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Abstract 
A model based on chemical kinetics for the rate of utilization and/or storage 
of carbohydrates, fats and proteins is derived and analyzed. This system is 
studied under different conditions of supply and usage and for short term 
dynamics and long term dynamics. Both the short term and long term models 
indicate that starting above an equilibrium threshold leads to growth of the 
stored species. Results from the short-term and long-term submodels show 
that the qualitative behavior depends on the levels of certain enzymes. The 
analysis of a model for enzyme dynamics indicates that the steady-state level 
of an enzyme should depend on the rate of supply of the substrate. 
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1. Introduction 

When food is consumed, digestive processes break up the macroscopic chunks 
of meat, vegetables, bread, beverages and sweets into small organic molecules, 
minerals, and salts. Carbohydrates, fats and proteins are converted to simple su-
gars, fatty acids, and amino acids for absorption and utilization by the body for 
manufacturing tissue and for energy to maintain temperature, activate muscles, 
and run the signaling and neural systems. If the organism consumes more than 
it uses, the excess can be stored for use in the future. 

Under normal circumstances, simple sugars, fatty acids and amino acids pass 
through the gastric-blood boundary and enter cells and organs where they can 
participate in the metabolic processes. The dominant simple sugar is glucose, 
which can enter the pathway to the Krebs cycle by being converted to pyruvate. 
In addition, pyruvate can be converted back to glucose by a different reaction. 
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Simple sugars can be converted to glycogen, a complex molecule of linked glu-
cose chains, which can be stored in cells. Fatty acids can be processed into acetyl 
coenzyme A or converted into lipid chains, which can be stored. Similarly, 
acetyl-CoA can be converted to fatty acids or further processed into the Krebs 
cycle. Amino acids can be used to synthesize proteins, or can feed into the ener-
gy generation machinery. All of these reactions are facilitated by enzymes. 

The goal of this paper is to derive a model for the dynamics of the utilization 
and storage processes, and to analyze the behavior of that model. At any instant 
the body contains a certain number of simple sugars, fatty acids, and amino ac-
ids. The body uses enzymes to convert these molecules to energy via the Krebs 
cycle, or to store them for later use as energy. Starting from this point of view, 
we are led to a model for the evolution of three energetic species, namely simple 
sugars, fatty acids and amino acids, three storable species, glycogen, fat, and 
proteins, and two energy transfer molecules, pyruvate and acetyl-CoA. The spe-
cies have sources from diet, losses through excretion, and conversion rates be-
tween them. We are interested in the qualitative behavior of this model (as op-
posed to numerical predictions), and in particular whether and under what con-
ditions the system can evolve to high levels of stored fat. This behavior may 
identify biochemical mechanisms that contribute to obesity. 

Metabolic reactions occur in parts of the human body downstream of the gas-
tric-blood boundary. In actuality, some reactions occur in mitochondria in most 
cells, some occur in organs such as the liver, and some occur in tissue such as 
muscles or the brain. We shall assume that these reactions change the amount of 
each of the several substances in the body according to a set of enzymatic reac-
tion equations. These reactions occur on time scales of minutes to hours to days. 
For example, the rise in insulin levels caused by elevated blood glucose levels re-
sulting in glucose being admitted into cells and processed occurs in a few mi-
nutes to an hour. The corresponding chemical activations, molecular processing 
and inter-organ transport cycle through feedings and elevated processing occur 
several times a day. On a longer scale, on the order of several days to weeks, 
adults reach a sort of stasis where intake, utilization, storage and excretion are in 
balance. We shall examine aspects of the model that occur on these disparate 
time scales in order to discover biochemical bases to determine behavior of the 
system on the different time scales. 

Alpert [1] [2] proposed and analyzed a two-reservoir model for fat and lean. 
Chow & Hall [3] [4] [5] extended this approach to a model that considers the 
three substances that can be roughly described as glycogen (the stored form of 
carbohydrates), fats, and proteins. We call this the CFP model (for carbohy-
drate-fat-protein). They argue from the point of view of energetics, so that 
weight is a combination of the amounts of the three substances, plus “fixed” 
weight (bone, minerals, etc.). They further assume that glucose and glycogen do 
not change sufficiently to warrant inclusion in the variable part of the weight, 
and finally assume a relation between “fat” and “lean” (FL model) in the form of 
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a Forbes factor. This model has the advantage that it is straightforward, has fea-
tures that reflect some realities in the organism (specifically, formulating in 
terms of energy, and recognizing the equivalence and conversions between 
energy and weight), and has been fit to various data. Recently, Pearson, et al. [6] 
[7] have refined the CFP model to describe the ability of the body to shift from 
carbohydrate oxidation to fatty acid (lipid) oxidation. They model the effect of 
insulin, which is the controlling factor for uptake of glucose by the cells. 

In this paper, we take a somewhat different approach. Instead of energetics, 
we derive a model for the fundamental biochemistry of metabolism. This model 
considers chemical balance equations for the products of dietary carbohydrates, 
fats, and proteins in the body, and includes (meta) chemical reactions that con-
vert simple sugars into glycogen or pyruvate, that convert fatty acids to fat or 
acetyl-CoA, that convert amino acids to pyruvate or acetyl-CoA or proteins, and 
that convert acetyl-CoA into energy (i.e., ATP) through the Krebs cycle. 

This model should be regarded as somewhat more than qualitative, but not 
quite quantitative. First, the actual metabolic reactions are more complex than 
represented in Figure 1 (see Berg, et al. [8]), with several subspecies produced 
and further reduced in each reaction represented there. Further, most, if not all, 
of the reactions are catalyzed by more than one enzyme. And finally, the “re-
verse” reactions are actually more complicated reactions that are not simply 
splitting or reuniting of the species displayed. In addition, three of the species  
 

 
Figure 1. A schematic of the reactions. 
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shown are actually molecules that are stored in adipose tissue, in liver and in 
muscle. Nonetheless, the general flow of energy-rich species to energy or storage 
is represented here. 

2. Enzyme-Controlled Mass Action Model 

We posit a mass-action chemistry model (see Figure 1) for the evolution of fats, 
carbohydrates and proteins. Let SS be the abundance of simple sugars, FA be the 
abundance of fatty acids, AA be the abundance of amino acids, G be the abun-
dance of glycogen, F be the abundance of fat, and P be the abundance of pro-
teins. The pathway to energy utilization involves two molecules, pyruvate (sym-
bol Pyr), which is an entry molecule, and acetyl-CoA (symbol AcA), which feeds 
into the Krebs cycle. 

These substances undergo enzymatic reactions in the body to extract energy 
or be processed into the organism. The reaction structure is shown in Figure 1. 
Simple sugars are supplied at rate S1, stored at rate r2, released from storage at 
rate r1, and converted to pyruvate at rate r4. Fatty acids are supplied at rate S2, 
converted to fat at rate r8, released from storage at rate r7, converted to 
acetyl-CoA at rate r6, and synthesized from acetyl-CoA at rate r9. Amino acids 
are supplied at rate S3 converted to proteins at rate r12, and body proteins are 
broken down into amino acids at rate r13. Pyruvate is converted to simple sugar 
at rate r3, and converted to acetyl-CoA at rate r5. Acetyl-CoA is converted to fat-
ty acid at rate r9 and enters the Krebs cycle at rate r15. 

Human biochemistry machinery can synthesize certain of the amino acids 
from components from the Krebs cycle and cannot synthesize others [8]. The 
amino acids that can be synthesized by the body are called “non-essential”, and 
those that cannot be manufactured by the body are called “essential”, and must 
be supplied by diet. We further note that amino acids are also classified as “ke-
togenic” and “glucogenic”, depending on where they enter the network in terms 
of energy production. The reaction structure for amino acids accounts for these 
two different classes of amino acids. We model this by assuming that the me-
ta-class AA can be manufactured from pyruvate (the non-essential amino acids), 
and can be metabolized to either pyruvate or acetyl-CoA. We note that most of 
the essential amino acids are ketogenic; consequently, we do not include a reac-
tion that converts acetyl-CoA to (ketogenic) amino acids. For the amino acids 
that can be converted to pyruvate, we denote this rate as r11. Pyruvate can be 
reacted to form certain amino acids at rate r10. The remaining amino acids can 
be converted to acetyl-CoA, at rate r14. 

The fatty acid cholesterol can be converted to bile, which can enter the intes-
tines and be reabsorbed or excreted. We model this as a rate constant for excre-
tion of fatty acids. This is a natural, healthy excretion. We notice that proteins 
and sugars can also be excreted, but the amounts excreted in normal healthy in-
dividuals are small, and neglected in this model. 

The metabolic reactions are discussed in entry-level biochemistry texts (see, 
for example, Berg, et al. [8]). These reactions occur in most of the body’s cells, 
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some in the mitochondria, and some in specific types of cells such as liver or 
muscle. However, no hard numbers exist for reaction rates. Moreover, most of 
the reactions we discuss here are catalyzed by enzymes, so that the reaction rate 
depends on the level of the enzyme. 

1 2 3 4 1
dSS
d

r r r r S
t
= − + − +                      (2.1a) 

1 2
dG
d

r r
t
= − +                           (2.1b) 

6 7 8 9 2
dFA
d

r r r r S Ex
t

= − + − + + −                    (2.1c) 

7 8
dF
d

r r
t
= − +                          (2.1d) 

10 11 12 13 14 3
dAA

d
r r r r r S

t
= − − + − +                    (2.1e) 

12 13
dP
d

r r
t
= −                        (2.1f) 

3 4 5 10 11
dPyr

d
r r r r r

t
= − + − − +                    (2.1g) 

6 9 5 14 15
dAcA

d
r r r r r

t
= − + + −                     (2.1h) 

Most of the reactions represented in Equations (2.1) are facilitated by en-
zymes. Many have been analyzed in some detail, and show that several steps oc-
cur in what we write as a one-step reaction, and involve more than one enzyme. 
Specifically, the conversion of pyruvate to glucose is catalyzed by pyruvate ki-
nase. The conversion of glucose to pyruvate involves several intermediates and 
enzymes, including hexokinase, phosphoglucose isomerase, phosphofructoki-
nase, fructose biphosphate aldolase, triosephosphate isomerase, glyceraldehyde 
phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, 
enolase, and pyruvate kinase. The reaction that produces glycogen from glucose 
is catalyzed by UDP-glucose pyrophosphorylase. Glycogen is cleaved from its 
chains by glycogen phosphorylase. Pyruvate is converted to acetyl-CoA by py-
ruvate dehydrogenase complex. Fatty acids are released from triglycerides by the 
action of pancreatic lipase. Triglycerides are converted from acetyl-CoA by dig-
lyceride acyltransferase. Citrate synthase catalyzes the reaction of the acetate re-
sidue from-CoA and oxaloacetate to form carbon citrate. 

Phosphofructosekinase (PFK) is believed to be the controlling enzyme in gly-
colysis. It, in turn, is regulated by ATP and AMP, by phosphoenolpyruvic acid 
(PEP) and citrate. All of these species are produced downstream of the reaction 
catalyzed by PFK. Pyruvate dehydrogenase complex is regulated by ATP and 
AMP, by acetyl-CoA and NADH. Citrate synthase is the enzyme that controls 
the entrance of acetyl-CoA into the Krebs cycle. The action of citrate synthase is 
regulated by ATP, acetyl-CoA and NADH. 
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Glycogen phosphorylase is regulated by epinephrine, insulin and glucagon. 
Fatty acids are transported across the outer mitochondrial membrane by car-

nitine palmitoyl transferase I (CPT1), where they participate in the reactions to 
produce energy in the form of ATP. The step involving CPT1 is believed to be 
the rate-limiting step in fatty acid oxidation. CPT1 is inhibited by malonyl-CoA, 
which is formed by carboxylating acetyl-CoA. The conversion of acetyl-CoA to 
fatty acid is catalyzed by acetyl-CoA:ACP transacylase, malonyl-CoA:ACP 
transacylase, 3-ketoacyl-ACP synthase, 3-ketoacyl-ACP reductase, 3-hydroxacyl 
ACP dehydrase and enoyl-ACP reductase. 

Fatty acid synthase (FAS) catalyzes fatty acid synthesis. Its main function is to 
catalyze the synthesis of palmitate from acetyl-CoA and malonyl-CoA, in the 
presence of NADPH, into long-chain saturated fatty acids. 

It is clear that a model that attempts to account for all these reactions would 
be cumbersome. Our goal is to add understanding to what determines the reac-
tion rates and fates for classes of nutrients. Consequently, we assume one “effec-
tive enzyme” for each reaction in Equation (2.1). 

2.1. Reaction Models 

We assume that all catalyzed reactions are described by a Hill’s equation, that is, 
the reaction rate is of the form 

.
1

j i i
j j j

i i i j

E
r k k

K K
χ χ
χ χ

′= =
+ +

                 (2.2) 

Here iχ  is the abundance of species i, which is being converted by the jth 
reaction. jE  is the abundance of enzyme j, jK  is the dissociation constant 
and jk′  is its conversion rate. For simplicity in calculations, we write 

j j i jk E K k′ = , and refer to jk  as the effective conversion rate. In the context of 
this model, we expect that eating a meal causes spikes in amino acids, carbohy-
drates and fatty acids. Their levels rise far above the levels of the the enzymes 
that convert them to energy or to storable species. In this case, the Hill’s model 
saturates with almost all of the enzymes bound to substrate molecules, so that 
the rate of conversion is constant. As the reactions proceed, the species levels fall 
so that not all enzymes are bound, and the conversion rate depends on abun-
dance. 

The rates of storage of fats and glycogen involve a reaction which adds the 
simple molecule to accumulations of the stored molecules. Thus the reaction 
that converts carbohydrates to glycogen is of the form 

2 2
2

SSG
1 SS

r k
K

=
+

                      (2.3) 

and the addition of fatty acids to adipose tissue is 

8 8
8

FAF .
1 FA

r k
K

=
+

                    (2.4) 

Furthermore, excretion of lipids occurs by reabsorption through the intestinal 
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wall. We assume the excretion of fatty acids in the intestines can be modeled as 
FAEEx k= , where Ek  is a constant. Finally, we shall assume that the rate of 

conversion of acetyl-CoA to energy is given, presumably by the exercise routine. 
Hence, we assume 15r U= , the rate of energy usage. 

Protein synthesis is accomplished by the mechanism whereby an amino acid, 
bound to its transfer RNA counterpart, is in turn bound to a peptide chain by 
the action of a ribosome. A rate of synthesis can be determined in terms of reac-
tion rates for sub-processes [9] [10]. There appear to be several controls in this 
process [8]. Protein degradation is accomplished by two main pathways, proteo-
lysis, where all cytosolic proteins are broken down in lysosomes into amino ac-
ids, and the more specific process of ubiquitination followed by degradation in a 
protease complex. We model this set of complex processes by 1) synthesis from 
amino acids in the form (2.2), and 2) a rate constant k13 at which proteins are 
degraded into amino acids. 

2.2. The CFP Model 

With these assumptions, the equations for the evolution of nutrients and inter-
mediaries become 

1 2 3 4 1
1 2 3 4

dSS G SSG Pyr SS
d 1 G 1 SS 1 Pyr 1 SS

k k k k S
t K K K K
= − + − +

+ + + +
  (2.5a) 

1 2
1 2

dG G SSG
d 1 G 1 SS

k k
t K K
= − +

+ +
                (2.5b) 

6 7 8
6 7 8

9 2
9

dFA FA F FAF
d 1 FA 1 F 1 FA

ACA FA
1 ACA E

k k k
t K K K

k S k
K

= − + −
+ + +

+ + −
+

         (2.5c) 

7 8
7 8

dF F FAF
d 1 F 1 FA

k k
t K K
= − +

+ +
                 (2.5d) 

10 11 12
10 11 12

14 13 3
14

dAA Pyr AA AA
d 1 Pyr 1 AA 1 AA

AA P
1 AA

k k k
t K K K

k k S
K

= − −
+ + +

− + +
+

         (2.5e) 

12 13
12

dP AA P
d 1 AA

k k
t K
= −

+
                 (2.5f) 

3 4 10
3 4 10

11 5
11 5

dPyr Pyr SS Pyr
d 1 Pyr 1 SS 1 Pyr

AA Pyr
1 AA 1 Pyr

k k k
t K K K

k k
K K

= − + −
+ + +

+ −
+ +

        (2.5g) 

6 9 5
6 9 5

14
14

dACA FA ACA Pyr
d 1 FA 1 ACA 1 Pyr

AA
1 AA

k k k
t K K K

k U
K

= − +
+ + +

+ −
+

        (2.5h) 
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This model for the evolution of carbohydrates, fats and proteins (CFP model) 
derived in this section has eight dependent variables, 27 parameters, three supply 
rates and the rate of energy usage. Given initial values for each species and 
bounded smooth supply and usage rates, a unique solution will exist in the eight 
dimensional phase space for at least a short time, and most such solutions will 
persist for an infinite time. A fundamental question about such systems is 
whether solutions grow, decay, or oscillate in phase space. In the next two sec-
tions, we show some of the behaviors for this model (or sensible approximations 
thereof). In Section 3 we examine what we consider to be a model valid for short 
times by considering the storage and release of an energy molecule, such as oc-
curs in the simple sugar-glycogen subsystem. In Section 4 we examine the sys-
tem for behavior on a long time scale, with constant supply rates and constant 
energy usage both representing the long-time average supply and usage. 

3. Analysis of Storage-Activation Model 

In this section, we focus on the short-time behavior of a subsystem of the model 
that gives some qualitative understanding of the dynamics of Equation (2.5). We 
consider the competition between energy storage and usage in the short term, 
specifically on a scale of a several minutes to a few hours when energy molecules 
are used or stored. The sub-models for carbohydrates and for fats are of similar 
storage-activation form. We assume that the rates at which energy molecules 
enter the Krebs cycle are well controlled. Specifically, we assume that 0Ex =  
and 4 3r r−  and 6 9r r−  are known. These latter rates are related to exercise by 
the individual. This assumption is further justified by the fact that ATP feeds 
back to control the activities of several enzymes in the carbohydrate and fatty 
acid metabolism reactions. 

3.1. Basic Short-Term Model 

Both the glucose-glycogen submodel and the fatty acid-fat submodel are of the 
same form, with the equations for simple sugars and fatty acids being essentially 
the same. We treat them as a system of equations for an energetic molecule, 
( )t , being either SS or FA, and a storage molecule, ( )tσ , being either G or F. 
The system has the form 

( )d
d 1 1

sr

r s

kk f t
t K K

εσσε
σ ε

= − +
+ +

                (3.1a) 

d
d 1 1

s r

s r

k k
t K K

εσ σσ
ε σ

= −
+ +

                  (3.1b) 

Here ( )f t  is the supply rate of the energy molecule, and we denote the rate 
at which the stored molecule is released as kr and the rate at which the energy 
molecule is stored as ks. Also, Kr is the dissociation constant for the release reac-
tion, and Ks is the dissociation constant for storage. 

Adding the equations gives the equation for the total molecules. We shall ex-
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amine two extreme cases, 1) ( )f t  constant, and 2) ( )f t  having Dirac delta 
function form. The first represents constant feeding and sedentary energy usage. 
The second represents rapid ingestion and passing the gastric-blood barrier, fol-
lowed by hard exercise. 

This leads us to consider two feeding and exercise patterns: A: constant feed-
ing, constant exercise; and B: concentrated feeding, concentrated exercise. 

We have 

( ) ( ) ( )0 0
d

t

t
t t m f t tε σ

′=
′ ′+ = + ∫                (3.2) 

where 

( ) ( )0 0 0 .m ε σ= +                       (3.3) 

Note that this implies that if intake exceeds usage, glucose and glycogen levels 
will increase, independent of feeding or exercise patterns. Conversely, if usage 
exceeds intake, both glucose and glycogen will decrease, also independent of the 
patterns. 

3.2. Balanced Constant Feeding, Constant Exercise 

Assume that ( ) 0f t = . In this case, the system is 

d
d 1 1

sr

r s

kk
t K K

εσσε
σ ε

= −
+ +

                    (3.4a) 

d
d 1 1

s r

s r

k k
t K K

εσ σσ
ε σ

= −
+ +

                    (3.4b) 

The condition 3.2 is ( ) ( ) 0t t mε σ+ = . The ε-axis is an equilibrium manifold, 
and there is a (non-trivial) equilibrium manifold given by 

1r r
eq r

s eq s s

k kK
k k K

σ
ε

 
= + −  

 
                      (3.5) 

Note that the equilibrium manifold will cross the ε axis if 1s s rk K k > . 
Figure 2 shows the progress of the ε-σ dynamics in the phase plane. Several 

trajectories are shown. Note that the equilibrium is stable for eq r s rk k Kε <  
and unstable for eq r s rk k Kε ≥ . The interpretation of these results is that if the 
system starts from an initial point that is out of equilibrium, it will progress to-
ward equilibrium along the line ( ) ( ) 0t t mε σ+ = . 

If 

0 1 2 ,r r r
r

s s s

k k Km K
k K k

 
< − − 

 
                 (3.6) 

the system evolves to the point ( )0 ,0m , with the stored molecule decreasing 
while the energy molecule increases. If 

0 1 2 .r r r
r

s s s

k k Km K
k K k

 
> − − 

 
                (3.7) 

and the initial point lies above the equilibrium manifold, i.e., if 
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Figure 2. Energy-storage evolution, Balanced intake/output. The 
curve shows the equilibrium manifold. The arrows show the 
direction field for the system (3.1a)-(3.1b). The solutions from 
numerical integration are the solid diagonal lines, with directions 
consistent with the direction field. 

 

( ) ( )
0 1

0
r r

r
s s s

k kK
k k K

σ
ε

 
> + −  

 
                 (3.8) 

the system evolves to the point ( ),ε σ∞ ∞  on the equilibrium manifold given by 
22 4 2b b cε∞ = + − , where 

0 , .r r r r
r

s s s

k K k Kb m K c
k K k

= + − =               (3.9) 

This result is interesting from the point of view of dieting. If the diet consists 
of adjusting intake and exercise to balance, there is a possibility that the level of 
the storage molecule will increase to the stable equilibrium value. This suggests 
that the diet should start with exercise exceeding intake so that the initial 
amount of the energy molecules is lessened to a value below the equilibrium. In 
this case, the energy molecule level increases while the storage molecule level 
decreases. 

3.3. Balanced Concentrated Feeding, Concentrated Exercise 

Assume that ( ) ( ) ( )2 2 1p ppf t f t t f t tδ δ+ + += − − −∑ . In this case, the system is 
identical to equations () except at the feeding and exercise times 2 pt  and 2 1pt + , 
respectively, where the concentration of the energy molecule jumps by f+  
units to the right (feeding) or f f− += −  units to the left (exercise). 

The behavior of the model in this scenario is illustrated in Figure 3. It is quite  
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Figure 3. Energy-Storage Evolution, Balanced concentrated 
intake/output. Consistent with the direction field shown in Figure 
2, the two solutions that start above the equilibrium manifold 
proceed up and to the left, and enter orbits around the equilibrium 
manifold. The two solutions that start below the equilibrium 
manifold approach orbits on the ε axis. 

 
similar to the behavior of the constant feeding, constant exercise model, except 
that the solutions show jumps in the energy molecule at feeding and exercise 
times, with a drift toward either no storage, or to a nearly periodic behavior 
around the stable equilibrium. 

It is clear that the equilibrium manifold (3.10) is where short-term behavior 
changes from increasing storage to decreasing storage. In terms of enzyme levels, 
that manifold is expressed as 

1r r s r r
eq r

s s r eq s s r

k E K k EK
k E K k E K

σ
ε

 ′ ′
= + −  ′ ′ 

         (3.10) 

4. FP Model 

In this section we analyze the enzyme-controlled mass action model in the long 
term. It seems plausible that reactions that process the nutrients and intermedia-
ries occur in time periods of several minutes to a few hours, while reactions to 
store fat and incorporate proteins occur over several days. The basic assumption 
used here to reduce the equations to equations for fat and protein is that all oth-
er reactions are in equilibrium and the rates of supply and usage are constant 
(representing their average values). The equations could be derived by intro-
ducing a small parameter in the reaction rates. Here we simply set the appropri-
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ate derivatives to zero, forcing the fast reaction equations to equilibrium [11]. 
The result of this approximation is a model involving differential equations for 
fat and proteins, similar to the structure of the Alpert-Chow-Hall model, but 
based on enzyme chemistry. 

3 4 1
3 4

Pyr SS0
1 Pyr 1 SS

k k S
K K

= − +
+ +

              (4.1a) 

1 2
1 2

GSS SS0
1 G 1 SS

k k
K K

= − +
+ +

               (4.1b) 

6 7 8
6 7 8

9 2
9

FA F FAF0
1 FA 1 F 1 FA

AcA FA
1 AcA E

k k k
K K K

k k S
K

= − + −
+ + +

+ − +
+

         (4.1c) 

7 8
7 8

dF F FAF
d 1 F 1 FA

k k
t K K
= − +

+ +
               (4.1d) 

10 11 12
10 11 12

13 14 3
14

Pyr AA AA0
1 Pyr 1 AA 1 AA

AAP
1 AA

k k k
K K K

k k S
K

= − −
+ + +

+ − +
+

         (4.1e) 

12 13
12

dP AA P
d 1 AA

k k
t K
= −

+
                    (4.1f) 

5 10 11 1
5 10 11

Pyr Pyr AA0
1 Pyr 1 Pyr 1 AA

k k k S
K K K

= − − + +
+ + +

         (4.1g) 

6 9 5 14
6 9 5 14

FA AcA Pyr AA0
1 FA 1 AcA 1 Pyr 1 AA

k k k k U
K K K K

= − + + −
+ + + +

   (4.1h) 

We shall refer to Equation (4.1) as the FP (fat-protein) model. The first two 
Equations (4.1a), (4.1a)) can be solved for the simple sugar and glycogen levels 
SS and G in terms of the pyruvate level Pyr. The remainder of the system, viz. 
Equations (4.1c)-(4.1h), forms a differential-algebraic system for F, FA, AA, P, 
Pyr, and AcA. Note the similarity between Equations (4.1d) and (3.1b). 

4.1. Equilibrium Solutions 

We examine the situation in which the supplies, S1, S2, S3, and the usage, U, are 
non-negative constants. In the eight-dimensional phase space, we expect an 
equilibrium solution, at least for some set of supplies and usage values. Note that 

1 2 3 0FAES S S U k+ + − =                       (4.2) 

where the equilibrium is denoted by a subscript 0. From (4.2), we see that in or-
der for 0FA  to be non-negative, we must have 

1 2 3.U S S S≤ + +                            (4.3) 

We also see from Equation (4.1d) that the equilibrium fat level F0 is either 

0F 0,=                            (4.4) 
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or 

7 7
0 7

8 0 8 8

F 1 .
FA
k kK

k k K
 

= + − 
 

                    (4.5) 

Note that the solution given by (4.5) predicts a negative (and therefore 
non-physical) value of F0 for ( )0 7 8 8 8 7FA k K k K k> − , if 8 8 7k K k< . Thus, if 

8 8 7k K k> , two equilibrium solutions exist, while if 8 8 7k K k≤  and 
( )0 7 8 8 8 7FA k K k K k> − , the only non-negative solution is given by (4.4). Figure 

4 shows the two possibilities. 
We also see from Equation (4.1f) that the equilibrium for the protein level is 

given by 

012
0

13 0 12

AA
P .

1 AA
k
k K

=
+

         (4.6) 

In order to analyze the remainder of the equilibrium values, we note that sev-
eral of Equations (4.1) contain more than one term that represent reactions in-
volving the same species. We propose to “model” these terms by combining 
them in a single Hill’s rate model. In order to do this, we examine two such ge-
neric terms, 

.
1 1

k k
K Kα β

α β

χ χ
χ χ

+
+ +

                  (4.7) 

We wish to combine these terms into one, 

*
, *

,1 1 1
k k k

K K Kα β α β
α β α β

χ χ χ
χ χ χ

+ =
+ + +

        (4.8) 

One way to determine *
,kα β  and *

,Kα β  is to minimize the L2 error over some 
range of χ. We do not pursue this method since there is no natural upper limit 
for the concentration, and an integral from 0 to ∞ does not converge. Instead, 
we require the model to be correct for small χ and for very large χ. For small χ, 
Equation (4.8) is 

( )* 2
,k k k Oα β α βχ χ χ χ+ = +                   (4.9) 

so that 
*

, .k k kα β α β= +                       (4.10) 

For χ large, we have 

( )* * 1
, ,k K k K k K Oα α β β α β α β χ −+ = +             (4.11) 

so that 

*
, *

,

.
k K k K k K k K

K
k kk

α α β β α α β β
α β

α βα β

+ +
= =

+
            (4.12) 

Applying the modeling assumption to Equation (4.1) gives 

0 0
6 9 2 0

0 6 0 9

FA AcA
0 FA

1 FA 1 AcA Ek k S k
K K

= − + + −
+ +

          (4.13a) 
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(a) 

 
(b) 

Figure 4. Equilibrium manifolds for FA-F dynamics. The shaded subregions indicate 
where the stability analysis implies that F 0→ . a. 7 8 8 1k k K < ; b. 7 8 8 1k k K > . 
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*0 0
10 11,14 3*

0 10 0 11,14

Pyr AA
0

1 Pyr 1 AA
k k S

K K
= − +

+ +
         (4.13b) 

* 0 0
5,10 11 1*

0 110 5,10

Pyr AA
0

1 AA1 Pyr
k k S

KK
= − + +

++
         (4.13c) 

0 0 0 0
6 9 5 14

0 6 0 9 0 5 0 14

FA AcA Pyr AA
0

1 FA 1 AcA 1 Pyr 1 AA
k k k k U

K K K K
= − + + −

+ + + +
(4.13d) 

where 
*
11,14 11 14k k k= +  

*
5,10 5 10k k k= +                       (4.14) 

and 

* 11 11 14 14
11,14

11 14

k K k KK
k k

+
=

+
 

* 5 5 10 10
5,10

5 10

k K k KK
k k
+

=
+

                   (4.15) 

Equations (4.13a) and (4.13c) determine the equilibrium for the Pyr-AA sub-
system. For given values of S1 and S3, each of these equations determines a ma-
nifold on which the equilibrium can exist. A point ( )0 0AA ,Pyr  lying on an in-
tersection of two such manifolds determines an equilibrium. Figure 5 shows  
 

 
Figure 5. Intersecting manifolds show the steady solutions (points shown by circles) for 
certain values of the sources S1 and S2. Equation (4.13b) results in a manifold indicated by 
a dashed curve, and Equation (4.13c) results in a manifold indicated by a solid curve. 
Note that not all values of S1 and S3 result in a steady solution. 
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several manifolds and points that correspond to steady solutions. 
For an equilibrium in the Pyr-AA system, we must have 

* *
11,14 5,10* * * *

11,14 10 11 5,10 11 5,10 11 10 11 10
11 10

1 * * * * * * * *
10 11,14 11 11 10 11,14 5,10 5,10 11 11 5,10 11,14 10 11 5,10 5,10

2
k k

K K K K k k k k k k
k k

S
K K k K K K k K k K K K K K k K

 
 + −
 
 ≤

− − +
 (4.16) 

* *
11,14 5,10* * * *

11,14 10 11 5,10 11,14 5,10 11 10 11 10
11 10

3 * * * * * * * *
10 11,14 11,14 11 10 10 11,14 5,10 10 10 5 11 11 11,14 11 5,10

2
k k

K K K K k k k k k k
k k

S
K k K K k K K K k K K K K k K K

 
 + −
 
 ≤

− + −
 (4.17) 

From substitution of Equation (4.2) into Equation (4.13a), we see that a fur-
ther condition for an equilibrium solution is 

1 2 3
6 6

6 1 2 3

1 3 9 9

0
E

S S S U
k K

k K S S S U
S S U k K

+ + −
≤

+ + + −

− − + ≤
                  (4.18) 

It is clear that equilibrium solutions fail to exist for certain values of S1, S2, S3, 
and U. This is a result of the model for enzymatic reactions, specifically, Hill’s 
equations lead to reaction rates that are bounded above, so that sufficiently high 
rates of supply cannot be accommodated. We summarize the situation here: If 
the constraint (4.3) is satisfied, Equation (4.2) gives the equilibrium solution for 
FA0, and Equations (4.4) and (4.5) give the equilibrium solutions for F0. If con-
straints (4.16) and (4.17) are satisfied, solutions for AA0 and Pyr0 can be found 
from Equations (4.13b) and (4.13c). If constraint (4.18) is satisfied, then Equa-
tion (4.13a) can be solved for AcA0. With these equilibrium solutions, the solu-
tion for P0 can be found from Equation (4.6), and the solutions for SS0 and G0 
can be found from Equations (4.1a) and (4.1b). 

4.2. Stability of Equilibria 

For small disturbances ( )δ  from the steady state ( )0
, we have 

11 12 130 FA F AcAA A Aδ δ δ= − + +                (4.19a) 

24 25 260 Pyr AA PA A Aδ δ δ= − +                  (4.19b) 

34 360 Pyr AAA Aδ δ= − +                  (4.19c) 

41 43 44 450 FA AcA Pyr AAA A A Aδ δ δ δ= − + +            (4.19e) 

51 12
d F FA F
d

A A
t
δ

δ δ= −                   (4.19f) 

65 26
d P AA P
d

A A
t
δ

δ δ= −                   (4.19g) 

where 

( ) ( )
0

11 6 82 2
0 6 0 6

F1
1 FA 1 FA

EA k k k
K K

= + +
+ +

         (4.20a) 
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( )
0

12 7 82
0 80 7

FA1
1 FA1 F

A k k
KK

= −
++

            (4.20b) 

( )13 9 2
0 9

1
1 AcA

A k
K

=
+

                   (4.20c) 

( )24 10 2
0 10

1
1 Pyr

A k
K

=
+

                  (4.21a) 

( ) ( ) ( )25 11 12 142 2 2
0 11 0 12 0 14

1 1 1
1 AA 1 AA 1 AA

A k k k
K K K

= + +
+ + +

  (4.21b) 

26 13A k=                      (4.21c) 

( ) ( )34 5 102 2
0 5 0 10

1 1
1 Pyr 1 Pyr

A k k
K K

= +
+ +

            (4.22a) 

( )36 11 2
0 11

1
1 AA

A k
K

=
+

                 (4.22b) 

( )41 6 2
0 6

1
1 FA

A k
K

=
+

                 (4.23a) 

( )43 9 2
0 9

1
1 AcA

A k
K

=
+

                (4.23b) 

( )44 5 2
0 5

1
1 Pyr

A k
K

=
+

                 (4.23c) 

( )45 14 2
0 14

1
1 AA

A k
K

=
+

                (4.23d) 

( )
0

51 8 2
0 6

F
1 FA

A k
K

=
+

                  (4.24a) 

( )65 12 2
0 12

1
1 AA

A k
K

=
+

                  (4.25a) 

Solving Equation (4.19a) for Pyrδ  gives 

36

34

Pyr AA
A
A

δ δ=                       (4.26) 

Substituting into Equation (4.19c) gives 

26 34

25 34 24 36

AA P
A A

A A A A
δ δ=

−
                 (4.27) 

Substituting this into the protein Equation (4.19b) yields 

( )11 5 14 5 14 10 13

11 5 12 5 14 5 12 10 14 10

d P P
d

k k k k k k k
t k k k k k k k k k k
δ

δ
+ +

= −
+ + + +

          (4.28) 

Thus small perturbations to the protein equilibrium decay exponentially, so 
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that the equilibrium solution for P is stable. 
This exponential behavior in the protein subsystem also generates small dis-

turbance behavior with the same exponent in the fat equation. In addition, the 
fat equation has a linearly independent solution that can be found by noting that 
the terms AAδ , Pyrδ  and Pδ  are determined by the protein subsystem, 
and will therefore have decaying exponential behavior if they are nonzero. The 
independent fat equation behavior can be found by setting these terms to zero. 
Solving Equation (4.19d) for AcAδ : 

41

43

AcA FAA
A

δ δ=                       (4.29) 

Then Equation (4.19a) becomes 

12 43

11 43 41 13

FA F
A A

A A A A
δ δ=

−
                  (4.30) 

Substituting (4.30) into Equation (4.19e) yields 

( )
( ) ( )

2
0 6 0

7 82 2
0 80 6 8 0 0 7

1 FA FAd F 1 F.
d 1 FA1 FA F 1 F

E

E

k K
k k

t Kk K k K
δ

δ
  +
  = − −
  ++ + +  

 

Thus we see that the equilibrium solution 

7 7
0 7

8 0 8 8

F 1 .
FA
k kK

k k K
 

= + − 
 

                 (4.31) 

is unstable if 

( )
0

7 82
0 80 7

FA1 <
1 FA1 F

k k
KK ++

               (4.32) 

Hence the equilibrium (4.31) is unstable for all 0FA 0> , and the solution 

0F 0=  is either 1) stable for all FA0, if 7 8 8 1k k K >  or 2) stable for 
( )0 7 8 7 80 FA k k k K< < −  and unstable for ( )0 7 8 7 80 FA k k k K< < −  if 

7 8 8 1k k K < . This analysis, coupled with the lack of critical points elsewhere in 
the FA-F plane implies that solutions to the differential system with initial con-
ditions starting between the maximal equilibrium solution  

( )( )0 7 7 8 0 7 8 8F max 0, FA 1K k k k k K= + −  and 0F 0=  approach the solution 

0F 0= , while solutions starting above the maximal equilibrium solution must 
have F→∞ . 

In terms of the enzyme levels, we see that if the initial values of FA and F are 
such that if 

7 7 8 7 7
7

8 8 7 8 8

F max 0, 1 ,
FA

k E K k EK
k E K k E

  ′ ′ 
> + −   ′ ′  

          (4.33) 

the system predicts that F→∞ . 

5. Enzyme Dynamics 
We note from Equations (3.10) and (4.33) that enzyme levels are involved in the 
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determination of the manifolds that separate regions where levels of a stored 
molecule approach zero from regions where the levels increase without bound. 
Consequently, enzyme levels, and what determines them, are of specific interest 
to the modeling of nutrition dynamics. More generally, enzymes are ubiquitous 
and assist most of the known digestive reactions. They add a point of control 
and are able to speed up reactions by enormous factors or initiate reactions that 
could not occur without them. The level of enzymes in reaction system regulates 
the velocity of the reaction. 

In this subsection, we examine a model for the level of an enzyme involved in 
a Michaelis-Menten reaction [12] (see also Lin & Segel [11]). We assume that 
enzyme molecules are synthesized by ribosomes from mRNA templates, are ac-
tivated by a process that we do not specify here, and degraded by proteolysis. We 
further assume that only an enzyme which is not bound to substrate is targeted 
by proteolysis. 

In the Michaelis-Menten model, a substrate molecule A is catabolized by an 
enzyme E. We shall assume that the possible enzymatic reactions are as shown in 
Figure 6. An inactivated enzyme E is activated to E+. It is then available to bind 
reversibly with the substrate molecule to form the complex, EC. The complex can 
then release the substrate without finishing the reaction, or it can go irreversibly 
to completion, making a product molecule B and releasing the inactive enzyme. 
We shall assume that these reactions change the amount of each of the several 
substances according to the following mass action reaction equations. 

3 E 1
dE E E E
d

C
ak k S

t
δ= − + + −                    (5.1a) 

1 2 2
dE E AE E E
d

C
ak k k

t
δ

+
+ += − + −                  (5.1b) 

1 2 3
dE AE E E
d

C
C Ck k k

t
+= − −                   (5.1c) 

1 2 A
dA AE E
d

Ck k S
t

+= − + +                   (5.1d) 

3 B
dB E
d

Ck S
t
= −                       (5.1e) 

Here SA is the rate of supply of the energy molecule (substrate), and the rate of 
removal of the storage molecule (product) is SB. Also, SE is the rate at which the 
enzyme is manufactured by the body. In addition, we assume that inactive and 
activated enzyme molecules are degraded at rates 1δ  and 2δ , respectively. We 

note that the rate of production of the enzyme should depend on the availability 
of appropriate amino acids for protein manufacture, and may be controlled by 
the presence or absence of other molecules. 

In order to obtain the long-term behavior of this system, let us average the 
system over a long time interval 0 0t t t T≤ ≤ + . For any of the time derivative 
terms of the enzyme in its various forms, we have 
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Figure 6. Equilibrium manifolds for FA-dynamics. The shaded subregions indicate where 
the stability analysis implies that F 0→ . 

 

( ) ( )( )0

0
0 0

dE 1 dE 1d E E 0
d d

t T

t
t t T t

t T t T
+

= = + − →∫          (5.2) 

as T →∞ . Then we have 

3 E 10 E E EC
ak k S δ= − + + −                  (5.3a) 

1 2 20 E AE E EC
ak k k δ+ += − + −                (5.3b) 

1 2 30 AE E EC Ck k k+= − −                    (5.3c) 

1 2 A0 AE ECk k S+= − +                    (5.3d) 

3 B0 E .Ck S= −                       (5.3e) 

where the overline denotes the time average. Then 

A B,S S=                           (5.4) 

and 

( )E A
1

1E
a

S S
k δ

= +
+

                   (5.5) 

A
3

1EC S
k

=                        (5.6) 

( ) ( )E A
2 1

E a

a

k S S
kδ δ

+ = +
+

                   (5.7) 

( )2 3
A

1 3

AE
k k

S
k k

+ +
=                   (5.8) 

The total amount of the enzyme in its various forms is 

( ) ( )
2 2

E A
2 1 2 1 3

1E E E =C a a

a a

k kS S
k k k

δ δ
δ δ δ δ

+    + +
+ + + +      + +   

         (5.9) 
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According to this model, the steady-state level of enzyme depends on how 
much it is used, that is, how rapidly substrate is supplied. 

6. Analysis 

We have posited and analyzed a model for a set of metabolic reactions involving 
carbohydrates, fats, and proteins. The model assumes that molecules in each 
class are stored or metabolized into molecules pyruvate and acetyl-CoA, the 
pathway upstream of the Krebs cycle, where the body’s energy is produced. In 
order to gain an understanding of the behavior of this model, it is analyzed at 
two different time scales, a short term scale, where the molecule is stored or 
used, and a long term model that accounts for the storage of fats and proteins. 
The CFP model that we propose and analyze here is based on the assumption 
that each simple sugar, fatty acid or amino acid molecule is reacted in order to 
be used for energy or to be stored as glycogen, fat, or protein. Each reaction is 
assumed to be effectively catalyzed by one enzyme. This is a simplification, since 
the known reactions involve a half-dozen steps, each catalyzed by a different en-
zyme. There is no explicit justification of this assumption, it simplifies any anal-
ysis, while retaining a reasonable reaction structure. 

In Section 3, we study the behavior of a simple submodel for energy molecules 
and their storage. This model shows that there is a one-dimensional manifold 
relating the energy molecule level and the storage level that divides the behavior 
into two quite different types. If the level of storage molecule is above the mani-
fold, it will evolve to even higher levels, even if intake and usage are balanced. 
Below this manifold, the storage molecule level will decrease. The manifold de-
pends on enzyme levels and the rates at which energy molecules are stored, and 
at which stored molecules are released. The switch from increasing to decreasing 
at the manifold persists when a model for feeding and exercise is considered. 

The FP model analyzed in Section 4 represents the behavior of the model on 
long time scales, the time scales where the state of the individual is changing by 
gaining or losing muscle or fat mass. The model assumes that all reactions ex-
cept the release-from-storage reactions are fast. This effectively assumes that the 
carbohydrate model is in quasi-equilibrium. For simplicity, we have assumed 
that the usage U does not depend on any of the nutrient levels. Energy usage is a 
complex issue, and as suggested by Pontzer, et al. [13], may “plateau” as a func-
tion of activity. 

When this model is analyzed by finding equilibria and examining their stabil-
ity, it separates into carbohydrate, protein, and fat submodels. The protein sub-
model predicts that the protein equilibrium is stable, while the fat submodel 
shows equilibrium solutions for fatty acid and fat abundance are such that if the 
fat level exceeds the equilibrium, the fat level increases without bound, while so-
lutions starting in a region with fat abundance below the equilibrium proceed to 
a fat level of zero. This dichotomous behavior is similar to that derived from the 
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simplified model of Section 3, and stems from the model for the enzymatic reac-
tions for converting fatty acids to fat, and vice versa. 

The FP model also predicts that the equilibrium fatty acid level determines 
whether the system is in a mode where the abundance of fat increases or de-
creases. The equilibrium fatty acid level is determined by a balance between fatty 
acid excretion and the excess between total nutrient molecule intake and energy 
usage (see Equation (4.2)). The equilibrium fatty acid and fat levels then deter-
mine whether the fat/fatty acid model dynamics result in growth or decrease of 
the fat level. Qualitatively, a sufficiently small fatty acid level puts the fat subsys-
tem into the state where the fat level decreases. This seems to agree with the of-
ten-quoted weight loss advice, “eat less, move more,” since either of those activi-
ties would reduce the excess between total nutrient intake and usage, thereby 
reducing the fatty acid level. It is also interesting that the fatty acid level is a 
common diagnostic datum. Note that if excretions of proteins or carbohydrates 
were included, these long-term results would be more complex. 

The results from the FP model depend on the reaction rates, ik′ , the dissocia-
tion constants iK , and the enzyme levels iE . We expect that the reaction rates 

ik′  do not change much from place to place in the individual, nor from indi-
vidual to individual. However, enzymes are in essence proteins, and the levels 
will not only be different in different organs and different individuals, but, as the 
analysis in Section 5 indicates, they could dynamically adapt to reflect how much 
they are used. One possible consequence of this is that the enzyme levels that 
have a role in determining the steady state may actually evolve. One scenario 
that can be imagined in the context of this approach is that instead of the fat lev-
el growing without bound, the fat level and the associated enzyme levels may 
evolve together to a new equilibrium. 

The short term and long term qualitative behaviors depend on the levels of 
certain enzymes. This prompted the development of a model for enzyme pro-
duction in the style of Michaelis and Menten, which assumes that enzymes 
which are in use are not degraded, while unused enzymes can be attacked by the 
protein degradation mechanisms. This model shows that enzyme levels depend 
on the rate of production and utilization of the substrate, with more processing 
leading to higher enzyme levels. 

The CFP model has features that are reminiscent of the CFP model of Hall [3] 
[4] [5]. In particular, it has equations for the rates of change of glycogen, fats and 
proteins. In contrast to that model, the chemistry of the input molecules is con-
sidered in the present model. This level of detail bypasses the de novo liposyn-
thesis (DNL) model, replacing it with a dynamical model for conversion of sim-
ple sugars to pyruvate, pyruvate to acetyl-CoA, and acetyl-CoA to fatty acids. 
The Chow-Hall CFP model has enjoyed significant success in understanding and 
interpreting the large quantity of weight and weight change data, something that 
the present model does not purport to do. Thus, we do not offer the present 
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model as an alternative to the Chow-Hall CFP model, but consider its insights as 
sufficiently interesting to merit consideration. 

A shortcoming of the CFP model presented here is that it does not consider 
the important part that insulin plays in the transport of simple sugars across cell 
boundaries, where the sugars can be used or processed for storage. Pearson, et al. 
[6] [7] model this process, assuming that glucose that is released from the 
breakdown of glycogen is not used in fatty acid synthesis. They argue that the 
conversion of glycogen to glucose occurs when the system is in the fasted state 
which has small amounts of insulin. 

7. Conclusions 

The model of evolution of enzyme levels also suggests two side issues from this 
modeling approach. First, it seems quite reasonable that the mechanism that 
triggers hunger is able to sense the level of active enzymes that are not in com-
plex with the metabolite (i.e., E and E+ from Section 5). This would result in the 
metabolite being processed more quickly, and the individual’s appetite returning 
sooner, and perhaps with stronger signaling, since there would be more 
non-complexed enzymes. 

The second issue is that alcohol is metabolized by a sequence of enzymatic 
reactions. The speed of clearing alcohol from the blood depends on the enzyme 
level. If, indeed, the enzyme level depends on the long-time level of alcohol in-
take, then it seems possible that a higher long-term intake level would imply 
faster processing, requiring a higher consumption rate to achieve inebriation. 

The model proposed and analyzed herein has several shortcomings. Perhaps 
the biggest is that almost all of the metabolic reactions discussed by Berg, et al. 
[8] are multi-step, multi-enzyme. Much of the analysis that is done here depends 
on the simplicity of Hill’s model for enzyme reactions. It should also be noted 
that the analysis in Section 5 suggests that enzymes evolve on a similar time scale 
as the long-term metabolic dynamics. 

Other shortcomings of this model are as follows: 1) Values of parameters and 
reaction rates are not known. 2) We do not consider enzyme dynamics simulta-
neously with the evolution of metabolites. 3) The body has 23 amino acids, 
which must be incorporated into each protein in the correct order. (4) Amino 
acids metabolism has two separate paths for different types of amino acid, 
termed glucogenic and ketogenic, indicating where they enter the pathway for 
production of energy, as being converted to pyruvate or acetyl-CoA, respective-
ly. A seemingly related concept is the classification of amino acids as essential or 
non-essential, indicating whether the body can manufacture them or not. In this 
model, we lump all amino acids into one species and show them as able to enter 
either pathway. We also show a reaction to convert pyruvate to amino acid, but 
no reaction to form amino acids from acetyl-CoA. See Berg, et al. [8]. 

In spite of the shortcomings, the model has some interesting features, some of 
which may suggest experiments to confirm or refute. Enzyme levels may be con-
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trollable by varying the copy number for crucial enzymes and may also be im-
plemented in animal obesity models [14]. Also, the presence of an unstable ma-
nifold dividing growing storage from declining storage occurs in the short term 
models of Section 3 and in the long-term model for fatty acid/fat metabolism 
results from the form of the storage/release rate models of Equations (3.1) and 
(4.1d), which is dependent on enzyme levels. Simultaneous observations of se-
rum lipids (fatty acids), fat levels, and enzymes may correlate with weight gain 
or loss. 

A mathematical model uses mathematical concepts and language to explain a 
phenomenon, to study the effects of different parameters, and to make predic-
tions about its behavior. The carbohydrate-fat-protein model presented herein 
formulates the chemistry of metabolism as a set of differential equations and 
predicts a threshold for weight gain that depends on enzyme levels. To the extent 
that this model explains metabolism, it may offer insight into the causes of obes-
ity. 
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