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Abstract 

In this paper, we extend the reliable modification of the Adomian Decompo-
sition Method coupled to the Lesnic’s approach to solve boundary value 
problems and initial boundary value problems with mixed boundary condi-
tions for linear and nonlinear partial differential equations. The method is ap-
plied to different forms of heat and wave equations as illustrative examples to 
exhibit the effectiveness of the method. The method provides the solution in a 
rapidly convergent series with components that can be computed iteratively. 
The numerical results for the illustrative examples obtained show remarkable 
agreement with the exact solutions. We also provide some graphical repre-
sentations for clear-cut comparisons between the solutions using Maple soft-
ware. 
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1. Introduction 

Mixed boundary value problems are characterized by a combination of Dirichlet 
and Neumann conditions along at least one boundary condition. They occur in a 
wide range of engineering and applied mathematics applications [1] [2] [3] [4]. 
These applications include the classic electrical potential and electric field condi-
tions on a disk [5], stress and strain conditions around a punch pressing on an 
elastic surface [6] as well as some applications in porous media problems such as 
the infiltration and seepage among others [7] [8]. Historically, only very few of 
these problems could be solved using analytic methods. In view of this, many 
researchers obtained the solutions of initial and boundary value problems by 
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using either initial or boundary condition(s). In recent years, there have been 
significant developments in the use of various semi-analytical methods for par-
tial differential equations such as the homotopy perturbation method [9] and 
Adomian Decomposition Method (ADM) [10]. Duan and Rach [11] developed a 
new resolution method of Boundary Value Problems (BVPs) for nonlinear or-
dinary differential equations using the ADM. It is also well-known that the ADM 
provides approximate analytic solutions without using the Green function con-
cept, which greatly facilitates analytic approximations and numerical computa-
tions. Several different resolution techniques for solving BVPs for nonlinear or-
dinary differential equations by using the ADM were considered by Adomian 
and Rach [12]-[18], Adomian [19], and Wazwaz [20]-[26]. Also, for a two-point 
BVP for second-order nonlinear differential equations, Adomian and Rach [17] 
[18] proposed the double decomposition method in order to avoid solving such 
nonlinear algebraic equations, and Jang [27] and Ebaid [28] introduced different 
modified inverse linear operators. Adomian [29] suggested a modified method 
for the hyperbolic, parabolic and elliptic partial differential equations with initial 
and boundary conditions by using two equations for u, one inverting the tL  
operator and the other inverting the xL  operator, then, adding them and di-
viding by two. Further, with regards to the mixed value problems, Lesnic and Elliot  

[30] proposed the inverse operator defined by 
0

1

1

d d
x x

x
x

L x x− ′ ′′= ∫ ∫  to solve the  

linear homogeneous heat equation 0, 1, 0t xxu u x x t= < < >  subject to the mixed 
boundary conditions ( ) ( )1,u x t h t= , ( ) ( )21,xu t h t= , where ( ) , 1, 2i t iβ = =  
are known functions. However, in this paper, we will present a modified recur-
sion scheme based on the reliable modification of the ADM with new structure 
of the inverse operator applied to the (BVPs) with mixed boundary conditions 
using Lesnic’s approach and Ebaid’s method. The proposed operator allows the 
appearance of all the conditions in the solution thereby making the solution 
more realistic. The paper is arranged in the following manner: in Section 2, we 
analyze the ADM; Section 3 presents the modified ADM suggested by Wazwaz; 
in Section 4, Lesnic’s approach is used to approximate solutions of some prob-
lems; the implementation of this new method to some test problems is presented 
in Section 5; finally, a brief conclusion is given in Section 6. 

2. Analysis of the Adomian Decomposition Method with 
Mixed Conditions 

Nonlinear partial differential equations models in mathematics and physics play 
an important role in theoretical sciences. The understanding of these nonlinear 
partial differential equations is also crucial to many applied areas such as mete-
orology, oceanography, and aerospace industry. Nonlinear partial differential 
equations are the most fundamental models in studying nonlinear phenomena. 

Consider the nonlinear partial differential equation given in an operator form 

( ) ( ) ( ) ( ) ( ), , , , ,x tL u x t L u x t Ru x t Nu x t g x t+ + + =           (2.1) 
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where xL  and tL  are the linear operators to be inverted, which are usually the 
highest order differential operators in x, and t respectively; xL , R is the linear 
remainder operator; ( ),Nu x t  is a nonlinear operator which is assumed to be 
analytic function, and ( ),g x t  is the input function that is assumed to be con-
tinuous function. The solutions for ( ),u x t  obtained from the operator equa-
tions xL u  in x-direction and tL u  in t-direction are called partial solutions. 
We further give the following illustrations: 

2.1. Boundary Value Problems 

Consider the general form of the single second-order nonlinear inhomogeneous 
temporal-spatial partial differential equation: 

( ) ( ) ( ) ( ), , , , , , 0,xx ttL u x t L u x t Nu x t g x t a x b t+ + = ≤ ≤ >      (2.2) 

subject to the mixed boundary conditions 

( ) ( ) ( ) ( )1 2, , ,xu a t h t u b t h t= =                   (2.3) 

where, ( ) ( ) ( ) ( )
2 2

2 2, , , , ,xx ttL u x t u x t L u x t u x t
x t
∂ ∂

= =
∂ ∂

. We consider the x partial 

solution as 

( ) ( ) ( ) ( ), , , ,xx ttL u x t g x t L u x t Nu x t= − −            (2.4) 

Applying the two-fold indefinite integration inverse operator 1 d dxxL x x− ′= ∫ ∫  
to both sides of Equation (2.4), gives 

( ) ( ) ( ) ( )1 1 1, , , , ,x xx xx tt xxu x t L g x t L L u x t L Nu x t− − −= Φ + − −         (2.5) 

where ( ) ( )1 2x c t c t xΦ = +  and the constants of integrations ( )1c t  and ( )2c t , 
are determined from the boundary conditions. We now decompose the follow-
ing xΦ , the linear and nonlinear terms u and Nu based on ADM as follows: 

( ) ( )( ), 1, 2,
0 0

,x x n n n
n n

c t c t x
∞ ∞

= =

Φ = Φ = +∑ ∑  

( ) ( )
0

, , ,n
n

u x t u x t
∞

=

= ∑  

( ) ( )0 1 2
0

, , , , ,n n
n

Nu x t A u u u u
∞

=

= ∑                  (2.6) 

where nA ’s are the Adomian polynomials determined from the definitional 
formula 

0 0

1 d , 0.
! d

n
k

n kn
k

A N u n
n λ

λ
λ

∞

= =

 = ≥ 
 
∑               (2.7) 

Substituting Equation (2.6) into Equation (2.5), yields the following recursion 
scheme 

( )1
0 ,0 , ,x xxu L g x t−= Φ +  

1 1
1 , 1 , 0.n x n xx tt n xx nu L L u L A n− −
+ += Φ − − ≥              (2.8) 

The n-term approximation of the solution is ( )
1

0
,

n

n i
i

u x tϕ
−

=

= ∑  for 0n > . 
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Thus, 1 0 2 1 1 3 2 2, ,u u uϕ ϕ ϕ ϕ ϕ= = + = + , etc., and all nϕ ‘s must satisfy the 
boundary conditions. 

The first approximate ( ) ( ) ( )1
1 0 1,0 2,0 ,xxu c t c t x L g x tϕ −= = + + , where the values 

( )1c t  and ( )2c t  can be evaluated by using the boundary conditions in Equa-
tion (2.2) 

( ) ( )1 1 1 2, ,x a x bh t h tϕ ϕ
= =

′= =  

which results in 

( ) ( ) ( ) ( )1
1,0 2,0 1, ,xx x a

c t c t x L g x t h t−

=
+ + =  

( ) ( )( ) ( )1
2,0 2, .xx

x b

c t L g x t h t−

=

′+ =  

Thus 1ϕ  is now determined. Since 0u  and 1ϕ  are now completely known, 
we form the next term 1 1

1 ,1 0 0x xx tt xxu L L u L A− −= Φ − − , then 2 1 1uϕ ϕ= + , and we 
continue in the same manner to obtain 2 3, , , nu u u  for some 0n ≥ . Substi-
tuting all these values in ( ) ( )

0
, ,n

n
u x t u x t

∞

=

= ∑ , we get the solution of Equation 
(2.1). 

2.2. An Alternative Combination of the Initial and Boundary  
Conditions 

Adomian [29] suggested a modified method for the partial differential equations 
with initial and boundary conditions by using two equations for u, one inverting 
the tL  operator and the other inverting the xL  operator, then, adding them 
and dividing by two. To convey the basic idea for treatment of initial and boun-
dary conditions by ADM for solving initial boundary value problems, we con-
sider Equations (2.2)-(2.3) with the initial conditions 

( ) ( ) ( ) ( )1 2,0 , ,0 .tu x p x u x p x= =                  (2.9) 

where ( ) , 1, 2ip x i =  are known functions. 
Firstly, we consider the t partial solution as 

( ) ( ) ( ) ( ), , , ,tt xxL u x t g x t L u x t Nu x t= − −             (2.10) 

Applying the inverse operator 1
ttL−  defined by 1

0 0
d d

t t
ttL t t− = ∫ ∫  to both sides 

of Equation (2.10) and using the initial conditions, gives 

( ) ( ) ( ) ( ) ( ) ( )1 1 1, ,0 ,0 , , ,t tt tt xx ttu x t u x tu x L g x t L L u x t L Nu x t− − −= + + − −   (2.11) 

Secondly, we consider the x partial solution as in Equation (2.5). Next, we av-
eraged the partial solutions, i.e. add two partial solutions in Equation (2.5) and 
Equation (2.11) and divide by two, we obtain 

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

1 1

1 1 1 1

1, ,0 ,0 , ,
2

, , , ,

t x tt xx

tt xx xx tt tt xx

u x t u x tu x L g x t L g x t

L L u x t L L u x t L Nu x t L Nu x t

− −

− − − −

= + +Φ + +

− − − −
 (2.12) 

Substituting Equation (2.6) into Equation (2.12), yields the following recur-
sion scheme 
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( ) ( ) ( ) ( )( )1 1
0 ,0

1 ,0 ,0 , ,
2 t x tt xxu u x tu x L g x t L g x t− −= + +Φ + +  

( ) ( )( )1 1 1 1
1 ,

1 , , , 0.
2n x n tt xx n xx tt n tt n xx nu L L u x t L L u x t L A L A n− − − −

+ = Φ − − − − ≥   (2.13) 

To illustrate this method for coupled linear and nonlinear partial differential 
equations, we take two examples in the following section. 

2.3. Numerical Experiments 

Example 1. 
Consider the linear homogeneous heat equation 

0, 0 1, 0,t xxu u x t− = ≤ ≤ >  

with specified conditions ( ) ( ) ( )0, 0, 1, cos 1 e t
xu t u t −= = . 

Rewriting the heat equation in the operator form as 0t xxL u L u− = . 
Applying the inverse operator 1

xxL−  defined by 1 d dxxL x x− ′= ∫ ∫ , gives 

( ) ( ) ( ) ( )1
1 2, , .xx tu x t c t c t x L L u x t−= + +  

This introduces the recursive relations 

( ) ( )0 1 2 ,u c t c t x= +  

( ) ( ) 1
1 1, 1 2, 1 , 0.n n n xx t nu c t c t x L L u n−
+ + += + + ≥  

The first approximant is ( ) ( )1 0 1,0 2,0u c t c t xϕ = = + . Applying the x conditions 
to 1ϕ , it is clear that ( )1,0 0c t =  and ( ) ( )2,0 cos 1 e tc t −= . Thus, if the one-term 
approximant 1ϕ  were sufficient, the solution would be ( )1 0 cos 1 e tu xϕ −= = , 
The next term is 

( ) ( )
( ) ( ) ( )( )

1
1 1,1 2,1 0

1
1,1 2,1 cos 1 e

xx t

t
xx t

u c t c t x L L u

c t c t x L L x

−

− −

= + +

= + +
 

Then 2 0 1u uϕ = +  is given by 

( ) ( ) ( ) ( ) 3
2 1,1 2,1

1cos 1 e cos 1 e
6

t tx c t c t x xϕ − −= + + −  

Applying the condition at 0x = , we have ( )1,1 0c t = . From the condition on 
x at 1, we get 

( ) ( )2,1
1 cos 1 e
2

tc t −= , thus ( ) ( ) 3
1

1 1cos 1 e cos 1 e
2 6

t tu x x− −= −  

Continuing in a similar way 2 3, , , nu u u  are obtained for some n, then we 
get the approximate solution ( )

0
,ap n

n
u u x t

∞

=

= ∑  which converged to the exact 
solution ( )cos e t

exu x −= . 
Table 1 shows the comparison between the absolute error of the exact and 

approximate solutions for various values of t. Figure 1 and Figure 2 give the 
plots for the exact and approximate solutions by using ADM for 0.5, 1.0t t= =  
and 0 1x≤ ≤ , respectively. 
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Table 1. Absolute errors using ADM at 0.5, 1.0t t= =  and 0 1x≤ ≤ . 

T = 1.0 T = 0.5 
x 

φ10 φ5 φ3 φ10 φ5 φ3 

0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.0 

5.06708740e−06 4.63399641e−04 2.82045931e−03 8.35421477e−06 7.64016845e−04 4.65015125e−03 0.1 

1.00094063e−05 9.15389147e−04 5.57161020e−03 1.65027211e−05 1.50922156e−03 9.18603225e−03 0.2 

1.47052604e−05 1.34483927e−03 8.18582316e−03 2.42448756e−05 2.21726512e−03 1.34961408e−02 0.3 

1.90390221e−05 1.74117565e−03 1.05987898e−02 3.13900408e−05 2.87071334e−03 1.74744502e−02 0.4 

2.29039800e−05 2.09463915e−03 1.27510922e−02 3.77622790e−05 3.45347612e−03 2.10229970e−02 0.5 

2.62049659e−05 2.39652615e−03 1.45896640e−02 4.32046846e−05 3.95120365e−03 2.40542893e−02 0.6 

2.88606985e−05 2.63940294e−03 1.60691079e−02 4.75832475e−05 4.35163977e−03 2.64934801e−02 0.7 

3.08057849e−05 2.81728877e−03 1.71528385e−02 5.07901529e−05 4.64492392e−03 2.82802497e−02 0.8 

3.19923307e−05 2.92580320e−03 1.78140164e−02 5.27464362e−05 4.82383397e−03 2.93703477e−02 0.9 

3.23911192e−05 2.96227405e−03 1.80362471e−02 5.34039271e−05 4.88396424e−03 2.97367443e−02 1.0 

 

 
Figure 1. The exact solution and the approximate solution using ADM for 3 5 10, ,ϕ ϕ ϕ  at 0.5t =  and 0 1x≤ ≤ . 

 

 
Figure 2. The exact solution and the approximate solution using ADM for 3 5 10, ,ϕ ϕ ϕ  at 1.0t =  and 0 1x≤ ≤ . 
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Example 2 
Consider the nonlinear inhomogeneous wave equation 

2 2 2 , 0,tt xxu u u u xt x t t− − + = + >  

with specified initial conditions ( ) ( ),0 1, ,0tu x u x x= = , and the boundary con-
ditions ( ) ( )0, 1, 0,xu t u t t= = . Rewriting the wave equation in the operator form 
as 

2 2 2.tt xxL u L u u u xt x t− − + = +  

To solve initial-boundary value problem, firstly, we consider the t partial solu-
tion as 2 2 2

tt xxL u L u u u xt x t= + − + + . 

Applying the inverse operator 1
ttL−  defined by 1

0 0
d d

t t
ttL t t− = ∫ ∫ , gives 

( ) ( ) ( ) ( ) ( )1 2 2 1 1 1 2, ,0 ,0 ,t tt tt xx tt ttu x t u x tu x L xt x t L L u x t L u L u− − − −= + + + + + − . 

This introduces the recursive relations 

( ) ( ) ( )1 2 2
0 ,0 ,0t ttu u x tu x L xt x t−= + + +  

1 1 1
1 , 0.n tt xx n tt n tt nu L L u L u L A n− − −
+ = + − ≥  

where the nonlinear term 2u  can be expressed by an infinite series of the 
Adomian polynomials nA  given by: 

( )2
0 0 ,A u=  

1 0 12 ,A u u=  

( )2
2 1 0 22 ,A u u u= +  

3 1 2 0 32 2 ,A u u u u= +  

( )2
4 2 1 3 0 42 2 ,A u u u u u= + +  

  

So that first two terms are 

3 2 4
0

1 11 ,
6 12

u xt xt x t= + + +
 

6 4 10 3 9 2 8 3 7
1

2 6 5 2 4 3

1 1 1 1 1
180 12960 2529 2016 252

1 1 1 1 ,
72 120 12 6

u t x t x t x t x t

x t xt x t xt

= − − − −

− − − −
 

Secondly, we consider the x partial solution 2 2 2
xx ttL u L u u u xt x t= − + − − . 

Applying the inverse operator 1
xxL−  defined by 1 d dxxL x x− ′= ∫ ∫ , gives 

( ) ( ) ( ) ( ) ( )1 2 2 1 1 1 2, , , , ,x xx xx tt xx xxu x t L xt x t L L u x t L u x t L u x t− − − −= Φ + − − + − +  

This gives the recursive relations 

( )1 2 2
0 ,0 ,x xxu L xt x t−= Φ + − −  

1 1 1
1 , , 0.n x n xx tt n xx n xx nu L L u L u L A n− − −
+ = Φ + − + ≥  

So that 
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( ) ( ) ( )
( ) ( )

1 2 2
0 1,0 2,0

4 2 3
1,0 2,0

1 1 ,
12 6

xxu c t c t x L xt x t

c t c t x x t x t

−= + + − −

= + − −
 

The first approximant is 1 0uϕ = . Applying the x conditions to 1ϕ  it is clear 
that ( )1,0 1c t =  and ( )2,0c t t= . Thus, if the one-term approximant 1ϕ  were  

sufficient, the solution would be 4 2 3
1 0

1 11
12 6

u xt x t x tϕ = = + − − . The next term 

is 

( ) ( ) 1 1 1
1 1,1 2,1 0 0 0.xx tt xx xxu c t c t x L L u L u L A− − −= + + − +  

Then 2 0 1u uϕ = +  is given by: 

( ) ( ) 6 4 10 3 9
2 1,1 2,1

2 8 3 7 2 6 5

1 1 11
180 12960 2592

1 1 1 1 ,
2016 252 72 120

xt c t c t x x t x t x

t x t x t x tx

ϕ = + + + − + +

+ − − −
 

Applying the condition at 0x = , we have ( )1,1 0c t = . From the condition on 

x at 0, we get ( )2,1 0c t = , thus  

6 4 10 3 9 2 8
1

3 7 2 6 5 2 4 3

1 1 1 1
180 12960 2592 2016

1 1 1 1 1 ,
252 72 120 12 6

u x t x t x t x

t x t x tx t x tx

= − + + +

− − − + +
 

Next, we average the partial solutions, i.e. add two partial solutions and divide 
by two, so we obtain 

2 4 3 4 2 3
0

1 1 1 1 12 2
2 12 6 12 6

u xt x t xt x t x t = + + + − − 
 

 

6 4 10 3 9 2 8 3 7 2 6
1

5 2 4 3 6 4 10 3 9

2 8 3 7 2 6 5 2 4 3

1 1 1 1 1 1 1
2 180 12960 2592 2016 252 72

1 1 1 1 1 1
120 12 6 180 12960 2592

1 1 1 1 1 1 ,
2016 252 72 120 12 6

u t x t x t x t x t x t

xt x t xt x t x t x

t x t x t x tx t x tx

= − − − − −


− − − − + +

+ − − − + + 


 

Continuing in a similar way 2 3, , , nu u u  are obtained for some n, then we 
get the approximate solution ( )

0
,ap n

n
u u x t

∞

=

= ∑  which is converge to the exact 
solution 1exu xt= + . 

Table 2 shows the comparison between the absolute error of exact and ap-
proximate solutions for various values of t. Figure 3 and Figure 4 give the plots 
for the exact solution and the approximate solution by application of (ADM) for 

0.5, 1.0t t= =  

3. Modified Adomian Decomposition Method with Mixed 
Conditions 

Wazwaz in [31], suggested a modification to the recurrence relations of the 
Standard Adomian Decomposition Method (ADM). He assumed that the first  
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Table 2. Absolute errors using ADM at 0.5, 1.0t t= =  and 0 1x≤ ≤ . 

t = 1.0 t = 0.5 
x 

φ10 φ5 φ3 φ10 φ5 φ3 

1.98867397e−13 1.94227703e−07 3.03130511e−04 7.38008938e−21 9.91381644e−11 1.16795669e−06 0.0 

1.80979784e−14 5.24225154e−07 3.13576647e−04 1.32310675e−20 1.34624036e−10 1.11741220e−06 0.1 

3.35618411e−13 8.92768322e−07 3.10560067e−04 1.87267309e−20 1.68442683e−10 1.02259378e−06 0.2 

7.19015636e−13 1.27778455e−06 2.91108055e−04 2.27716130e−20 1.98929868e−10 9.15093801e−07 0.3 

1.09372711e−12 1.64754249e−06 2.52542863e−04 2.45567197e−20 2.47291825e−10 1.07394957e−06 0.4 

1.34001536e−12 1.95990772e−06 1.94233658e−04 1.54926759e−19 6.80058898e−10 2.78526691e−06 0.5 

1.29712536e−12 2.16910519e−06 1.22320508e−04 1.31137692e−17 4.84484741e−09 1.02972732e−05 0.6 

7.88380042e−13 2.27490316e−06 6.00678450e−05 6.42509911e−16 3.38038332e−08 3.49347643e−05 0.7 

2.03620129e−13 2.54957010e−06 6.75505137e−05 1.89050311e−14 1.89000465e−07 1.02662323e−04 0.8 

1.01270536e−12 4.36439340e−06 2.75330767e−04 3.75110306e−13 8.69375166e−07 2.66686450e−04 0.9 

4.38984895e−11 1.27237836e−05 9.37415208e−04 5.43693717e−12 3.41245963e−06 6.26917478e−04 1.0 

 

 
Figure 3. The exact solution and the approximate solution using ADM for 3 5 10, ,ϕ ϕ ϕ  at 0.5t = . 

 

 
Figure 4. The exact solution and the approximate solution using ADM for 3 5 10, ,ϕ ϕ ϕ  at 1.0t = . 
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term u0 can be set as function f and divided it into two parts, namely f1 and f2. 
Under this assumption, we set 1 2f f f= + . Also, based on this, we propose a 
slight variation only on the components u0 and u1, the variation is that only the 
part f1 is assigned to the zeroth component u0, whereas the remaining part f2 is 
combined with the other terms to define u1. This reduction in the number of 
terms of u0 will result in reduction of the computational work and will accelerate 
the convergence. Further, this slight variation in the definition of the compo-
nents u0 and u1 may provide the solution by using two iterations only. Further-
more, the calculations below will show that sometimes there is no need to eva-
luate the so-called Adomian polynomials required for the nonlinear differential 
equations. An important observation that can be made here is that the success of 
this method depends mainly on the proper choice of the parts f1 and f2. We have 
been unable to establish any criterion to judge what forms of f1 and f2 can be as-
sumed to yield the acceleration demanded. It appears that trials are the only cri-
teria that can be applied so far. 

3.1. Boundary Value Problems 

Based on the recurrence relation in Equation (2.8) 

( )1
0 ,0 , ,x xxu L g x t−= Φ +  

1 1
1 , 1 , 0.n x n xx tt n xx nu L L u L A n− −
+ += Φ − − ≥  

We can set ( )1
0 ,0 ,x xxu L g x t f−= Φ + = , then we divide it into two parts, so that 

we formulate the modified recursive algorithm as follows: 

0 1,u f=  
1 1

1 2 ,1 0 0 ,x xx tt xxu f L L u L A− −= +Φ − −  
1 1

1 , 1 , 1.n x n xx tt n xx nu L L u L A n− −
+ += Φ − − ≥                (3.1) 

Comparing the recursive scheme in Equation (2.8) of the ADM with the 
scheme in Equation (3.1) of the modified technique leads to the conclusion that 
in Equation (2.8) the zeroth component was defined by the function f, whereas 
in Equation (3.1), the zeroth component u0 was defined by only a part f1 of f, the 
remaining part f2 of f is added to the definition of the component u1 in (3.1). 

3.2. An alternative Combination of the Initial and Boundary  
Conditions 

Based on the recurrence relation in Equation (2.13), we can set 

( ) ( ) ( ) ( )( )1 1
0 ,0

1 ,0 ,0 , ,
2 t x tt xxu u x tu x L g x t L g x t f− −= + +Φ + + =  

Then we divide it into two parts, so that we formulate the modified recursive 
algorithm as follows: 

0 1,u f=  

( )1 1 1 1
1 2 ,1 0 0 0 0

1 ,
2 x tt xx xx tt tt xxu f L L u L L u L A L A− − − −= + Φ − − − −  
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( )1 1 1 1
1 , 1

1 , 1.
2n x n tt xx n xx tt n tt n xx nu L L u L L u L A L A n− − − −

+ += Φ − − − − ≥        (3.2) 

Comparing the recursive scheme in Equation. (2.13) of the ADM with the re-
cursive scheme in Equation (3.2) of the modified technique leads to the conclu-
sion that in (2.13) the zeroth component was defined by the function f, whereas 
in (3.2), the zeroth component u0 is defined only by a part f1 of f, the remaining 
part f2 of f is added to the definition of the component u1 in (2.13). 

In order to demonstrate the efficiency and applicability of the proposed me-
thod, we study example of nonlinear partial differential equations here. 

3.3. Numerical Experiments 

Example 3 
Consider the nonlinear inhomogeneous heat equation 

2 2 2 , 0,t xxu u u x t x t= + − + >  

with specified conditions ( ) ( ) ( ),0 0, 0, 0, 0,xu x u t u t t= = = . 
Rewriting the heat equation in the operator form as 

2 2 2 .t xxL u L u u x t x= + − +  

Applying the inverse operator 1
xxL−  defined by 1 d dxxL x x− ′= ∫ ∫ , we get 

( ) ( ) ( ) ( )1 2 2 1 1 2, , , ,x xx xx t xxu x t L x t x L L u x t L u x t− − −= Φ + − + −  

This gives the recursive relations 

( )1 2 2
0 ,0 ,x xxu L x t x−= Φ + −  

1 1
1 , 1 , 0.n x n xx t n xx nu L L u L A n− −
+ += Φ + − ≥  

So that 

( ) ( ) ( )
( ) ( )

1 2 2
0 1,0 2,0

4 2 3
1,0 2,0

1 1 ,
12 6

xxu c t c t x L x t x

c t c t x x t x

−= + + −

= + + −
 

The first approximant is 1 0uϕ =  Applying the x conditions to 1ϕ  it is clear 
that ( )1,0 0c t =  and ( )2,0c t t= . Thus, if the one-term approximant 1ϕ  were  

sufficient, the “solution” will be 4 2 3
1 0

1 1
12 6

u xt x t xϕ = = + − . We set 0u f= ,  

then we divide it into two parts, so that 

0 1 ,u f xt= =  

( ) ( )

( ) ( )

1 1
1 2 1,1 2,1 0 0

4 2 3 1 1
1,1 2,1 0 0

1 1 .
12 6

xx t xx

xx t xx

u f c t c t x L L u L A

x t x c t c t x L L u L A

− −

− −

= + + + −

 = − + + + − 
 

 

Then 2 0 1u uϕ = +  is given by: 

( ) ( )4 2 3 1 1
2 1,1 2,1 0 0

1 1
12 6 xx t xxxt x t x c t c t x L L u L Aϕ − −= + − + + + −  

Applying the condition at 0x = , we have 1,1( ) 0c t = . From the condition on 
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x at 0, we get ( )2,1 0c t = , thus 1 0u = , and 1 0, 1nu n+ = ≥ . Thus, the approx-
imate solution is 0u u xt= = , which is the exact solution. 

4. Improvement of the Inverse Operator with Mixed  
Boundary Conditions 

In 1999, Lesnic and Elliott [30] employed ADM for solving some inverse boun-
dary value problems in heat conduction, also they applied the modification me-
thod to deal with noisy input data and obtain a stable approximate solution. In 
[32] Lesnic investigated the application of the decomposition method involving 
computational algebra for solving more complicated problems with Dirichlet, 
Neumann or mixed boundary conditions. In [30] the authors defined the opera-
tor 1

tL−  and as definite integrals given by 

0

1 1
0 1
d , d d

t x x
t x x

L t L x x
′− −′ ′ ′′= =∫ ∫ ∫                     (4.1) 

to solve the linear homogeneous heat equation 0, 1, 0t xxu u x x t= < < > , subject 
to the mixed boundary conditions ( ) ( ) ( ) ( )0 1 2, , 1,xu x t h t u t h t= = . 

We will make an extension to the inverse operator (4.1) given in [30] to all 
cases of problems, so that we consider in this section, two types of problems: 
boundary value problems and initial-boundary value problems. 

4.1. Boundary Value Problems 

Consider Equations. (2.2)-(2.3), and applying the inverse operator 1
xxL−  defined 

by 
1 d d

x x
xx a b

L x x
′− ′ ′′= ∫ ∫  to both sides of Equation (2.4), gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1,
, , , , ,xx xx tt xx

u b t
u x t u a t x a L g x t L L u x t L Nu x t

x
− − −∂

= + − + − −
∂

 (4.2) 

i.e. the boundary conditions can be used directly to solve the boundary value 
problem in x-direction. 

Substituting ( ) ( )
0

, ,n
n

u x t u x t
∞

=

= ∑ , and ( ) ( )0 1 2
0

, , , , ,n n
n

Nu x t A u u u u
∞

=

= ∑   into 
Equation (4.2), gives 

( ) ( ) ( ) ( ) ( )

( ) ( )

1

0

1 1

0 0

,
, , ,

, ,

n xx
n

xx tt n xx n
n n

u b t
u x t u a t x a L g x t

x

L L u x t L A x t

∞
−

=

∞ ∞
− −

= =

∂
= + − +

∂

− −

∑

∑ ∑
 

This yields the recursive relations 

( ) ( ) ( ) ( )1
0

,
, , ,xx

u b t
u u a t x a L g x t

x
−∂

= + − +
∂

 

1 1
1 , 0.n xx tt n xx nu L L u L A n− −
+ = − − ≥                  (4.3) 

4.2. An Alternative Combination of the Initial and Boundary  
Conditions 

Here, we take the average of the t partial solution as in Equation (2.11), and the x 
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partial solution as in Equation (4.2) to get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

1 1

,1, ,0 ,0 ,
2

, , , ,

, ,

t

tt xx tt xx xx tt

tt xx

u b t
u x t u x u x t u a t x a

x

L g x t L g x t L L u x t L L u x t

L Nu x t L Nu x t

− − − −

− −

∂
= + + + −

∂
+ + − −


− − 



     (4.4) 

Substituting ( ) ( )
0

, ,n
n

u x t u x t
∞

=

= ∑ , and ( ) ( )0 1 2
0

, , , , ,n n
n

Nu x t A u u u u
∞

=

= ∑   into 

Equation (4.3), gives 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

1 1 1

0

1 1 1

0 0 0

,1, ,0 ,0 ,
2

, , ,

, , ,

n t
n

tt xx tt xx n
n

xx tt n tt n xx n
n n n

u b t
u x t u x u x t u a t x a

x

L g x t L g x t L L u x t

L L u x t L A x t L A x t

∞

=

∞
− − −

=

∞ ∞ ∞
− − −

= = =

∂
= + + + −

∂

+ + −

− − − 


∑

∑

∑ ∑ ∑

 

so that the recurrence relations are 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
0

,1 ,0 ,0 , , ,
2 t tt xx

u b t
u u x u x t u a t x a L g x t L g x t

x
− −∂ 

= + + + − + + 
∂ 

 

( )1 1 1 1
1

1 , 0.
2n tt xx n xx tt n tt n xx nu L L u L L u L A L A n− − − −

+ = − − − − ≥         (4.5) 

To give a clear overview of these methods, we have chosen several differential 
equations. The examples will be approached by the Lesnic‘s Approach and the 
modified technique for comparison reasons. We also compare the approximate 
solution with the exact solution. 

4.3. Numerical Experiments 

Example 4 
Consider the linear homogeneous heat equation 

0, 0 1, 0,t xxu u x t− = ≤ ≤ >  

with specified conditions ( ) ( ) ( ) 1,0 e , 0, e , 1, ex t t
xu x u t u t += = = . 

Rewriting the heat equation in the operator form as t xxL u L u= . Applying the  

inverse operator 1
xxL−  defined by 1

0 1
d d

x x
xxL x x

′− ′ ′′= ∫ ∫ , we get the recursive rela-

tions 

( ) ( )
0

1,
0, ,

u t
u u t x

x
∂

= +
∂

 

1
1 , 0.n xx t nu L L u n−
+ = ≥  

So that 
1

0 e e ,t tu x += +  

1 3 2 1
1

1 1 1e e e e ,
6 2 2

t t t tu x x x x+ += + − −  
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1 5 4 1 3 1
2

1 1 1 1 1 5 1e e e e e e ,
120 24 3 2 4 24 3

t t t t t tu x x x x x+ + +− = + + − + + 
 

 

Continuing in a similar way 2 3, , , nu u u  are obtained for some n, then we 
get the approximate solution ( )

0
,ap n

n
u u x t

∞

=

= ∑  which converged to the exact 
solution ex t

exu += . 
Table 3 shows the comparison between the absolute error of exact and ap-

proximate solutions for various values of t. Figure 5 and Figure 6 show the re-
sults for the exact solution and the approximate solution by application of Les-
nic’s approach for 0.5, 1.0t t= = . 

Example 5 
Consider the linear homogeneous heat equation 

, 0,t xxu u u t= + >  

with specified conditions ( ) ( ) ( )
2π1

0, e , 0, 0
t

xu t u t
−

= = . 
Rewriting the heat equation in the operator form a t xxL u L u u= + . 

Applying the inverse operator 1
xxL−  defined by 1

0 1
d d

x x
xxL x x

′− ′ ′′= ∫ ∫ , we get the 

recursive relations 

( ) ( )
0

0,
0, ,

u t
u u t x

x
∂

= +
∂

 

1 1
1 , 0.n xx t n xx nu L L u L u n− −
+ = − ≥  

So that 

( )2π1
0 e ,

t
u

−
=  

( ) ( ) ( )2 2π1 1 π 2
1

21 1 e e ,
2

π
t t

u x
− −

= − − 
 
 

 

( ) ( ) ( ) ( ) ( )2 2 22 π π π2 21 1 1 4
2

1 1 1 11 e 1 e e ,
4 6 3 6

π π
t t t

u x
− − −

= − − − 
 
 

+  

Continuing in a similar way 3 4, , , nu u u  are obtained for some n, then we 
get the approximate solution ( )

0
,ap n

n
u u x t

∞

=

= ∑  which converged to the exact 
solution ( ) ( )

2π1
c πe os

t
exu x

−
= . 

Table 4 shows the comparison between the absolute error of exact and ap-
proximate solutions for various values of t. Figure 7 and Figure 8 show the re-
sults for the exact solution and the approximate solution by application of Les-
ni’s approach for 0.5, 1.0t t= = . 

Example 6 
Consider the nonlinear inhomogeneous wave equation 

2 2 2 4 42 2 , 0,tt xxu u u x t x t t− + = − + >  

with specified initial condition ( ) ( ),0 0, ,0 0tu x u x= =  and the boundary con-
ditions ( ) ( )0, 0, 0, 0xu t u t= = . 

Rewriting the wave equation in the operator form as 
2 2 2 4 42 2 .tt xxL u L u u x t x t− + = − +  
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Table 3. Absolute errors of Lesnic’s approach at 0.5, 1.0t t= = . 

t = 1.0 t = 0.5 
x 

φ10 φ5 φ3 φ10 φ5 φ3 

0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.0 

1.25782220e−04 1.15032229e−02 7.00545484e−02 7.62907729e−05 6.97705740e−03 4.24902315e−02 0.1 

2.48467264e−04 2.27231903e−02 1.38378497e−01 1.50703014e−04 1.37823116e−02 8.39308011e−02 0.2 

3.65034220e−04 3.33836232e−02 2.03286055e−01 2.21404446e−04 2.02481910e−02 1.23299225e−01 0.3 

4.72612822e−04 4.32220236e−02 2.63178475e−01 2.86654167e−04 2.62154825e−02 1.59625814e−01 0.4 

5.68554127e−04 5.19961385e−02 3.16582967e−01 3.44845510e−04 3.15372522e−02 1.92017276e−01 0.5 

6.50495743e−04 5.94899244e−02 3.62187938e−01 3.94545612e−04 3.60824631e−02 2.19678089e−01 0.6 

7.16419995e−04 6.55188663e−02 3.98874156e−01 4.34530692e−04 3.97392012e−02 2.41929405e−01 0.7 

7.64703609e−04 6.99345194e−02 4.25741433e−01 4.63816184e−04 4.24174302e−02 2.58225232e−01 0.8 

7.94157682e−04 7.26281622e−02 4.42130336e−01 4.81680983e−04 4.40512072e−02 2.68165604e−01 0.9 

8.04056958e−04 7.35334732e−02 4.47638409e−01 4.87685197e−04 4.46003060e−02 2.71506419e−01 1.0 

 
Table 4. Absolute errors of Lesnic’s approach at 0.5, 1.0t t= = . 

t = 1.0 t = 0.5 
x 

φ10 φ5 φ3 φ10 φ5 φ3 

0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.0 

4.00000000e−33 3.62569093e−16 1.87405030e−10 4.00000000e−31 3.05774246e−14 1.58048860e−08 0.1 

5.30984100e−27 3.70439590e−13 1.19307420e−08 4.47807730e−25 3.12411864e−11 1.00618440e−06 0.2 

1.76377518e−23 2.12818773e−11 1.34709647e−07 1.48748759e−21 1.79481652e−09 1.13607976e−05 0.3 

5.55353720e−21 3.75953232e−10 7.47656780e−07 4.68360013e−19 3.17061819e−08 6.30539648e−05 0.4 

4.80770055e−19 3.47801646e−09 2.80759946e−06 4.05459549e−17 2.93320054e−07 2.36780141e−04 0.5 

1.83884976e−17 2.13603726e−08 8.22461404e−06 1.55080207e−15 1.80143646e−06 6.93626458e−04 0.6 

4.00205716e−16 9.88361203e−08 2.02783311e−05 3.37515258e−14 8.33538786e−06 1.71018201e−03 0.7 

5.76423702e−15 3.71583868e−07 4.40342408e−05 4.86129475e−13 3.13376896e−05 3.71364715e−03 0.8 

6.05663528e−14 1.19178044e−06 8.67192471e−05 5.10789012e−12 1.00509330e−04 7.31350601e−03 0.9 

4.96182279e−13 3.37123368e−06 1.58019709e−04 4.18457517e−11 2.84314481e−04 1.33266620e−02 1.0 

 

 
Figure 5. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 0.5t = . 
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Figure 6. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 1.0t = . 

 

 
Figure 7. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 0.5t = . 
 

 
Figure 8. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 1.0t = . 
 

Firstly, we consider the t partial solution as 
2 2 2 4 42 2 .tt xxL u L u u x t x t= − + − +  

Applying the inverse operator 1
ttL−  defined by 1

0 0
d d

t t
ttL t t− = ∫ ∫ , gives the re-

cursive relations 
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( ) ( ) ( )1 2 2 4 4
0 ,0 ,0 2 2 ,t ttu u x tu x L x t x t−= + + − +  

1 1
1 , 0.n tt xx n tt nu L L u L A n− −
+ = − ≥  

So that 

4 6 4 2 2
0

1 1 ,
30 6

u x t t x t= − +  

2 8 4 8 14 4 12
1

6 10 4 6

11 1 1 1
840 6 163800 11880

1 1 1 1 ,
10 135 324 30

u x t t x t x t

x t x t

= + − +

 − + − 
 

 

Secondly, we consider the x partial solution 
2 2 2 4 42 2 .xx ttL u L u u x t x t= + − + −  

Applying the inverse operator 1
xxL−  defined by 1

0 0
d d

x x
xxL x x

′− ′ ′′= ∫ ∫ , gives the 
recursive relations 

( ) ( ) ( )1 2 2 4 4
0

0,
0, 2 2 ,xx

u t
u u t x L x t x t

x
−∂

= + + − + −
∂

 

1 1
1 , 0.n xx t n xx nu L L u L A n− −
+ = − ≥  

So that 

4 6 4 2 2
0

1 1 ,
30 6

u t x x x t= − − +  

2 8 4 8 14 4 12
1

6 10 4 6

11 1 1 1
840 6 163800 11880
1 1 1 1 ,

10 135 324 30

u t x x t x t x

t x t x

= − + + +

− + + + 
 

 

Next, we average the partial solutions, i.e. add two partial solutions and divide 
by two, so we obtain 

4 6 4 2 2 4 6 4
0

1 1 1 1 12 ,
2 30 6 30 6

u x t t x t t x x = − + − − 
 

 

2 8 4 8 14 4 12
1

6 10 4 6 2 8

4 8 14 4 12

6 10 4 6

1 11 1 1 1
2 840 6 163800 11880

1 1 1 1 11
10 135 324 30 840
1 1 1
6 163800 11880
1 1 1 1 ,

10 135 324 30

u x t t x t x t

x t x t t x

x t x t x

t x t x

= + − +


 − + − − 
 

+ + +

−  + + +  
  

 

Continuing in a similar way 2 3, , , nu u u  are obtained for some n, then we 
get the approximate solution ( )

0
,ap n

n
u u x t

∞

=

= ∑  which converged to the exact 
solution 2 2

exu x t= . 
Table 5 shows the comparison between the absolute error of exact and ap-

proximate solutions for various values of t. Figure 9 and Figure 10 show the  
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Table 5. Absolute errors of Lesnic’s approach at 0.5, 1.0t t= = . 

t = 1.0 t = 0.5 
x 

φ10 φ5 φ3 φ10 φ5 φ3 

1.17411886e−14 6.66358850e−07 2.99609298e−04 6.85095911e−25 1.01879027e−11 2.92793246e−07 0.0 

6.46368619e−15 6.67335460e−07 2.99751384e−04 5.49993680e−25 1.01884440e−11 2.92797760e−07 0.1 

9.47122029e−15 6.68628865e−07 2.99906957e−04 4.25441720e−24 1.01838277e−11 2.92714604e−07 0.2 

3.60495597e−14 6.65318536e−07 2.99261398e−04 1.04069553e−23 1.01582155e−11 2.90660076e−07 0.3 

7.21721640e−14 6.49193205e−07 2.96428943e−04 1.88856065e−23 1.03640472e−11 2.59880611e−07 0.4 

1.14059558e−13 6.08842328e−07 2.89265750e−04 1.39263400e−24 2.03770775e−11 6.38490216e−09 0.5 

1.53190969e−13 5.30208113e−07 2.73991554e−04 1.04956960e−20 2.05585573e−10 1.55441030e−06 0.6 

1.74249490e−13 4.00247226e−07 2.42057261e−04 1.45619577e−18 2.34523011e−09 8.35705522e−06 0.7 

1.53300820e−13 2.32477815e−07 1.70952966e−04 1.03741414e−16 2.00278856e−08 3.27155910e−05 0.8 

2.08420940e−14 2.20560700e−07 8.65289576e−07 4.44838968e−15 1.33275317e−07 1.07359772e−04 0.9 

1.53639602e−12 1.50572369e−06 4.18259832e−04 1.27588322e−13 7.26354463e−07 3.09754605e−04 1.0 

 

 
Figure 9. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 0.5t = . 
 

 

Figure 10. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 1.0t = . 
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results for the exact solution and the approximate solution by application of 
Lesnic’s approach for 0.5, 1.0.t t= =  

Example 7 
Consider the nonlinear inhomogeneous heat equation 

2 2 2e e , 0,x x
t xxu u u u t t= + − − + >  

with specified conditions ( ) ( ) ( ),0 0, 0, , 0,xu x u t t u t t= = = . Rewriting the heat 
equation in the operator form as 

2 2 2e e .x x
t xxL u L u u u t= + − − +  

Applying the inverse operator 1
xxL−  defined by 1

0 0
d d

x x
xxL x x

′− ′ ′′= ∫ ∫ , we get the 
recursive relations 

( ) ( ) ( )1 2 2
0

0,
0, e e ,x x

xx
u t

u u t x L t
x

−∂
= + + −

∂
 

1 1 1
1 , 0.n xx t n xx n xx nu L L u L u L A n− − −
+ = + − ≥  

So that 

2 2 2 2
0

1 1 11 e e ,
4 2 4

x xu t xt t t x x t= + + − − + + −  

We set 0u f=  then we divide it into two parts, so that 

0 1 ,u f t xt= = +  

1 1 1
1 2 0 0 0

2 2 2 2 3 2

2 4 2 3 2 2 3 2

1 1 1 1 11 e e
4 2 4 6 2

1 1 1 1 1 ,
12 3 2 6 2

xx t xx xx

x x

u f L L u L u L A

t t x x t x x

t x t x t x tx tx

− − −= + + −

 = − − + + − + + 
 

− − − + +

 

Continuing in a similar way 2 3, , , nu u u  are obtained for some n, then we 
get the approximate solution ( )

0
,ap n

n
u u x t

∞

=

= ∑  which converged to the exact 
solution ex

exu t= . 
Table 6 shows the comparison between the absolute error of exact and ap-

proximate solutions Lesnic’s approach and modified of Lesnic’s approach for 
various values of t. Figure 11 and Figure 12 show the results for the exact solu-
tion and the approximate solution by application of Lesnic’s approach and mod-
ified of Lesnic’s Approach for 0.5t = . 

5. Conclusion 

The main goal of this paper is the development of an efficient and accurate me-
thod to solve linear and nonlinear initial-boundary value problems with mixed 
boundary conditions. The method developed provides the solution in the form 
of rapidly convergent series relative to the Adomian decomposition method. It 
also introduces a slight change in the formulation of Adomian recursive relation. 
The method presented is applied to several examples of boundary-value prob-
lems and initial boundary-value problems with mixed type boundary conditions.  
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Table 6. Absolute errors of Lesnic’s approach and modified of Lesnic’s Approach at 0.5t = . 

modified of  Lesnic’s Approach Lesnic’s Approach 
x 

φ10 φ5 φ3 φ10 φ5 φ3 

1.00000000e−16 1.00000000e−27 0.00000000e+00 0.00000000e+00 2.00000000e−24 0.00000000e+00 0.0 

1.24058539e−17 1.06888605e−16 3.81571653e−09 1.37823812e−10 3.57237376e−14 2.00447357e−08 0.1 

1.83039464e−16 3.14421657e−13 2.67012987e−07 8.00849170e−11 3.85833086e−11 1.33381463e−06 0.2 

5.19918722e−17 4.40980463e−11 3.31116702e−06 1.19984480e−11 2.34517027e−09 1.57920700e−05 0.3 

2.58912426e−16 1.27255431e−09 2.01789433e−05 7.93648411e−11 4.38853494e−08 9.22165384e−05 0.4 

7.73424325e−16 1.66889704e−08 8.32226565e−05 1.49935927e−10 4.30762657e−07 3.65597018e−04 0.5 

1.65874377e−14 1.35122395e−07 2.67910691e−04 1.95254487e−10 2.81244230e−06 1.13467005e−03 0.6 

4.24060812e−13 7.88954237e−07 7.26544297e−04 2.35238261e−10 1.38657115e−05 2.97453012e−03 0.7 

7.09170229e−12 3.63635665e−06 1.73726451e−03 2.49626415e−10 5.56852385e−05 6.89226862e−03 0.8 

8.56616462e−11 1.40126738e−05 3.77230615e−03 1.32152517e−09 1.91314569e−04 1.45351895e−02 0.9 

8.00241318e−10 4.69348011e−05 7.59013963e−03 1.18704774e−08 5.81448247e−04 2.84628000e−02 1.0 

 

 
Figure 11. The exact solution and the approximate solution of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 0.5t = . 

 

 
Figure 12. The exact solution and the approximate solution of Modified of Lesnic’s approach for 3 5 10, ,ϕ ϕ ϕ  at 0.5t = . 
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The accuracy and computational efficiency of the proposed method are verified 
by numerical examples. Thus, the method is highly recommended for varieties 
of mixed boundary value problems. 
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