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Abstract 

As the development of Wireless Sensor Network (WSN), software testing for WSN-based applications be-
comes more and more important. Simulation testing is an important approach to WSN-based software testing, 
and TOSSIM is the most widely used simulation testing tool targeted at TinyOS which is the most popular 
operating system nowadays. However, simulation testing tools such as TOSSIM can not reveal program er-
rors about communication detail or timing, and lack accurate power consumption model and even can not 
support power consumption estimation. In this paper, a hybrid testbed H-TOSSIM is proposed, which ex-
tends TOSSIM with physical nodes. H-TOSSIM uses three physical nodes, of which, one shares the simu-
lated environment with all virtual nodes to test the WSN program, and the other two bridge the real world 
and the simulated environment. H-TOSSIM combines the advantages of both the simulation in physical node 
and the simulation testing tools in WSN software testing. Through experiments, we show that H-TOSSIM 
really reveals program errors which the pure simulation testing can not capture, and can support power con-
sumption estimation for large WSN with high accuracy and low hardware cost. 
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1. Introduction 
 
1.1. Background 
 
Recent advances in electronic technology and the need of 
practical applications enable the rapid development of 
Wireless Sensor Network (WSN), which consists of 
many resource-limited sensor nodes, and can monitor the 
phenomena in the physical world. WSN can be applied 
in military surveillance, environmental monitoring, 
health diagnostics, home automation, etc [1]. One of the 
primary challenges in the researches on WSN is software 
testing. A sensor network is self-configuration, and its 
nodes are low-power embedded devices, which make its 
software testing challenging. 

Simulation testing and hardware-in-the-loop (HIL) 
testing are the main approaches to WSN software testing. 
There exist many simulation tools for sensor networks. 
In simulation testing, the sensor network environment is 
simulated through pure PC software, which is controlla-
ble, convenient and low-cost. HIL testing is one kind of 
important means for embedded software testing. Com-
monly, HIL testing tools for WSN consist of dozens of 

physical sensor nodes. In HIL testing, the program under 
test runs in the physical sensor nodes with some assistant 
middleware. Compared with simulation testing, HIL 
testing can reveal more defects; however, it is high-cost 
and not so convenient. 

TOSSIM [2–4] is one of the most widely used simu-
lators for WSN, which is designed for TinyOS [5–7] 
programs. TinyOS is the most popular operating system 
for WSN nowadays, which supports almost all popular 
sensor nodes; and its latest release is TinyOS 2.x, which 
is corresponding to TOSSIM 2.x. In this paper, only 
TOSSIM 2.x instead of TOSSIM 1.x is considered. 
TinyOS is component-based and event-driven, and 
TOSSIM simulates the sensor network through replacing 
some low-level components and introducing a discrete 
event queue. As a TinyOS WSN simulator, TOSSIM is 
accurate and scalable. With its help, developer can test 
the program before TinyOS application is deployed. 
 
1.2. Motivation 
 
Simulation testing tools such as TOSSIM have some 
problems in WSN software testing. Firstly, they are dif-
ficult to reveal program defects and faults related with 
communication details or timing. Secondly, they are hard  
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to include an accurate power consumption model. And 
these problems are mainly caused by pure software 
simulation. 

Taking TOSSIM as the representative, it has the fol-
lowing defects and inadequacy. The first is that TOSSIM 
can not reveal length setting error of message sending. In 
a TinyOS program, message sending is a common opera-
tion, and when sending a message, its length must be set 
correctly. However, even if the length of a message is set 
to be less than its intended size, TOSSIM can not reveal 
this fault when testing the program. Yet exceptions will 
occur for such program to run in the physical sensor 
network because messages will be partly lost. 

The second is that TOSSIM can not reveal task calcu-
lation overload problem. Task is a deferred procedure 
call in TinyOS, which is used to complete some calcula-
tion. For example, a TinyOS program sends a message 
every 100 ms, and posts a task which includes 200 thou-
sands multiplication before each sending. In the simula-
tion testing of TOSSIM, such program works fine. 
However, when running in the physical sensor network, 
the task calculation overload problem will occur: the 
number of messages a node sends per second is much 
less than the expectation (about 10 messages, in this 
case). 

There is also an inadequacy in TOSSIM; it does not 
support the power consumption estimation of sensor 
nodes, which is an important issue in WSN software 
testing because most sensor nodes are power-limited. 
Though PowerTOSSIM [8], a pure software extension to 
TOSSIM, can estimate the power consumption of sensor 
node, yet it is not so accurate and supports only one kind 
of sensor node. HIL testing can also estimate the power 
consumption of sensor nodes through digital multimeter; 
however, its hardware cost is too high because it needs 
dozens of physical sensor nodes.The problems existing 
in the simulation testing tools such as TOSSIM impede 
the comprehensive testing for WSN software, which may 
increase the cost of the application development. And 
these problems are difficult to solve by pure software 
extension. 
 
2. Related Work 
 
There exist many testing tools dedicated to WSN soft-
ware testing. In the following discussion, ns-2 [9], Sen-
sorSim [10], EmTOS [11], PowerTOSSIM, AMETU [12] 
and avrora [13] belong to simulation testing tools; TO-
SHILT [14], MoteLab [15] and DSN [16] belong to HIL 
testbed. 

Ns-2 is a universal network simulator which has been 
popular for many years. SensorSim is an extension to 
ns-2, which integrates some WSN features. Both ns-2 
and SensorSim can not support TinyOS program di-
rectly. 

EmTOS is an extension to EmSim [17] which is de-
signed for EmStar [17], another WSN operating system. 
EmTOS can simulate heterogeneous WSN, which sup-
ports both EmStar and TinyOS programs. PowerTOS-
SIM is an extension to TOSSIM, and supports the power 
consumption estimation of the node; however, its error 
rate can be up to 13% and it supports only one kind of 
sensor node. 

AMETU and avrora are both fine-grained TinyOS 
program simulators, and they both simulate the WSN in 
instruction level. The differences between them are 
mainly the synchronization strategy for different nodes. 

Because of the simplification of the network layer, 
these simulators are difficult to reveal program faults 
related to communication details. And they also can not 
reveal program faults related to timing since they do not 
model the practical capability of sensor nodes. 

TOSHILT, MoteLab, and DSN are HIL testbeds, all of 
which consist of dozens of physical sensor nodes. The 
differences of them are mainly the connection type be-
tween sensor nodes and the console. All of them can re-
veal more faults than simulation testing; however, their 
hardware cost is too high and they are not convenient 
when testing WSN programs. 
 
3. Proposed Solution 
 
As discussed above, pure software extension is not the 
solution to solve the problems existing in simulation 
testing tools such as TOSSIM. Instead, physical nodes 
are considered here because they are the target platforms 
for WSN software and may capture more problems. So, 
the solution which combines the physical nodes and the 
simulated environment is proposed in this paper. This 
solution is called H-TOSSIM, which extends TOSSIM 
with physical nodes. In H-TOSSIM, not all TinyOS pro-
grams run in the physical nodes, because that costs too 
much and is inconvenient. H-TOSSIM is a hybrid testbed. 
In fact, there will be just only one physical node in the 
 

 

Physical node Virtual node 

 

Figure 1. An example of the tested WSN topology in 
H-TOSSIM. 

Copyright © 2009 SciRes.                                                                                 WSN 



326                                           W. J. LI  ET  AL 
 
tested WSN topology of H-TOSSIM, and others are all 
virtual nodes. The only physical node can be configured 
to be a neighbor of any virtual node. As shown in Figure 
1, in H-TOSSIM, one physical node interacts with other 
virtual nodes so as to test the TinyOS program, and all 
nodes run the same program. So the potential faults 
which pure simulation testing tools can not reveal will be 
captured through the interaction between the physical 
node and other virtual nodes. Another advantage of 
H-TOSSIM is that the power consumption of a node in a 
large WSN can be estimated through digital multimeter 
with low hardware cost. 

In H-TOSSIM testbed, the physical node runs in the 
real world, and the virtual nodes run in the simulated 
environment of PC, so two extra physical nodes are 
needed as dual base stations to bridge the physical node 
and the virtual nodes. It means that H-TOSSIM totally 
needs three physical nodes. 
 
4. Design of H-TOSSIM 
 
4.1. Overview of the Architecture 
 
Figure 2 shows the overview of the architecture of 
H-TOSSIM, which consists of a PN, a pair of DBS, two 
SFs, an MTTS, an ESECT and a GNB. PN is a physical 
sensor node which runs the TinyOS application under 
test. DBS consists of two base stations, which bridges the 
PN and the PC side of H-TOSSIM. SF is a tool provided 
by TinyOS to support serial communication, of which, 
one end connects the serial port and communicates with 
one of the DBS, and the other end may communicate 
with any PC program through socket. MTTS provides 
the services of messages transformation and transfer, and 
its both ends are separately two SFs and ESECT. ESECT 
is an extension to TOSSIM which aims to implement the 
 

 

Figure 2. The architecture of H-TOSSIM. 

synchronized execution and communication for the vir-
tual nodes with the only physical node. ESECT includes 
five parts: the modification of TOSSIM, a driver, a re-
ceiver, a sender, and a GNB sender. GNB is a graphical 
network browser, which displays the network interaction 
situation in a GUI (Graphical User Interface). 

In the following of this section, DBS, MTTS, ESECT 
and GNB will be introduced in detail. PN will be referred 
in the design of DBS. And since SF is a tool from 
TinyOS, it is discussed briefly in the design of MTTS. 
 
4.2. DBS 

 
DBS is mainly used to transfer the messages between PN 
and the serial communication. Herein, we first explain 
why DBS but not single BS is used. There are two rea-
sons. The first reason is to make messages sending from 
the virtual nodes to PN become concurrent. In 
H-TOSSIM, PN may have several virtual neighbors; 
however, all messages sent from the virtual nodes to PN 
are serialized in ESECT. Yet if we want to finds out 
more program faults through PN, we should test the case 
that PN receives messages concurrently. So DBS is 
adopted. With DBS, messages sent in high rate from the 
virtual nodes will be forwarded to each of the DBS al-
ternatively, which will bring concurrency because of the 
relatively low-speed DBS.  

The second reason is that wireless radio rate is ap-
proximately as twice as serial rate. There are many kinds 
of physical sensor nodes, and the radio rates of some of 
them can be up to 250 Kbps [18,19]. However, the BS 
connects with the PC through serial communication, of 
which the rate is just up to 115 Kbps. When PN sends 
messages in a high rate, there will be blocking between 
the BS and PC if only one single BS is used. That is why 
DBS is used in H-TOSSIM. With DBS, the transfer rate 
between PN and PC can be up to 230 Kbps, which is 
high enough because the serial messages are usually 
shorter than the corresponding radio messages. 

DBS physically consists of two BS’s; however, it is 
not the simple combination of two BS’s in software. 
The main differences between DBS and BS are re-
flected on the direction from PN to PC. In the direction 
from PC to PN, each of the DBS transfers every mes-
sage received from serial to radio. However, in the 
other direction, each of the DBS only transfers half of 
the messages it receives from PN, and drops every 
message from the other BS. In order to make each of 
the DBS transfer half of the messages from PN, every 
message sent from PN is flagged to designate which of 
the DBS should deal with it. In H-TOSSIM, the source 
field of the message is chosen as the location of the 
flag because it can be retrieved in ESECT. The work of 
flag setting is done by a modified low component of 
TinyOS in PN, and the tested. 
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Figure 3. Threads relations of MTTS. 
 

application does not need any modification. In fact, DBS 
should also deal with message format transformation 
between radio messages and serial messages; however, it 
is rather trivial with the help of TinyOS components. 
 
4.3. MTTS 
 
MTTS connects two SFs with ESECT. An SF communi-
cates with a BS through a serial port in one end, and pro-
vides a socket server in the other end. MTTS connects to 
two SFs as a client and provides a socket server for 
ESECT. Figure 3 shows the threads composition of 
MTTS. 

In one end of MTTS, there are two SF receivers which 
will get SF messages from two SFs and put them into the 
buffer for SF-to-TOSSIM direction, and there is also an 
SF sender which handles with sending messages from 
the buffer for TOSSIM-to-SF direction to two SFs alter-
natively. And at the other end, there will be at least one 
TOSSIM receiver which gets TOSSIM messages from 
ESECT and put them into the buffer for TOSSIM-to-SF 
direction, and there will be only one TOSSIM sender 
which is used to send messages from the buffer for 
SF-to-TOSSIM direction to any clients connected with 
MTTS. In short, messages from two SFs are aggregated 
to any MTTS client in SF-to-TOSSIM direction, and 
messages from any MTTS client are dispatched to two 
SFs alternatively in TOSSIM-to-SF direction. And there 
is also a main control thread group which manages all 
the senders and receivers. 

Besides messages transfer, MTTS should also take 
charge of message formats transformation between SF 
message and TOSSIM message. SF message format is 
similar to that of serial message except an extra field 
called as AM type is added at the head of SF message. 
And TOSSIM message format is the same as that of se-
rial message when just considering the header and the 
data region of the message. Though there are other parts 
in TOSSIM message, only the header and the data region 
are considered in MTTS because ESECT will manage 
the other parts of TOSSIM messages. So, message for-
mats transformation in MTTS is mainly implemented by 
the adding or removing of the AM type fields. And ex- 

 

Figure 4. The architecture of ESECT. 
 

cept AM type fields, network byte order of some other 
fields in the message may also be changed since network 
byte order can be different between both ends. All this 
transformation is done by each direction’s buffer. 
 
4.4. ESECT 
 
Figure 4 shows the architecture of ESECT. In ESECT, 
execution model, radio model, ADC model and TOSSIM 
components belong to the original TOSSIM; driver, re-
ceiver, sender and GNB sender are newly introduced. 

Execution model is the foundation of TOSSIM, and it 
is based on a discrete TOSSIM event queue. In TOSSIM, 
the simulated WSN is driven by TOSSIM events. A 
TOSSIM event is different from a TinyOS event which is 
a kind of procedure call; however, a TOSSIM event is a 
structure which is associated with a virtual clock. All 
TOSSIM events in the event queue are ordered ascend-
ingly according to the virtual time. And the running of 
TOSSIM is in accordance with the ordered TOSSIM 
events. 

Radio model and ADC model are separately used to 
model the radio environment anc d the sensing environ-
ment. TOSSIM components are used to replace those 
low-level and hardware-specific components. All these 
components establish the simulated environment. 

In the following, the newly introduced parts will be 
discussed, which enable the simulated environment to 
interact with the physical sensor node normally. 

Driver The driver builds the simulated environment 
which is shared by all nodes, drives the simulated WSN, 
and synchronizes the single physical node and the virtual 
nodes.  

The driver first creates the topology of the network 
and the noise of each node based on a configuration file. 
In order to make PN share the same simulated environ-
ment with all virtual nodes, a virtual agent which repre-
sents the single physical node is created in the simulated 
environment. Figure 5 shows the interaction between PN 
and the virtual nodes through the virtual agent. In 
ESECT, messages sent from the virtual nodes to PN are 
first sent to the virtual agent, and then sent to PN by the 
sender of ESECT; however, messages from PN are di- 
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Figure 5. Interaction between PN and the virtual nodes. 
 
rectly sent to the virtual nodes. In fact, the virtual agent 
here is only a stub which does not run the TinyOS pro-
gram under test. After building the simulated environ-
ment, the driver will also establish all connections to 
MTTS and GNB if possible. 

In order to drive the simulated environment, the driver 
sets the boot-up time for all virtual nodes (excluding the 
virtual agent) by inserting corresponding TOSSIM 
events into the discrete event queue. When the simula-
tion starts, the driver gets the latest TOSSIM event con-
tinually from the discrete event queue, and then runs the 
event handler. Because every TOSSIM event is related to 
a node, the execution of the event handler causes the 
corresponding node to take some actions, which may 
produce some more TOSSIM events such as to assure the 
running of ESECT. 

The time associated with a TOSSIM event is virtual, 
but the time in PN is real. They are very different. 
Therefore synchronization is essential to maintain a cor-
rect interaction between the virtual nodes and PN. Gen-
erally speaking, the virtual clock ticks faster than the real 
clock when simulating not too large WSN applications. 
So when fetching the latest TOSSIM event, the driver 
checks whether the virtual time is faster than the real 
time; if so, the driver will sleep until the real time is 
equal with the virtual time, and otherwise it will execute 
the event handler immediately. 

Receiver The receiver in ESECT is used to receive 
messages from MTTS and forward them to the neighbors 
of PN. The receiver is not controlled by the driver; in-
stead, it inserts new TOSSIM events about message re-
ceiving for the driver. When the receiver receives a mes-
sage, it creates a new TOSSIM message according to the 
one received and the ID of PN, and then deliver it to the 
message list of any virtual node next to PN. The receiver 
also creates a TOSSIM event for every virtual node next 
to PN when sending a message to it. 

Sender The sender is controlled by the driver and 
starts each time the event handler of the virtual agent is 
executed. In fact, there are only events about message 
receiving in all TOSSIM events of the virtual agent be-
cause it does not run actually. So, the occurrence of a 
TOSSIM event of the virtual agent means that a virtual 
node sends a message to PN. Meanwhile, the sender will 

fetch the message in the message list of the virtual agent, 
and send it to MTTS. 

GNB Sender The GNB sender manages sending net-
work interaction information to GNB, and starts every 
time a TOSSIM event about message receiving occurs. If 
a TOSSIM event is about message receiving, it records 
both the source and the destination of the message. And 
when the GNB sender starts, it creates a short message 
which includes the source and the destination of the 
message according to the information of the occurring 
TOSSIM event, and then sends it to GNB. 
 
4.5. GNB 
 
GNB is a graphical browser for the tested WSN, showing 
the network interaction dynamically. Figure 6 shows the 
graphical interface of GNB, which is displaying the in-
teraction of an 8-node network. In GNB, each circle 
represents a node, and the color of the single physical 
node is different from others. An array represents a mes-
sage from the rear of the array to the head of the array. 

GNB consists of two threads, of which, one is used to 
show and update the interface, and the other is used to 
receive short messages from ESECT. The positions of 
the nodes in GNB can be random or designated by the 
user. When ESECT starts, GNB collects the interaction 
information continuously, and updates the interface pe-
riodically. Through GNB, the tester can get an overall 
sight of the WSN application under test, which is helpful 
for revealing some defects and faults in the program. 
 
5. Evaluation 
 
In this section, we show that H-TOSSIM really solves 
the problems existing in pure simulation testing tools 

 

 

Figure 6. The graphical interface of GNB. 
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Figure 7. The testbed of H-TOSSIM. 

 
such as TOSSIM. Figure 7 shows the testbed of H- 
TOSSIM. On the left, there is a laptop running two SFs, 
MTTS, ESECT, and GNB; in the center, there are three 
physical nodes, of which the two side-by-side nodes are 
used as DBS, and the remaining one is PN; on the right, 
there is a digital multimeter which is used to record the 
current of PN, and its result is saved to the desktop. The 
digital multimeter and the desktop are an option for es-
timating the power consumption of PN. 

In the rest of this section, the applications under test 
we choose are typical, which means: 1) they were de-
veloped by the scholars who designed and implemented 
the TinyOS and TOSSIM, and distributed along with the 
TinyOS 2.x Package; 2) many researches on WSN test-
ing also use these applications for evaluating their simu-
lators. Besides, for better understanding of the advan-
tages of H-TOSSIM against TOSSIM, comparisons of 
testing the same application are made. 
 
5.1. Revealing the Length Setting Error of Mes-

sage Sending 
 

In the nesC programming, before sending out a message 
via the radio, the code must explicitly depicts the length 
of the package. Hence it has a chance that the declared 
length and the actual length of the package are not cor-
responding. In the real network, the radio component of a 
mote sends out the data according to the declared length, 
so the above case possibly leads to a incomplete package 
and unpredictable errors. However, TOSSIM, for the 
consideration of scalability, simulates the package send-
ing by delivering a pointer to the package in the com-
puter memory from the source node to the destination 
node, instead of the entire package, and this mechanism 
makes it can’t reveal the length setting error of message 
sending. H-TOSSIM has a physical network, which be-
haves identical to any node in the real network, so it has 
the ability to reveal this error. 

typedef nx_struct Ra-
dioToBlinkMsg2 { 

   nx_uint16_t nodeid; 
   nx_uint8_t group; 
   nx_uint8_t value; 
} RtoBGroupMsg_t; 
 

RtoBGroupMsg_t message 

typedef nx_struct Ra-
dioToBlinkMsg { 

   nx_uint16_t nodeid; 
   nx_uint16_t counter; 
   nx_uint8_t flag; 
} RtoBFlagMsg_t; 
 

RtoBFlagMsg_t message 

Figure 8. The structures of the two types. 
 

In the following experiments, the program called as 
RadioToBlink is tested. This program sends two types of 
messages periodically, and these two types are separately 
called as RtoBGroupMsg_t and RtoBFlagMsg_t. Figure8 
shows the structures of the two types. RtoBGroupMsg_t 
message is 4 bytes, and RtoBFlagMsg_t message is 5 
bytes 

In the two types of messages, the nodeid field is the 
source id of the message; the counter field is the value of 
a variable kept in the program which will increase by 1 
whenever a RtoBGroupMsg_t message is sent; the group 
field and the value field are separately the high byte and 
the low byte of the counter; the flag field is the value of 
the lowest 3 bits of the counter. 

We implant a fault in this program: the length of 
RtoBFlagMsg_t message is set to be 4 bytes when send-
ing it out. In such a case, this type of message will be 
partly lost. We test the program in TOSSIM and 
H-TOSSIM. Figure 9 and 10 show the tested network 
topologies in TOSSIM and H-TOSSIM. 

Figure 11 and 12 give the testing results, which show 
the messages received by node 2. From Figure 11, it can 
be shown that all RtoBFlagMsg_t messages received are 
normal. It means that TOSSIM can not reveal the length 
setting error of the program. However, from Figure 12, 

 

 

Figure 9. The tested network topology in TOSSIM. 
 

 

Figure 10. The tested network topology in H-TOSSIM. 
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Figure 11. The debugging information for RadioToBlink in 
TOSSIM. 

 

 

Figure 12. The debugging information for RadioToBlink in 
H-TOSSIM. 

 
we can see that the flag fields of RtoBFlagMsg_t mes-
sages received from node 4 keep being 0, which means 
that the flag field is lost. That is to say, H-TOSSIM can 
reveal the length setting error through the comparison of 
PN and other virtual nodes. 
 
5.2. Revealing Calculation Overload Problem in 

a Task 
 
In the real network, while the mote is processing a heavy 
task, it possibly ignores program interrupts because there 
is not enough CPU resource to handle the interrupt. 
Consequently, it leads some unexpected errors, such as 
loss of package. So the programmer needs to test 
whether his application will has a defect causing the 
mote into a calculation overload status. However, events 
in TOSSIM, by the mechanism of discrete event, are 
considered as completion in a snap in the simulated vir-
tual environment. As a result, the calculation overload 
problem never occurs in TOSSIM. However, this situa-

tion exists in the physical node of H-TOSSIM, which is 
helpful for the developer to find out his application’s 
defect. 

In the following experiments, the program called as 
BlinkToRadio will be tested. This program sends a 
BtoRFlagMsg_t message every T time, and posts a task 
to do some processing before each message sending. The 
structure of the BtoRFlagMsg_t message is the same 
with that of RtoBFlagMsg_t message. And the counter 
variable in the program will increase by 1 when sending 
a message. Here T is set to be 200 ms, and there is 
300000 times multiplication in a task. 

We test this program in both TOSSIM and H-TOSSIM 
for 10 seconds. And each node is expected to send 50 
messages totally. The testing network topologies in 
TOSSIM and H-TOSSIM are the same with that of the 
previous testing. 

Figure 13 and 14 give the testing results, which focus 
on the messages received by node 2. From Figure 13, it 
can be shown that the value of the counter field is ap-
proximately 50 finally, which is as expected. However, 
this does not mean that the program is correct when it is 

 

 

Figure 13. The debugging information for BlinkToRadio in 
TOSSIM. 

 

Figure 14. The debugging information for BlinkToRadio in 
H-TOSSIM. 
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of a node in these three networks. We can see that the 
power consumptions of a node in different sizes of net-
works are different. So H-TOSSIM is necessary and useful, 
we can use it to estimate power consumption for different 
sizes of WSN with only three physical nodes. 

deployed. From the result of H-TOSSIM, we can see that 
the value of the counter field of the message from PN is 
much less than that of the virtual node, which indicates 
that the calculation of the task in the program is over-
laden. That is to say, H-TOSSIM can reveal the calcula-
tion overload problem in a task.  
 

 

5.3. Estimating the Power Consumption 
 
H-TOSSIM needs a digital multimeter when it estimates 
the power consumption of a node; however, its advan-
tage is that it supports the power consumption estimation 
of single node in a large WSN with low hardware cost. 
In this section, we first justify that H-TOSSIM is neces-
sary and useful; and then we evaluate the accuracy of 
H-TOSSIM; finally, to show the advantage of H-TOS-
SIM, we use it to estimate the power consumption of a 
single node in different size of WSN. 

Figure 15. Average current of A node in different size of 
WSN. 

 

In the following experiments, a program called Sen-
sorToRadio is used. This program reads sensing result 
every second and sends it out as a message. When the 
program receives a message, it will do some processing, 
and then forwards it if it is a new value. The program 
will be tested for 150 seconds every time. Because the 
voltage of PN can be kept 3V for a time, average current 
is used to measure the power consumption. 

We test the program in three different sizes of physical 
sensor networks and estimate the power consumption of a 
node in the networks. Figure 15 shows the average current 

Figure 16. Power consumption estimation: H-TOSSIM Vs 
Physical WSN. 

 

Figure 17. The three different sizes of network topologies. 
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Figure 18. The estimation results for three different sizes of 
network topologies. 
 

In order to evaluate the accuracy of H-TOSSIM, we 
compare H-TOSSIM and physical sensor network in 
power consumption estimation. Because of the limit of 
the number of physical nodes, we compare the sensor 
networks with 2 and 3 nodes only. Figure 16 shows the 
estimation results. We can see that the results are the 
same for the network with 2 nodes, and for the network 
with 3 nodes the results are subequal. That is to say, it is 
accurate for H-TOSSIM to estimate the power consump-
tion of a node in the network. 

Finally, we test the program with H-TOSSIM in three 
different sizes of WSN, and estimate the power con-
sumption of PN. Figure 17 shows the testing network 
topologies. And the estimation results are shown in Fig-
ure 18. The average currents of PN for these three dif-
ferent topologies are separately 18.64 mA, 18.75 mA and 
18.83 mA. Through these testing, we show the advantage 
of H-TOSSIM that it can estimate power consumption 
for large WSN with low hardware cost. 
 
6. Conclusions and Future Work 
 
In this paper, we first analyze the problems existing in 
pure simulation testing tools such as TOSSIM. Then we 
propose H-TOSSIM, a hybrid testbed, which extends 
TOSSIM with physical nodes. In H-TOSSIM, a physical 
node shares the same simulated environment with all 
virtual nodes so as to test a WSN program. H-TOSSIM 
combines the advantages of both the physical node and 
the simulated environment in software testing. Through 
experiments, we show that H-TOSSIM solves the prob-
lems existing in pure simulation testing tools with low 
hardware cost. 

For the future work of H-TOSSIM, it uses only one 
kind of combination pattern between the physical nodes 
and the simulated environment; however, there are other 
combination patterns which are worth considering. 

The first consideration is to use the physical nodes to 
provide signal gains between different nodes for the 
simulated environment. Signal gains are designated by 
user now. If these data can be acquired from real world 
through the physical nodes, the accuracy for H-TOSSIM 
to estimate the power consumption for large WSN can be 
improved. 

The second consideration is to use the physical nodes 
to provide sensing data for the virtual nodes. Sensing 
results are produced randomly in the current version of 
H-TOSSIM. If the virtual nodes can get sensing data 
from the real world through the physical nodes, the soft-
ware testing can be more sufficient and more practical. 
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