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Abstract 
Transportation issue is one of the significant zones of utilization of Linear 
Programming Model. In this paper, transportation model is utilized to decide 
an ideal answer for the transportation issue in a run of the mill world class 
university utilizing Covenant University as a contextual analysis. Covenant 
University is a potential world class University. The quick development of 
Covenant University Campus over the most recent fourteen years affects its 
transportation framework. This paper particularly takes a gander at stream-
lining the time spent by the students moving from their lodgings to lecture 
rooms. Google guide was utilized to figure the separation and time between 
every cause and every goal. North-west corner technique, Least Cost strategy 
and Vogel’s estimation technique were utilized to decide the underlying fun-
damental plausible arrangement (initial feasible solution) and MODI strategy 
was utilized to locate the ideal arrangement (optimal solution). The last out-
come demonstrates that the development of understudies from hostel to lec-
ture rooms can be streamlined if the total time spent is decreased. 
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1. Introduction 

Transportation issue is an extraordinary class of linear programming issue and it 
is viewed as imperatively as a vital angle that has been considered in an extensive 
variety of operations including research areas. All things considered, it has been 
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utilized as a part of recreation of a few genuine issues. In this way, streamlining 
transportation issue of factors has amazingly been critical to different controls 
[1]. Transportation issues are being confronted in urban regions because of in-
crement in human exercises and most world class universities resemble little ur-
ban areas in light of their size and structures [2]. Additionally, today’s grounds 
have moved toward becoming as mind boggling as urban zones, in view of their 
interesting attributes and between related impacts, most principle university’s 
campuses are arranged as little urban communities/groups [2] [3]. Covenant 
University is a potential world class university and accordingly is considered as a 
little city. The university has been chosen as one of the best universities in West 
Africa. The university is located in Ota, Ogun State, Nigeria. As a potential world 
class university with its refined frameworks, all around prepared labs, all around 
prepared and qualified teachers, skilled students and an examination driven es-
tablishment the university flourishes for more brilliance [4] [5]. Aside the excep-
tionally normal or understood criteria of turning into a world class university 
like the one specified over, the transportation organized inside the campus is 
likewise vital to make campus life favorable and transportation less demanding 
for their students. In this paper time limiting transportation issue will be consi-
dered as against the standard cost limiting transportation issue [5] [6]. The es-
sential contrast between the two is that the cost of transportation changes with 
varieties in the amount yet the time included stays unaltered and independent of 
the amounts [6]. Time limiting transportation model will be utilized to decide 
how the aggregate time spent by students making progress toward move from 
their hostels to their distinctive lecture rooms can be limited or enhanced to les-
sen exposure to un-conducive climate conditions and different variables [7] [8] 
[9]. The outcome that will be gotten from this work can be utilized by the Uni-
versity to deal with the transportation organized inside the campus. Arranging 
real university campus has been a genuine test as of late [10] [11]. Feasible 
transportation approaches have turned into a fundamental device to manage 
road transportation issues in most world class universities [11]. The call for ma-
nageable versatility is picking up fame worldwide for little and extensive groups 
including real university campus [11] [12]. Transportation issue is an extraordi-
nary sort of linear programming issue where the goal is to limit the cost of dis-
persing an item from various sources or birthplaces to various destinations [13] 
[14] [15]. Transportation Problem (TP) has broad pragmatic application esteems 
[16] [17] [18]. In this manner, TP is a subject deserving of further research, in 
spite of the fact that it has been considered from various points of view by vari-
ous researchers [19] [20] [21] [22]. The first formulation and discussion of a 
planar transportation model was introduced by Hitchcock (1941). Likewise, 
various scientists have done reviews on time transportation issue, for example, 
Sharma and Swarup (1977). As a general rule, because of changes in free market 
activity, climate conditions, street conditions and other instability variables, 
vulnerability transportation issue is especially essential [23] [24] [25]. 
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2. Problem Formulation 

Covenant University is used in this paper as a case study. The aim is to reduce 
the transportation time of students’ movement from hostels to their respective 
lecture rooms. The Hostels represent the origins while the lecture rooms 
represent the destinations. 

2.1. Assumptions 

The following assumptions were made in this paper: 
1) The time spent to move from one origin to a destination is always the same. 
2) All the routes mentioned in this paper are always accessible. 
3) Movement of students is always from the named origins to the named des-

tinations. 
4) Each student at the origin (hostel) visits each destination (lecture rooms). 
5) Students attend lectures in each lecture room at least once a week (that is, 

from origin (hostel) to destination (lecture rooms)). 

2.2. Transportation Tableau 

In this paper ten origins representing the hostels and eight destinations 
representing the lecture rooms were considered.  

Table 1 shows the different origins and destinations while Table 2 shows the 
transportation problem tableau. The distance between the origins and destina-
tions are shown in the cells. The total time and distance covered in each route 
was determined using goggle map. The mathematical modeling of this transpor-
tation problem is a special linear programming problem in which the objective 
function is to minimize the time of transportation subject to the demand and 
supply constraints. The values in each cell represents the time per unit distance 
between one origin and one destination. They are measured in (meter ×100). 
Along the outer rim in the tableau is the actual distance and expected distance  

 
Table 1. Origins and destinations considered. 

Origin Destination 

Esther Hall O1 College of Science and Technology D1 

Mary Hall O2 College of Developmental Studies D2 

Deborah Hall O3 Lecture Theatre One D3 

Lydia Hall O4 Lecture theatre two D4 

Dorcas Hall O5 Chemical and Petroleum Engineering Block D5 

Peter Hall O6 Mechanical Engineering Block D6 

Paul Hall O7 Civil Engineering Block D7 

John Hall O8 Electrical and Electronics Engineering Block D8 

Joseph Hall O9   

Daniel Hall O10   
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Table 2. Transportation tableau. 

 D1 D2 D3 D4 D5 D6 D7 D8 
Actual Distance  

(m × 100) 

O1 10 8 11 11 11 16 17 20 9 

O2 14 11 15 14 15 19 20 23 11 

O3 12 10 13 13 13 18 19 22 10 

O4 13 11 14 14 14 19 20 23 11 

O5 13 11 14 14 14 19 20 23 10 

O6 12 11 14 14 14 22 24 23 11 

O7 15 14 16 16 17 21 23 25 12 

O8 16 14 17 17 17 22 23 26 13 

O9 15 13 16 16 16 21 22 25 11 

O10 14 13 16 16 16 20 22 24 12 

Expected Distance 
(m × 100) 

11 10 12 12 13 16 17 19  

 
constraint quantity values which are referred to as rim requirements. In a time 
transportation problem, the time of transportation from m origins to n destina-
tions is minimized, satisfying certain condition in respect of availability at 
sources and requirements at the destinations. From Table 2, we have a balanced 
transportation problem in which the total demand (expected distance) equals the 
total supply (actual distance). The distance is measured in meter ×100 while the 
time or duration is measured in minutes. 

3. Problem Solution  

Solving transportation problems involves a lot of methods, some of them heuris-
tic in nature [26]-[31]. In this paper, the transportation problem is solved based 
on the data collected, which is relatively reliable. The first stage of the solution 
process was to find the initial basic feasible solution [32]. The following three 
methods of obtaining the initial solution were used. These methods are 
North-west corner method, least cost method and Vogel’s approximation me-
thod. Based on the Least cost method that gave the minimum time spent an op-
timality test was carried out, after checking for degeneracy, to determine an op-
timal solution using the MODI (Modified Distribution) method.  

3.1. North-West Corner Method 

Using the North West corner method to obtain an initial basic solution the val-
ues derived are shown below (Table 3). 

3.2. Least Cost Method 

Using the least cost method we obtain the following values as shown below 
(Table 4). 
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Table 3. North-west corner method matrix. 

Total time spent
9 10 2 14 9 11 1 10 9 13 3 14 8 14 4 14 6 14

7 14 4 22 12 21 13 23 4 22 7 25 12 24
1926

= × + × + × + × + × + × + × + × + ×
+ × + × + × + × + × + × + ×

=

 

 D1 D2 D3 D4 D5 D6 D7 D8 
Actual Distance  

(Km) 

O1 910 8 11 11 11 16 17 20 9 

O2 214 911 15 14 15 19 20 23 11 

O3 12 110 913 13 13 18 19 22 10 

O4 13 11 314 814 14 19 20 23 11 

O5 13 11 14 414 614 19 20 23 10 

O6 12 11 14 14 714 422 24 23 11 

O7 15 14 16 16 17 1221 23 25 12 

O8 16 14 17 17 17 22 1323 26 13 

O9 15 13 16 16 16 21 422 725 11 

O10 14 13 16 16 16 20 22 1224 12 

Expected Distance 
(Km) 

11 10 12 12 13 16 17 19  

 
Table 4. Least cost method matrix. 

Total time spent
9 8 11 14 9 12 1 10 11 14 1 14 1 14 8 14 2 12

5 14 4 23 4 21 6 23 2 25 13 26 11 22 12 20
1916

= × + × + × + × + × + × + × + × + ×
+ × + × + × + × + × + × + × + ×

=

 

 D1 D2 D3 D4 D5 D6 D7 D8 
Actual Distance  

(Km) 

O1 10 98 11 11 11 16 17 20 9 

O2 14 11 15 1114 15 19 20 23 11 

O3 912 110 13 13 13 18 19 22 10 

O4 13 11 1114 14 14 19 20 23 11 

O5 13 11 114 114 814 19 20 23 10 

O6 212 11 14 14 514 22 24 423 11 

O7 15 14 16 16 17 421 623 225 12 

O8 16 14 17 17 17 22 23 1326 13 

O9 15 13 16 16 16 21 1122 25 11 

O10 14 13 16 16 16 1220 22 24 12 

Expected Distance 
(Km) 

11 10 12 12 13 16 17 19  
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3.3. Test for Degeneracy 

The only optimality test condition is transportation degeneracy. Out of the three 
methods used to find the initial basic feasible solution to the transportation 
problem under consideration, the least cost method gave the minimum value of 
1916. Therefore the least cost matrix is used to check for degeneracy: 

1 10 8 1 17m n+ − = + − =  

The basic cells are also 17. This implies there is no problem of degeneracy thus 
optimality test is carried out (Table 5). 

3.4. Test for Optimality 

From the results obtained using the three methods of finding the initial basic 
feasible solution, least cost method gave the least amount of total time spent. 
Thus, its solution will be used to test for optimality in order to obtain the optim-
al solution (Table 6). 

3.5. Modified Distribution Method (Modi Method) 

This method involves two formulas in arriving at an optimal solution. 

i j ijU V C+ = , which is used in determining the values of Ui and Vj using the 
values in the occupied cells. 

i j ij ijU V C K− − = , which is used in determining the best empty route that can  
 

Table 5. Vogel method. 

Total time spent
2 11 7 11 11 4 10 11 10 12 3 19 8 23 6 14 4 20

11 14 1 16 11 25 13 22 10 16 12 22
1926

= × + × + × + × + × + × + × + × + ×
+ × + × + × + × + × + ×

=

 

 D1 D2 D3 D4 D5 D6 D7 D8 
Actual Distance  

(Km) 

O1 10 8 11 211 711 16 17 20 9 

O2 114 1011 15 14 15 19 20 23 11 

O3 1012 10 13 13 13 18 19 22 10 

O4 13 11 14 14 14 319 20 823 11 

O5 13 11 14 14 614 19 420 23 10 

O6 12 11 1114 14 14 22 24 23 11 

O7 15 14 16 16 17 21 123 1125 12 

O8 16 14 17 17 17 1322 23 26 13 

O9 15 13 116 1016 16 21 22 25 11 

O10 14 13 16 16 16 20 1222 24 12 

Expected Distance 
(Km) 

11 10 12 12 13 16 17 19  
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Table 6. Modified least cost method matrix. 

  
D1 

V1= 
D2 

V2= 
D3 

V3= 
D4 

V4= 
D5 

V5= 
D6 

V6= 
D7 

V7= 
D8 

V8= 

Actual 
Distance 

(Km) 

U1= O1 10 98 11 11 11 16 17 20 9 

U2= O2 14 11 15 1114 15 19 20 23 11 

U3= O3 912 110 13 13 13 18 19 22 10 

U4= O4 13 11 1114 14 14 19 20 23 11 

U5= O5 13 11 114 114 814 19 20 23 10 

U6= O6 212 11 14 14 514 22 24 423 11 

U7= O7 15 14 16 16 17 421 623 225 12 

U8= O8 16 14 17 17 17 22 23 1326 13 

U9= O9 15 13 16 16 16 21 1122 25 11 

U10= O10 14 13 16 16 16 1220 22 24 12 

 
Expected 
Distance 

(Km) 
11 10 12 12 13 16 17 19  

 
be followed to reduce the total time spent and it is only the route with the most 
negative Kij that will be considered. 

Ui and Vj are the row and column values which will be determined while Cij 
and Kij are the unit time and time increase or decrease respectively. 

Calculating for occupied cells gives: 

i j ijU V C+ =  

1 2 1 2O D : 8U V+ =                        (1) 

2 4 2 4O D : 14U V+ =                        (2) 

3 1 3 1O D : 12U V+ =                        (3) 

3 2 3 2O D : 10U V+ =                        (4) 

4 3 4 3O D : 14U V+ =                        (5) 

5 3 5 3O D : 14U V+ =                        (6) 

5 4 5 4O D : 14U V+ =                        (7) 

5 5 5 5O D : 14U V+ =                        (8) 

6 1 6 1O D : 12U V+ =                        (9) 

6 5 6 5O D : 14U V+ =                       (10) 

6 8 6 8O D : 23U V+ =                       (11) 

7 6 7 6O D : 21U V+ =                       (12) 

7 7 7 7O D : 23U V+ =                       (13) 

7 8 7 8O D : 25U V+ =                       (14) 

8 8 8 8O D : 26U V+ =                       (15) 
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9 7 9 7O D : 22U V+ =                       (16) 

10 6 10 6O D : 20U V+ =                      (17) 

From the equations above there are eighteen (18) unknowns but seventeen (17) 
equations. To solve this, 0 is assigned to one of the unknowns. 

Let 1 0U =   
From Equation (1),  

1 2 1 2O D : 8U V+ =                        (18) 

20 8V+ =  

Therefore, 2 8V =  
Substituting Equation (18) into Equation (4) gives 

3 2U =                            (19) 

Substituting Equation (19) into Equation (3) gives 

1 10V =                            (20) 

Substituting Equation (19) into Equation (9) gives 

6 2U =                            (21) 

Substituting Equation (21) into Equation (10) gives 

5 12V =                            (22) 

Substituting Equation (21) into Equation (11) gives 

8 21V =                            (23) 

Substituting Equation (23) into Equation (14) gives 

7 4U =                            (24) 

Substituting Equation (23) into Equation (15) gives 

8 5U =                            (25) 

Substituting Equation (22) into Equation (8) gives 

5 2U =                            (26) 

Substituting Equation (26) into Equation (7) gives 

4 12V =                            (27) 

Substituting Equation (21) into Equation (2) gives 

2 2U =                            (28) 

Substituting Equation (26) into Equation (6) gives 

3 12V =                            (29) 

Substituting Equation (30) into Equation (5) gives 

4 2U =                            (30) 

Substituting Equation (24) into Equation (12) gives 

6 17V =                            (31) 

Substituting Equation (24) into Equation (13) gives 
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7 19V =                            (32) 

Substituting Equation (33) into Equation (16) gives 

9 3U =                            (33) 

Substituting Equation (32) into Equation (17) gives 

10 3U =                            (34) 

Calculating for the unoccupied cells gives: 

ij i j ijC U V K− − =  

1 1 1 1O D :10 10 0 10 0U V− − = − − =  

1 3 1 3O D :11 11 0 12 1U V− − = − − = −  

1 4 1 4O D :11 11 0 12 1U V− − = − − = −  

1 5 1 5O D :11 11 0 12 1U V− − = − − = −  

1 6 1 6O D :16 16 0 17 1U V− − = − − = −  

1 7 1 7O D :17 17 0 19 2U V− − = − − = −  

1 8 1 8O D : 20 20 0 21 1U V− − = − − = −  

2 1 2 1O D :14 14 2 10 4U V− − = − − =  

2 2 2 2O D :11 11 2 8 1U V− − = − − =  

2 3 2 3O D :15 15 2 12 1U V− − = − − = −  

2 5 2 5O D :15 15 2 12 1U V− − = − − = −  

2 6 2 6O D :19 19 2 17 0U V− − = − − =  

2 7 2 7O D : 20 20 2 19 1U V− − = − − = −  

2 8 2 8O D : 23 23 2 21 0U V− − = − − =  

3 3 3 3O D :13 13 2 12 1U V− − = − − = −  

3 4 3 4O D :13 13 2 12 1U V− − = − − = −  

3 5 3 5O D :13 13 2 12 1U V− − = − − = −  

3 6 3 6O D :18 18 2 17 1U V− − = − − = −  

3 7 3 7O D :19 19 2 19 2U V− − = − − = −  

3 8 3 8O D : 22 22 2 21 1U V− − = − − = −  

4 1 4 1O D :13 13 12 10 9U V− − = − − = −  

4 2 4 2O D :11 11 12 8 9U V− − = − − = −  

4 4 4 4O D :14 14 12 12 10U V− − = − − = −  

4 5 4 5O D :14 14 12 12 10U V− − = − − = −  

4 6 4 6O D :19 19 12 17 10U V− − = − − = −  

4 7 4 7O D : 20 20 12 19 11U V− − = − − = −  

4 8 4 8O D : 23 23 21 10 10U V− − = − − = −  

5 1 5 1O D :13 13 2 10 1U V− − = − − =  
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5 2 5 2O D :11 11 2 8 1U V− − = − − =  

5 6 5 6O D :19 19 2 17 0U V− − = − − =  

5 7 5 7O D : 20 20 2 19 1U V− − = − − = −  

5 8 5 8O D : 23 23 2 21 0U V− − = − − =  

6 2 6 2O D :11 11 2 8 1U V− − = − − =  

6 3 6 3O D :14 14 2 12 0U V− − = − − =  

6 4 6 4O D :14 14 2 12 0U V− − = − − =  

6 6 6 6O D : 22 22 2 17 3U V− − = − − =  

6 7 6 7O D : 24 24 2 19 3U V− − = − − =  

7 1 7 1O D :15 15 4 10 1U V− − = − − =  

7 2 7 2O D :14 14 4 8 2U V− − = − − =  

7 3 7 3O D :16 16 4 12 0U V− − = − − =  

7 4 7 4O D :16 16 4 12 0U V− − = − − =  

7 5 7 5O D :17 17 4 12 1U V− − = − − =  

8 1 8 1O D :16 16 5 10 1U V− − = − − =  

8 2 8 2O D :14 14 5 8 1U V− − = − − =  

8 3 8 3O D :17 17 5 12 0U V− − = − − =  

8 4 8 4O D :17 17 5 12 0U V− − = − − =  

8 5 8 5O D :17 17 5 12 0U V− − = − − =  

8 6 8 6O D : 22 22 5 17 0U V− − = − − =  

8 7 8 7O D : 23 23 5 19 1U V− − = − − = −  

9 1 9 1O D :15 15 3 10 2U V− − = − − =  

9 2 9 2O D :13 13 3 8 2U V− − = − − =  

9 3 9 3O D :16 16 3 12 1U V− − = − − =  

9 4 9 4O D :16 16 3 12 1U V− − = − − =  

9 5 9 5O D :16 16 3 12 1U V− − = − − =  

9 6 9 6O D : 21 21 3 17 1U V− − = − − =  

9 8 9 8O D : 25 25 3 21 2U V− − = − − =  

10 1 10 1O D :14 14 3 10 1U V− − = − − =  

10 2 10 2O D :13 13 3 8 2U V− − = − − =  

10 3 10 3O D :16 16 3 12 1U V− − = − − =  

10 4 10 4O D :16 16 3 12 1U V− − = − − =  

10 5 10 5O D :16 16 3 12 1U V− − = − − =  

10 7 10 7O D :16 16 3 19 6U V− − = − − = −  

10 8 10 8O D : 24 24 3 21 0U V− − = − − =  
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Table 7. MODI method iteration showing the new allocation. 

Total time
9 8 11 14 9 12 1 10 5 14 6 20 1 14 1 14 8 14 2 12

5 14 4 23 6 16 4 21 2 25 13 26 11 22 12 20
1896

= × + × + × + × + × + × + × + × + × + ×
+ × + × + × + × + × + × + × + ×

=

 

  
D1 

V1= 
D2 

V2= 
D3 

V3= 
D4 

V4= 
D5 

V5= 
D6 

V6= 
D7 

V7= 
D8 

V8= 

Actual 
Distance 

(Km) 

U1= O1 10 98 11 11 11 16 17 20 9 

U2= O2 14 11 15 1114 15 19 20 23 11 

U3= O3 912 110 13 13 13 18 19 22 10 

U4= O4 13 11 5(-)14 14 14 19 6(+)20 23 11 

U5= O5 13 11 114 114 814 19 20 23 10 

U6= O6 212 11 14 14 514 22 24 423 11 

U7= O7 15 14 6(+)16 16 17 421 (-)23 225 12 

U8= O8 16 14 17 17 17 22 23 1326 13 

U9= O9 15 13 16 16 16 21 1122 25 11 

U10= O10 14 13 16 16 16 1220 22 24 12 

 
Expected 
Distance 

(Km) 
11 10 12 12 13 16 17 19  

 
From the calculations above, O4D7 is the only cell with the most negative Kij 

with −11. With this result it means that the total time will be reduced by −11 if 
we allocate to that cell. The Table 7 illustrates this. 

4. Result Discussion 

From the analysis carried out with the data collected, it can be seen that least 
cost method gave the best initial basic feasible solution. Optimality test carried 
out, using MODI method, gave an optimal value of 1896. This was an improve-
ment on the result, 1916, given by the least cost method. Also, it can be seen that 
by allocating maximally to route O4D7, the total time will be reduced by −11. 
From Table 7 above, it can be seen that the total time can be minimized if 900 m 
is covered using route O1D2, 11 km covered using O2D4, 9 km covered using 
O3D1, 1 km covered using O3D2, 5 km covered using O4D3, 6 km covered using 
O4D7, 1 km covered using O5D3, 1 km covered using O5D4, 8 km covered using 
O5D5, 2 km covered using O6D1, 5 km covered using O6D5, 4 km covered using 
O6D8, 6 km covered using O7D3, 400 m covered using O7D6, 13 km covered using 
O8D8, 11 km covered using O9D7, 1200 m covered using O10D6. Also, from the 
table it can be seen that some requires less time to cover than the others. For in-
stance, route O1D2 requires just 8 minutes to cover 900 m while some other 
routes, like route O5D3 and route O5D4, require a lot of time. This could be as a 
result of different factors relating to the transportation system generally which 
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the university authority should look into. Also, this analysis and the result would 
help the university to plan in order to optimize its transportation system within 
the campus, especially as regards the movement of students to and fro their lec-
ture rooms. 

5. Conclusion 

In this paper time minimizing transportation model was used to determine how 
the movement of students by road from their hostels to their different lecture 
rooms can be optimized. Three methods were used to arrive at an initial basic 
feasible solution and Least Cost method was found to give the least total time as 
compared to the other two methods. MODI method was used to obtain an op-
timal solution. From the result derived, it shows that the total time spent on the 
movement of students to their lecture rooms, from their different hostels, can be 
minimized thereby improving campus life and reducing lateness to lectures. Co-
venant University can use this to plan and manage the transportation system of 
the university, as it thrives on becoming one of the best universities in the world. 
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