
International Journal of Modern Nonlinear Theory and Application, 2018, 7, 48-55 
http://www.scirp.org/journal/ijmnta 

ISSN Online: 2167-9487 
ISSN Print: 2167-9479 

 

DOI: 10.4236/ijmnta.2018.72004  Jun. 12, 2018 48 Int. J. Modern Nonlinear Theory and Application 
 

 
 
 

Multi-Order Intermittent Chaotic 
Synchronization of Closed Phase Locked Loop 

Samir M. Shariff 

Electrical Engineering Department, College of Engineering, Taibah University, Medinah, KSA 

 
 
 

Abstract 
For the model of a Closed Phase Locked Loop (CPLL) communication System 
consists of both the transmission and receiver ends. This model is considered 
to be in a multi-order intermittent chaotic state. The chaotic signals are then 
synchronized along side with our system. This chaotic synchronization will be 
demonstrated and furthermore, a modulation will be formed to examine the 
system if it will perfectly reconstruct or not. Finally we will demonstrate the 
synchronization conditions of the system. 
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1. Introduction 

A chaotic system has various properties one of which we will consider in our 
paper here is the property of uncorrelated trajectory that forms by the exponen-
tial divergence of the initial conditions, which varies with time. It is not 
straightforward to demonstrate a pair of chaotic systems that get synchronized 
together perfectly. 

In previous work done by Pecora and Carroll [1] [2] [3], an interesting result 
was produced in exploring the properties of chaos synchronization for nonlinear 
systems and its applications. Additional research was conducted in the area of 
secure communications in particular for a phase locked loop model. 

Our model’s state variables are time variant composed of a set of pair diffe-
rential equations for each identical system that is in a chaotic state. 

The eminent theory of synchronization contains in the deterministic concept 
of chaotic systems. With time variation, the deterministic system of the transi-
tion of the state variables is connected by a given set of differential equations. In 
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our case, two identical chaotic systems are assumed to be simultaneously active. 
Hence, the differential equations will govern the state variables of each system. 
Moreover, the set of the initial conditions is reflected by the divergence of the 
trajectories that were initially stated.  

In this paper, the use of a closed phase locked loop CPLL system is studied. 
This system consists of a transmission and receiver that will be forced by a 
common chaotic signal. Furthermore, the system representing the mathematical 
model was derived of the differential equation and then was simulated. These 
results will be developed through the synchronization of the multi-order inter-
mittent CPLL model [4] [5] [6] [7]. 

2. Cpll Model 

Chaos in closed phase locked loops has been researched by many researchers in 
various institutions around the world for at past few years. Closed phase locked 
loops similar to many chaotic systems that are close to Chua’s circuit series [8], 
Josephson junctions [9] and Van der Pol oscillator [10] have been considered 
extensively in this work. A more recent study was made on chaos in closed phase 
locked loop has stretched beyond analysis of chaotic behavior. The general no-
tion of chaos synchronization was used to build a communication system that 
will ensure the security of information transmitted with it. 

The CPLL that was considered as a chaos generator for this systems has a re-
sponse that is undesirable for many of the typical communication systems. In 
one case, the CPLL is used to demodulate an FM signals, as well as the output of 
the system may become chaotic for particular loop parameters. This behavior 
drives the CPLL to reach to unlock its state [11]. In both cases, chaos observa-
tion and control, for the undesirable state, are of a vital interest for this design 
parameters. 

Both, Endo and Watada [12] found that the bifurcation sets of the Shilin-
kov-type homoclinic orbits for a third-order independent CPLL with a symme-
tric periodic triangular phase detector that the filter is in a second order loop. It 
is clear that this type of CPLL has a chaotic attractor. Concurrently, both, Harb 
& Harb [13] presented a third order CPLL with sinusoidal phase detector cha-
racteristics experienced chaos through Hopf bifurcation. In addition, the CPLL 
is unlocked after the Hopf bifurcation point was indicated. Both bifurcation and 
chaos theory were analyzed based on modern nonlinear control theory and me-
thodologies. Both methods of multi scales, and perturbation, have been analyzed 
to determine the normal form at the surroundings of the Hopf bifurcation focal 
point. This point was considered to be supercritical. Such that, a small periodic 
solutions, limit cycles, are originated at the Hopf bifurcation point. The increase 
of the control parameter will limit the cycle’s deformity as well as eventually 
ending to reach to a chaotic state. 

Finally, both Harb & Harb [14], considered the closed phase locked which 
block circuit diagram is presented in Figure 1. The loop filter is represented as,  
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Figure 1. Block diagram of a closed phase locked loop with second-order loop filter and 
feedback. 
 
Next we superimpose the control signal into the CPLL system, and then inte-
grate it into the new system form; this will enable it to obtain the simulation re-
sults as illustrated in Figure 3. In Figure 2 it is obvious that the chaotic behavior 
through Hpof bifurcation is uncontrolled. Since the control parameter Ko is 
around 85300 where the chaotic oscillation present a double rout to the current 
chaos. Thus, the CPLL is forced to reach a state of out of lock and will not reach 
to a state of equilibrium, phased locked. The main aim of this work is to reach a 
controlled equilibrium state clearing all chaotic behaviors. Now, looking at both 
figures in Figure 2 and in Figure 3, we correlate them and notice that it will ap-
proach a stable equilibrium state solution. This indicates that the CPLL in a lock 
state. Furthermore, we undertake the design of the control signal that is taken 
after 50 seconds from the initial time of origination. Finally, Figure 4 presents 
the controller as it takes the system to a stable equilibrium state solution in a 
locked state of the original control signal. 

The closed phase locked loop model is sketched in the block diagram shown 
in Figure 5. This model will be investigated for chaotic synchronous pair attrac-
tors. Our model consists of a multi order system. We will denote it by n-CPLLs, 
and for simplicity we will take a 3rd order system. Thus we will have 3-CPLLs 
that we will indicate them as follows, 0-CPLL will be a positive Lyaponouv ex-
ponent. This 0-CPLL will generate a chaos for its VOC output that will be ap-
plied to both inputs of 1-CPLL and 2-CPLL systems. Both 1-CPLL and 2-CPLL 
have a negative Lyaponouv exponent and are driven by a common chaotic signal 
c(t) [15]. 

We have a chaotic 1-CPLL that will drive the complete system to be at state of 
out of lock. Thus, this will convert the receiver chaotic signal of 0-CPLL to pro-
duce anther chaotic situation. Meanwhile, 2-CPPL will in turn becomes an at-
tractor of chaos, and the common chaotic signal c(t) will synchronize the com-
plete system. We note that the initial conditions and parameters are unchanged 
and are identical throughout the numerical solution [16]. 

We then modulate the information signal m(t) in the transmission end of the 
system with a chaotic signal. Furthermore, we then synchronize the receiver end 
of the system along with the transmission end of the system. Figure 2 shows that 
both the receiver and transmitter ends of our system are identical. 

F1(s) F2(s)

Feedback

φsin1Ak)sin(2 tA οω

)(cos2 tK vv θ
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         (a)                                                       (b) 

Figure 2. Uncontrolled simulations, (a) The chaotic time response and (b) State plane of the state variables X2 and X3 at Ko 
= 85,300. 

 

 
         (a)                                                       (b) 

 
         (c)                                                       (d) 

Figure 3. Controlled simulations [(a) Time history and (b) State plane] of the state variables X2 and X3 , at Ko = 85,300. 
Controlled simulations [(c) Time history and (d) State plane) of the error signals e2 and e3, at Ko = 85,300. 
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     (a)                                                          (b) 

Figure 4. Applying the control signal after 50 seconds, (a) The time history and (b) The state plane of state variables X2 and X3, at 
Ko = 85,300. 

 

 

Figure 5. The block diagram of the closed phase 
locked loop model. 

 

We initially start by driving the differential equations of the system. This is 
done by taking the receiving end containing 0-CPLL and 1-CPLL to a chaotic 
state as represented in Equation (1), 

( ) ( ) ( ) ( )2cos cos sin sino o o o o o o o o oa b c d bφ φ φ φ φ φ φ δφ φ φ+ + + + − + =          (1) 

Next, we take the differential equation representing 1-CPLL is represented by 
Equation (2), 
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And for the transmission side 2-CPLL we have Equation (3), 
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We will introduce a set of variables to develop our model into a state variable 
set of space equations, 

1 2 3 4 1 5 1 6 1 7 2 8 2 9 2, , , , , , , ,o o ox x x x x x x x xφ φ φ φ φ φ φ φ φ= = = = = = = = =       

Hence, our system’s state space equations becomes, 
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3. Simulation and Analysis 

We have run the simulation in order to verify the synchronization within the 
communication system that is based on our CPLL model. These simulations re-
sulted as expected that the synchronization depended on the initial conditions 
along with the parameters of our system. Figure 6 represents the results of the 
synchronization for both the transmission and receiver ends of our CPLL sys-
tem. These are clearly shown that both initial conditions and parameters 
matched for both transmission and receiver ends.  

We selected the phase errors Ф1 and Ф2 to be as the transmission end and re-
ceiver end respectively. Furthermore, we introduce an information sinusoidal 
signal and denote it by m(t) to be multiplied by the transmission phase error Ф1. 
As a result, Figure 7 represents the reconstructed receiver end signal that is 
synchronized at the output as indicated above. 

As a result of a mismatch in the initial conditions for both ends of the trans-
mission and receiver ends would indicate a non-synchronized signal as it is ap-
parent in Figure 8. Thus, it is impossible at this stage to recover the information 
sinusoidal signal m(t), that was modulated through a chaotic carrier. Figure 9 
shows the recovering sinusoidal signal that have failed to be recovered for the 
non synchronized original signal due to the mismatch in the initial conditions 
and parameter. 

In general, we have proven that the chaotic system depends implicitly to the 
origination of a matched initial conditions and matched parameters of the com-
plete system in study. 

4. Conclusion 

Our simulation and analysis indicate that the two chaotic outputs of identical  

https://doi.org/10.4236/ijmnta.2018.72004


S. M. Shariff 
 

 

DOI: 10.4236/ijmnta.2018.72004 54 Int. J. Modern Nonlinear Theory and Application 
 

 
Figure 6. Results of the synchronization for both the transmission and receiver ends of our CPLL system. 
 

 
Figure 7. The reconstructed receiver end signal that is synchronized at the output. 
 

 
Figure 8. Non synchronization when a difference in the initial conditions exists. 
 

 
Figure 9. The recovering sinusoidal signal that has failed to be recovered for the non synchronized original signal. 
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CPLLs, Vco would result in a common chaotic input synchronized sinusoidal 
signal. The initial conditions along with the original parameters matching as well 
as with both the transmission and receiver ends will result into a one to one 
synchronization system. It has also been proven that a small mismatch in the ei-
ther the initial conditions or the original parameters would result in an impossi-
ble recovery of the information sinusoidal signal transmitted and received. 
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