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Abstract

For A4eC™", if the sum of the elements in each row and the sum of the ele-
ments in each column are both equal to 0, then A is called an indeterminate
admittance matrix. If A4 is an indeterminate admittance matrix and a Hermi-
tian matrix, then A is called a Hermitian indeterminate admittance matrix. In
this paper, we provide two methods to study the least squares Hermitian indeter-
minate admittance problem of complex matrix equation (AXB, CXD) = (E ,F ) ,
and give the explicit expressions of least squares Hermitian indeterminate
admittance solution with the least norm in each method. We mainly adopt the
Moore-Penrose generalized inverse and Kronecker product in Method I and a
matrix-vector product in Method II, respectively.

Keywords

Matrix Equation, Least Squares Solution, Least Norm Solution, Hermitian
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1. Introduction

Firstly, we state some symbols that are used in this paper. The set of all real
column vectors with n coordinates by R”, and the set of all mxn real ma-
trices by R™" are denoted. Let SR™ and ASR" stand for the set of all
nxn real symmetric matrices and the set of all nxn real anti-symmetric ma-
trices, respectively. The set of all mxn complex matrices is denoted by C™",
and HC™" stands for the set of all nxn Hermitian matrices. For 4eR™",
if the sum of the elements in each row and the sum of the elements in each col-

umn are both equal to 0, then A is called an indeterminate admittance matrix.
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IA™" is denoted to be the set of all indeterminate admittance matrices. For
AeR™, if A1is not only an indeterminate admittance matrix, but also a sym-
metry matrix, then A is called a symmetry indeterminate admittance matrix. Si-
milarly, for 4 e R™, A stands for an anti-symmetric indeterminate admittance
matrix if 4 is an indeterminate admittance matrix and an anti-symmetric matrix.
SIA"™" and AIA™ are denoted to be the set of all symmetry indeterminate
admittance matrices and the set of all anti-symmetric indeterminate admittance
matrices, respectively. For 4eIA™, if A is also a Hermitian matrix, then A is
called a Hermitian indeterminate admittance matrix. HIA™" is denoted to be
the set of all Hermitian indeterminate admittance matrices. The transpose ma-
trix, the conjugate transpose matrix and the Moore-Penrose generalized inverse
of matrix A4 are denoted by A", 4" and A", respectively. The identity matrix

of order nis denoted by I,. The trace of matrix 4= (a,.j) eC™ s
tr(d)=a, +a,+-+a, =€ Ae +e, de, +---+e, Ae,,

where e, is the jth column of the identity matrix 7, . The 2-norm of the vector
x by ||x||2 is denoted. For 4,BeC™ , we define the inner product:
<A,B> = tr(AHB) ,then C™" isa Hilbert inner product space and the norm of
a matrix generated by this inner product is the matrix Frobenius norm |||| .

Definition 1 ([1]). For matrix 4 R"", let a, =(a1j,a2],---,am/.)(j =1,2,-,n),
and denote the following vector by vec(4):

Vec(A):(al,az,---,an)T. (1)

Definition 2 ([1]). For matrix AeSIA™ , let q =(a,.a,..4,,,)
a =(a22,a32,"',a,,,1,2)) T a4, :(arIfZ,an’anfl,n—Z) > Gy =y s and denote

the following vector by vecy (
(

vecg (4 =(al,a2,~--,an_1)T. (2)

Definition 3 ([1]). For matrix 4eAIA™ , let g =(a21,a31,--~,an71,1) ,
a, :(a32,a42,---,an_1’2), “*, a,,=4a,,,,,and denote the following vector by
vec, (4):

vee, (4)=(a,a5,-+a, )" - (3)

It is well known that indeterminate admittance matrices play important roles
in circuit modeling and lattices network and so on [2] [3]. In this paper, we
mainly discuss the least squares problem associated with indeterminate admit-
tance matrices, and derive it as follows.

Problem I. Given 4C™, BeC™, CeC™, DeC™, EeC™, and
FeC™,let

H, = {X | X e HIA™" | AXB - E||" +||cxD - F]

= min
XoeHIA™"

AX,B~E| +||cx,D-F] .

Find X, € H, such that
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XeH

The solution X, is also called the least squares Hermitian indeterminate

admittance solution of complex matrix equation

(4XB,CXD)=(E,F) (5)

with the least norm.
For studying Problem I mentioned above, we first state some Lemmas.
Lemma 1. ([4]) The matrix equation Ax=b, with AeR™" and beR",

has a solution xeR" ifand only if
AA™b =b, (6)

in this case it has the general solution
x=Ab+(1-4"4)y, ?)

where y€R" isan arbitrary vector.
Lemma 2. ([4]) The least squares solutions of the matrix equation Ax=b,
with A R™" and beR", can be represented as
Xx=Ab+(I-4"4)y, (8)

where y €R" is an arbitrary vector, and the least squares solution with the
least normis x=A"b.

Direct and iterative methods on solving the matrix equations associated with
the constrained matrix (such as Hermitian matrix, anti-Hermitian matrix, bi-
symmetric matrix, reflexive matrix) sets have been widely investigated. See
[5]-[25] and references cited therein. Yuan, Liao and Lei [1] derived the least
squares symmetric solution with the least norm of real matrix equation
AXB+CYD=E by using the vec-operator, Kronecker product and the
Moore-Penrose generalized inverse. In order to avoid the difficulties of the coef-
ficient matrices with large size from the Kronecker product, Yuan and Liao [26]
recently improved this method, defined a matrix-vector product, and success-
fully carried out a special vectorization of the matrix equation AXB+CXD =E
to derive the least squares Hermitian solution with the least norm. Based on
these methods, we continue to study Problem I in this paper.

We now briefly introduce the contents of our paper. In Section 2, by using the
Moore-Penrose generalized inverse and the Kronecker product, we derive the
least squares Hermitian indeterminate admittance solution with the least norm
for the complex matrix Equation (5). In Section 3, we firstly discuss a class of li-
near least squares problem in Hilbert inner product C™", and analysis a ma-
trix-vector product of C™". Then we present the explicit expression of the so-

lution for the complex matrix Equation (5) by using the method.

2. Method I for the Solution of Problem I

In this section, we present the expression of the least square Hermitian indeter-
minate admittance solution of complex matrix Equation (5) with the least norm

by using the Moore-Penrose generalized inverse and the Kronecker product of
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matrices.
Definition 4. For A= (aij) eC™, B= (b,.j) € C™, the symbol

A®B= (al.jB) e C"™" stands for the Kronecker product of 4 and B.
Theorem 3. Suppose X eR™ and o, =¢,—e, (i=1,2,---,n). Then

1) X eSIA™ < vec(X)=Kvecg (X), ) (9)
o n(n-1

where VeCg (X ) is represented as (2), and the matrix KgeR % s of the

following form
[ a, a,, 0 0 0 0 0 ]
0 a, 0 a, a, 0 0 0
0 0 0 0 - 0 0 0
K,=| : : : : : : : (10)
0 0 0 0 0 a,, a, 0
0 O “ee al 0 “ee az e 0 an_z an_l
L& o o T, T Ty T, Ty e ), T, 0, T,
2) X e AIA™ < vee(X)=K vec,(X), (11)
nzx(n—Z)(n—l)H
where vec,(X) is represented as (3), and the matrix K, R 2 is of
the following form
[ -a, -a, - -a,, 0o - 0 0 0 |
o, 0 0 -, a, 0 0
o, 0 a, 0 -a, 0
0 0 0 0 0 a 0
K,=| . . . . : z . . (12)
0 0 0 0 0 0 —a,
0 0 a 0 a, 0 a, ,
|G~y y—ap - O, —0 O3—=Q, - &, —Q O,—0 - O, |
Proof. 1) For X €SIA™, X can be expressed as
_ - -
X Xa1 Tt X -2
=]
X1 X Xn-1)2 _(le T Xy e X )
X =
n-l
Xn-1)1 X(n-1)2 T X)) _j:l )
n-1 n—1 n—l
—Za[] _(le T Xy o Xy ) o _Za(n—l)j Zaij
i=1 j=1 i,j=1 ]

=x,(,0,0,---,0,0,— ) + x,, (@,,,,0,-++,0,0,~, — ;) + x5, (3,0, -+, 0,0,
0 _al)+”‘+x(n—1)1(airfl’()’()""’O’al’_an—l —al)+x22 (0,0{2,0,-~~,O,0,—a2)
+ 23 (0,03, 05,0+,0,0,—0ty — 0ty )+ + X, 4, (0,,,,0,+,0,00, -, — @)
e X ) (0,0,0,--,¢,.,,0, —an72)+x(n71)(n72) (0,0,0,---,2, ,2,.,,

— 0 =)+ X,y (0,0,0,,0,, -0, ).
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It then follows that

a a, a,
0 o, 0
0 0 a,
vee(X)=ux,| | |+xy : + Xy, : +o
0 0 0
0 0 0
L~ —a, — ¢ L%~y
[ a,, 1 [0 ] 0 ]
0 a, a,
0 0 a,
+ X,y : x| X, : +
0 0 0
a, 0 0
Q, , —q |~ | | =% — @,
S F o
a,, 0
F X2 T X2
0 a, ,
a, 0
| =%, — @, | =%,
_ 0 ] S
0 0
0 0
F Xu1)n2) . + Xy |
a, 0
a, a,,
| =y =5 | |~
Thus we have
vee(X) = Kgvecs (X).

Conversely, if the matrix X e R™ satisfies

easy to see that X e SIA™.

2) For X € ATA™", X can be expressed
0 —Xy
Xy 0
X =

Xn-1y X1y
n-1

_zan —(x21 F Xy X )
i=1

vec(X)=Kgvecs (X), then it is

as
n-1 7
_x(n—l)l a;
i=1
X X T X
n-1
0 a(n—l)j
Jj=1
n-1
- a(nfl)j
J=1 _
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It then follows that
[ ] o ] Ca,, |
-a, 0 0
0 -, 0
vee(X)=x, : + X5, : +o Xy :
0 0 0
0 0 -,
a—-aq, a =0, L& — &,y
0 ] 0 ] [ 0 ]
a, o,y 0
-a, 0 0
+Xx;, : +e X : +e Xy
0 0 a,,
0 —Q, &,
[ &y — s | L% — &y [ &2 Xy

Thus we have
vec(X)=K vec, (X).
Conversely, if the matrix X e R™ satisfies vec(X)=K,vec,(X), then it
is easy to see that X e AIA™". The proof is completed.
Theorem 4. Suppose X =Re X ++/—1Im X e C™", then
X e HIA™" & vec(X) = Kvec, (Re X ) ++/~1K ,vec, (Im X) (13)
where vec (Re X ) and vec, (Im X ) are represented as (2) and (3), and the

matrix K¢,K, arein the forms(10) and (12).
Proof. For X =Re X ++/—1Im X € HIA™",then X" = X , we have

(ReX+J—_11mX)H —ReX ++/—1Im X.

Thus we can get (ReX) =ReX,(ImnX) =-ImX . Then ReX eSIA™

and ImX € AIA™ . By (9) and (11),
vec(X) = vec(Re X ) ++/~1vec(Im X)
= K,vecy (Re X)+~v-1K ,vec,, (Im X).

Conversely, if the matrix X € C™" satisfies
vee(X)=Kgvecs (Re X)+~/~1K ,vec, (ImX) , then it is easy to see that
X e HIA™" . The proof is completed.

We now consider Problem I by using the Moore-Penrose generalized inverse
and Kronecker product of matrices.

Theorem 5. Given AC™, BeC™, CeC"™, DeC™, EeC™,
and FeC™ | K . K, are defined as (10) and (12),
vec(X),vecg (X ),vec,(X) are defined as (1), (2) and (3). Then the set H,
of the problem can be expressed as

H, = {X |vee (X) = (K N=IK, )| Bk, +(1 —P(;P())y]}, (14)

where
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(B"®4)K; ~-1(B" ®A)KA]
(p"®C)k, V-1

it el w i)

where y is an arbitrary vector.

D'®C)K, |

Furthermore, the unique least squares Hermitian indeterminate admittance

solution with the least norm X, € H, can be expressed as
veo(X,)=| Ky N-IK, |Bk,. (15)
Proof. By Theorem 4, we can get
|4xB - E| +|cxD - F|’
= ||Vec(AXB) - vec(E)"z + "Vec(CXD) - vec (F)”z
= “(BT ® A)vec(X) - vec(E)”j + H(DT ® C)vec(X) - vec(F)Hz
=[(B" ® 4) vee(Rea) +V=1(B" ® 4) vee (1m x) - Vec(E)“z
+|(D" ®C)vee(Re ) ++=1(D" ®C)vee(Im X ) - vec(F)“z

2

. . vec(Re X)
) [B'®4 J-1(B ®A)]Lec(lmX)}—vec(E)
bec ﬁ(DT@CHHXZZgEQH_m(F)

(B'®A)K, V-1(B'®4)K, ]{Vecs (ReX)}_ _Vec(E)}

(D"®C)K, N-1(D"®C)K, |Lvee,(ImX)
| vees (ReX)
_HP|:V60A(II’HX):|_k

[ReP+x/——lImPJ{Vecs (?ei)}—[Rek+\/——lImk]

2

2
2

vec, (Im X)

2

- - 2
Re X Re X
_|Rep| Vo5 (ReX) ~Rek++/~1ImP vees (ReX)| ok

_VecA(ImX)_ VecA(ImX) ,
[veey (Re X)) ’

rep| S (ReX)| b
| vec, (Im X)

I P vecg (Re X) Cmk
vec,, (Im X) | .

2

B st S el

P {Vecs (ReX)} i

vec, (Im X))

2
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Thus, by Lemma 2,

oyt

} =Bk +(I-B'R)y.
By Theorem 2, it follows that

veo(X) = (Ko, N=1K, )| By +(1 - B'R)y |-
Thus we have

vee(X,)=| Ky, V1K, |Bk,.

The proof is completed.
We now discuss the consistency of the complex matrix Equation (5). By
Lemma 1 and Theorem 3, we can get the following conclusions.
Corollary 6. The matrix Equation (5) has a solution X € HIA™" ifand only
if
PPk =k,. (16)
In this case, denote by H, the solution set of (5). Then
H, ={X|Vec(x)=(KS,J—_1KA)[E)*kO+(1—PO*PO)y]}. (17)

Furthermore, if (16) holds, then the matrix Equation (5) has a unique solution
X eH, ifandonlyif

rank (P)=n’ —2n+1. (18)
In this case,
HE={X|Vec(X)=(KS,J—_1KA)f>O*kO}. (19)
The least norm problem
[ = min ]

has a unique solution X, € H, and X, can be expressed as(15).

3. Method II for the Solution of Problem I

The method for solving Problem I used in this section is from [26]. We concisely
recall it as follows.

Definition 5. Let x:(xl,xz,---,xk)T eCt, y:(yl,yz,---,yk)T eC* and
A=(4,4,,,4,), 4 eC™ (i=12,+,k). Define

1) AOx=x4 +x,4,+--+x,4, €C™;

2) 40(x,y)=(40x,40y).

Let P=(R,P,,B,), BeC"™ (i=12,,k), and a,beC. By Definition
5, we have the following facts which are useful in this paper.

1) x"oy=x"y=(xy);

2) AOx+POx=(A+P)Ox;

3) AO(ax+by)=a(AOx)+b(40y);
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4) (ad+bB)Ox=a(A0x)+b(BOX);
5) (A,B)@[

X

y
6) xOy isnomeaning.

Suppose B=(B,B,,-,B,)eC™, B eC", (i=12,,s),
c=(C,G,,,C)eC™, CeC’, (i=1,2,++,t), DeC"".Then

7) AOB=(40B,A0B,,,A0B,);

8) A0(B,C)=(40B,40C);

9) D(A0Ox)=(DA4)Ox;

10) (A0 x)B=(4B,4,B,-,4B)Ox.

Suppose EeC”", F=(F,F,,F)eC"™, FeC™, (i=1,2,-,k),
G €C™ . Then

11) E[(F,F,..F,)©x|G=(EFG,EF,G,EF,G)Ox.

Suppose M, eC™, M,eC™, M,eC™, M,eC"™. x,x,eC.Then

X
_ o M, . M,))O
M, M, x1:| ( 1 2) |:xj
12) o = H
M, M x,
(M3,M4)©{ }

X
M, 0] [x M x,
13) © = .

}:A®x+BOy;

10 M, |x M ,x,
Lemma 7. ([26]) Given matrices A,4,,-,4, €C"™" and BeC™", let
Re( 4. Re(B
D = o(4)| B, =| e ) (20)
Im(4,) Im(B)

Let k=(k,k,,-,k) e€R" that satisfies
kA +k,A +--+ kA =B (21)
If the matrix Equation (21) is consistent, then the solution set of the matrix
Equation (21) is exactly the solution set of the following consistent system
(D,D)) (D,,D,) (D,D) [k [(D.B,)
<D25D1> (D,,D,) <D2’Dl> k, - <D2’B°> ) (22)

(D,,D,) (D,,D,) (D,,D) || k, (D,,B,)
Lemma 8. ([26]) Given BeC™" and the matrices 4,4,,-,4, € C"", let
k=(kky, k) €R”
such that
Ik A, +ky Ay +-+-+ k4, — B| = min (23)

Then the solution set of (23) is the solution set of the system (22).

We now analyze the structure of the complex matrix equation
(AXB,CXD)=(E,F) over X e HIA™ with the new product that we have
presented.

Let
E. = (esl ) e R™, (24)

y
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where
. - {1 (5:1)=G@.).
0  otherwise.
Let
Ly=(E,-E,-E,+E, E, +E,-E, ~E, —E,—E,+E, -,
E ., +E, -E,-E_,-E, —E,+E, E,—E, —E,+E,, (25)
“E,\,1—E,,.~E,,,+E,).

nz(n—])

Note that L e R" 2

Let
LA = (En + Ezz teet Enn’EZI _Elz _Enl _E2n +En2 + Eln’E31 _E13 _Enl
- ESn + Eln + En3’. : .’En—l 1 E] n-1_ Enl - En—l n + Eln + En n—12 ( 6)
’ ’ ’ ’ 2
E32 - E23 - E3n - EnZ + Ezn + Erm' “’En—l,n—Z - En—Z,n—l - En—l,n
- En,n72 + En,nfl + En72,n )
nxn(n—Z)(n—l)+n
Note that L, eR 2 . We can get the following lemmas.
Lemma 9. Suppose X € R™, then
X eSIA™ < X =L O vecg (X), (27)

where vecg(X) is represented as(2), and the matrix L is in the form (25).
Lemma 10. Suppose X e R™, then

XeAIA™ & X =L, Ovec,(X), (28)

where vec, (X ) is represented as (3), and the matrix L, Is in the form (26).
Lemma 11. Suppose X =Re X +-1ImX € C™, then

X eHIA™ & X =L O vecg (Re X ) +v-1L, O vec, (ImX),  (29)

where Vvec, (Re X) and vec, (ImX) are represented as (2) and (3). The ma-
trix Ly,L, arein the form (25) and (26).

Theorem 12. Suppose AC™ , BeC™ , CeC™ , DeC"™ and
X =ReX +y-1ImX e HIA™". Let A=(A,4,,4,) and C=(C,C,,",C,),
where A, €C" is the ith column vector of matrix A, and C,eC" is the ith

column vector of matrix C,

B, D,

_ B, _ D,
B=| 7|, D=| 7|, (30)

Bn D’l

where B, e C’ is the jth row vector of matrix B, and D, €C’ is the jth row

vector of matrix D. Then
1) AE;B=4B, (31)

2) Let F,,G, €C"™,(i,j=1,2,---,n),i > j, where
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AB,~AB,~AB,+AB i=J,

n—n>

F, =
"7 \4B,+AB~AB,~AB ~AB,~A4B+4B, i>],

0, i=J,

G =
P\N-1(4B,- 4,8~ 4,B,— 4B, + AB,+ AB), i>].

Thus
AXB=(F\ Fyyo.F,

n-1,1»

F229F32»"'sanl,za"'9E171,11719G115G219G219G319'"a (32)

vecy (ReX)}.

vec,, (ImX) (33)

Gn—l,l > Gszs" ) Gn—],2’ G43"“’Gn—1,n—2 ) O|:

3) Let M;,N,€C"™ (i,j=1,2,---,n),i > j, where

ij>
CiDj_Ctsz_CiDn+CnDn’ i:j’
- QDj+CjDi_CiDn_CnDj_Can_CnDi+CnDn’ i>j’

i

0, i=j,
N, =
/ {\/—_1((:,0]. ~C,D,-C,D,~CD,+C,D,+C,D,), i>].

Thus
CXD:(M115M21’.”’Mn—l,1>M22’M32’”"Mn—l,Z"”’Mn—l,n—I’Nll’NZI’NZl’N31’ (34)

vecy (ReX)}.

vec,, (Im X) (35)

>4 Y n—-1,n-2

""Nn-l,lsN:sz""an-l,zsNzts"" N, )®|:

Proof. 1)
AE;B :(AI,AZ,---,An)EU.B:(O,---,AI.,---,O)B =A4B;

2) By (1), Definition 5 and Lemma 7, we can get
AXB = A| Ly © veoy (Re X) ++/=1L, O vec, (Im X ) | B
= A[ Ly © vecs (Re X)]|B+~-14[ L, O vec,(Im X)]B
=[(4Ls) © vecs (Re X) | B++/-1[(AL,)© vec, (ImX)|B
=[4(E,~E, ~E, +E,)B.A(Ey +E,~E, —E, —E, —E,, +E,)B,
-E,-E,,,~E,,  —E,+E,)B A(E,~E,, —E

n2

-, A(E,,, +E

1Ln—1 n_

+E,,)B, -, A(E E,,,~E,,,+E,)B|Ovecs (Re X)

n-lin-1 ~ “npn-1
+\/__1|:A(E]1 +E22 +“'+Enn)B’A(E21 _E12 _Enl _EZn +En2 +E1n)B’
A(E31 - E13 _Enl _E3n + Eln + Ens)Ba' ' "A(En—l,l _El,n—l - Enl _En—l,n
+Eln +En,nfl)B’A(E32 _E23 _E3n _EnZ +E2n +En3)B"”’A<Enfl,n72

-E

n-2,n—1 -

")

n-1,12 n—1,n—|

E

n-l,n - E + E + En72

n,n-2 n,n—1 n

B|ovec, (Im X)
1) O vecg (Re X)

+(G11.Gy1.Gyy- .G, 112Gy, G5, GGy, ) © Ve, (Im X )

11° n-l,n-2
:(EI’EI"'"P'n—l,lﬁﬁvnﬁF'329"'7F;1—1,2""DEz—l,n—lﬂG117G219G21’G313”'9
vecg (ReX)}

G,H,l 5 G32,' Ty anl,Z’ G43, e G,1—l,n72 ) © |:VeCA (In’l X)

DOI: 10.4236/jamp.2018.66101 1209 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.66101

Y. F. Liang et al.

3) The proof is similar to that of (2), so we omit it.

The proof is completed.

We now use Lemmas 7 - 11, and Theorem 12 to consider the least squares
Hermitian indeterminate admittance solution for the matrix Equation (5). The
following notations and lemmas are necessary for deriving the solutions.

For 4eC™, BeC"™, CeC™, DeC™, EcC™ ,and FeC™,Ilet

3
SEEAy

—
:C/J >
L
b}

L
>
B
L
)
L
N

~

_<f-;l—l,n—2’f{1> <f;1—1,n—2’ 21> <f;1—1,n—2’f;1—l,n—2>_

<Sn—1 n—-1° 7:1—1,n—2 >_

31 [ (fer) ]

(7o)

<§n-1,n—1’Ro>J _<f:1—l,n—2’RO>_

Theorem 13. Let AcC™, BeC™, CeC™, DeC™, EcC™, and
FeC™, LgL, aredefined as(25) and (26), vecg(X),vec,(X) are defined
as(2) and (3). let U,V beasin(36). Then H, can be expressed as

H, ={X|X=(LS,J—_1LA)Q[U*V+(1—U*U)y]}, (37)

where y is an arbitrary vector.
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Furthermore, the unique least squares Hermitian indeterminate admittance

solution with the least norm X, € H, can be expressed as
X, =(LoN=1L, )0 (U™) (38)
Proof. By Theorem 4, we can get

|4xB - E| +|cxD - F|f

axB-£ff |[4xB] [E]
lcxp-F| |lcxp| |F
vecg (Re X)
(Fil’F'Zl’.."El—l.n—l’Gll’GZI’GSI’...’G”_I’”_Z)@ vec (ImX)
A
Vecs(ReX)
(M“,Mz[s'“9Mn—1,n71aN11’N215N319.“’Nn—l,n*Q)O vec (ImX)
A

vec, (Im X))

vecg (ReX)} B RH2

(SII’SZI’.“’Snl,n1’7;1’7‘21’731’.."7:11,/12)®|:

Then by Lemma 11, the least squares problem
|4XB - E| +||cXD ~ F||" = min

with respect to the Hermitian indeterminate admittance matrix X is equivalent

to the following consistent matrix equation

U{Vecs (ReX)} ~

vec,, (ImX)

|AXB - E|" +|CXD — F| =min if and only if

oyt

Thus, by Lemma 2,

}zU*v—k(]—U*U)y.

From Lemma 11, it follows that
X =(LgN=1L, ) o[ Uv+(1-UU)y ).

where yis an arbitrary vector. it yields that
X, =(LsN-1L, )0 (Uv).

The proof is completed.
We now discuss the consistency of the complex matrix Equation (5). By
Lemma 1 and Theorem 13, we can get the following conclusions.
Corollary 14. The matrix Equation (5) has a solution X € HIA™" if and
only if
UUv =v. (39)
In this case, denote by H, the solution set of (5). Then
H, = {X | X :(LS,J—_lLA)@[U*v+(1—U*U)y]}, (40)

where y is an arbitrary vector.
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Furthermore, if (39) holds, then the matrix Equation (5) has a unique solution
X eH, ifandonlyif

rank(U)zn(n_1)+(n_l)(n_2)+1. (41)
2 2
In this case,
H, = {X | X = (LS,J—_lLA)o(U*v)}. (42)
The least norm problem
1, min ]

has a unique solution X, € H, and X, can be expressed as(38).

4. Conclusion

In this paper, we mainly consider the least squares Hermitian indeterminate
admittance problem of the complex matrix equation (A4XB,CXD)=(E,F). We
derive the explicit solution of this complex matrix equation over X € HIA™"
The paper provide a direct method to solve the least squares admittance problem
of complex matrix equation (AXB, CXD) = (E I ) . More works such as iterative

methods, error analysis and numerical stability need to be investigated in future.
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