ground state is the state 00 .  

For the Hamiltonian (6), let us make the following change of variables  

( ) ( )1 1and .
2 2

x y x yξ η= + = −                 (18) 

So, the Hermitian Hamiltonian becomes  

( )
2 2

2 2 2
2

ˆ ˆ 1ˆ ,
2 2

p p
H m

m
ξ η ω ξ η
−

= + −                  (19) 

where the operators p̂ξ  and p̂η  are defined as p̂ iξ ξ= − ∂ ∂  and 
p̂ iη η= − ∂ ∂ . This Hamiltonian is just the difference of two 1-D symmetric 

harmonic oscillators, ( ) ( )
2

ˆ ˆ ˆho hoH H Hξ η= − . This means that one has the following 
solution for the eigenvalue problem  

( ) ( )
1 2 1 2

2
1 2 1 2, ,

2 2n n n n
x y x yE n n n nω
+ −   = − = Φ Φ   

   
 x        (20) 

where the function ( )n zΦ  is defined as ( ) ( )2 2e x
n n nz c H zα α−Φ = , with the 

constants nc  and α  defined as before. Denoting the state defined by the 
product of the function of (20) as 1 2 2n n , the full solution is written as  

( )1 2
1 2 1 2

1 2 1 2

2

1 2 2
, 0 , 0

e , with 1.i n n t
n n n n

n n n n
D n n Dω− −

= =

Ψ = =∑ ∑        (21) 

The degeneration is infinity and there is not ground state of the system. 
Therefore, the quantum dynamics describe by (17) and (21) are completely dif-
ferent. 

3.2. 2-D Bouncer 

For the usual Hamiltonian associated to the bouncer (9), one sees that this one 
can be written of the form  

1 ,x yH H H= +                           (22) 

where xH  and yH  are defined as  
2 22 and 2 ,x x y yH p m fx H p m fy= + = +              (23) 

corresponding to the symmetric bouncer on each direction. The quantum 
bouncer eigenvalues are given in terms of the zeros of the Airy function [13]. 
Therefore, the solution of the eigenvalue problem 1H EΦ = Φ  is given by  

( ) ( ) ( )1 2 1 2

1 32
1 , 0, .

2in n f n n n fE fl z z Ai z l
mf

 
= + − = =  

 



         (24) 

The eigenfunctions are  

( )
( )

( )
( )

1 2

1 2

1 2

1 2
1 2 ,n n

n n
n n

Ai z z Ai z z
n n

A i z A i z

− −
Φ = = ⋅

′ ′− −
 x              (25) 

where 1z  and 2z  are defined as 1 fz x l=  and 2 fz y l= , A i′  represents 
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the differentiation of the Airy function. The full Scrödinger solution is  

( )1 2
1 2 1 2

1 2 1 2

2

1 2
,

e  , with 1.f n nifl z z t
n n n n

n n n n
C n n C− +

Ψ = =∑ ∑

          (26) 

The spectrum is discrete, there is degeneration (because of the symmetry), and 
there is a ground state for the system. 

Now, for the bouncer Hamiltonian (12), we make the same change of va-
riables (18), bringing about the Hamiltonian operator  

2 2

2

ˆ ˆˆ 2 .
2

p p
H f

m
ξ η ξ
−

= +                      (27) 

This Hamiltonian represents a quantum bouncer in the variable ξ , and a free 
particle motion in the variable η . The eigenvalues of this Hamiltonian are  

( )
1 32 2 2

2 * *2 , with ,
2 2 2 nk f n f

kE fl z l
m mf

 
= + =  

 

 

            (28) 

where nz  is the zero of the Airy function, and k is a continuous real constant. 
Its eigenfunctions are  

( ) ( )
( )

( ) 2 e ,ik x yn
nk

n

Ai z z
nk

A i z
−−

Φ = =
′ −

 x x               (29) 

where the variable z is ( )* * 2f fz l x y lξ= = + , and the full solution of the 
Schrödinger's equations is  

( ) ( )
(2) 2

d e  , with d 1.nkiE
n n

n n
kC k nk k C k−Ψ = =∑ ∑∫ ∫



        (30) 

The spectrum has a discrete component and a continuous component, and 
there is a ground state of the system for 0k =  and 1n = . As one can see from 
(26) and (30) the quantum dynamics is totally different, and this result was un-
known until now.  

4. Conclusion 

We have shown that for two conservative 2-D symmetrical systems (harmonic 
oscillator and bouncer), we can find for each of them at least two different Ha-
miltonians describing the same classical dynamics. However, their quantum dy-
namics associated to each equivalent Hamiltonian is totally different, 
representing an ambiguity in the Hamiltonian formulation of the Quantum 
Mechanics. It is our guess that this type of ambiguity is intrinsic of the Hamilto-
nian theory, and it could be present on any quantum system. 
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