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Abstract

Minimum quadratic distance (MQD) methods are used to construct
chi-square test statistics for simple and composite hypothesis for parametric
families of copulas. The methods aim at grouped data which form a contin-
gency table but by defining a rule to group the data using Quasi-Monte Carlo
numbers and two marginal empirical quantiles, the methods can be extended
to handle complete data. The rule implicitly defines points on the nonnegative
quadrant to form quadratic distances and the similarities of the rule with the
use of random cells for classical minimum chi-square methods are indicated.
The methods are relatively simple to implement and might be useful for ap-
plied works in various fields such as actuarial science.
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1. Introduction

In actuarial science or biostatistics we often encounter bivariate data which are
already grouped into cells forming a contingency table, see Partrat [1] (p 225),
Gibbons and Chakraborti [2] (p 511-512) for examples, and the primary focus is
on dependency study and we only want like to make inference on association
parameters of the parametric survival copula used to model the dependency of
the two components of the bivariate observations.

For the complete data, in actuarial science or biostatistics usually we assume
to have a sample of nonnegative bivariate observations Z, =(X, Y)' which are

270

independent and identically distributed (iid) as Z = (X Y )' with the bivariate
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survival function expressible as
Sg(x,y):Cg(F(x),(_}(y)) (1)

where G, (u, v) ,0u<1,0<v<1 is the survival copula function,
F(x)=P(X>x) and G(y)=P(Y>y) are the marginal survival functions.
The bivariate model with deductibles in actuarial science as given by Klugman
and Parsa [3] can be considered as having complete data within this framework
as we still have a sample of bivariate observations which are iid.

In this paper, we emphasize nonnegative distributions. So in general we use
survival functions and survival copula functions but it is not difficult to see that
the statistical procedures developed can be adjusted to handle the situation
where we use distribution functions and distribution copula instead of survival
function and survival copula. If we use distributions functions then the bivariate

distribution function
H(x,y)=C, (F(x),G(y))

where the marginal distribution functions are given respectively by F (x) and
G (). In the paper by Dobric and Schmid [4], distributions functions are used
as the authors emphasize financial applications instead of actuarial science ap-
plications. It is not difficult to see that statistical procedures are similar.

For illustrations, we shall discuss of few examples of parametric model for
survival copulas. In general, a survival copula can be viewed as a bivariate sur-
vival function but the bivariate sample of observations which is given by the
complete data is not drawn directly from this bivariate survival function. This
should be taken into account when developing inferences methods even when
the data is complete. It is natural to have procedures which provide a unified
approach for grouped data and for complete data but must be grouped so a rule
for grouping the complete data needs to be specified. We shall see that a rule for
grouping the data is equivalent to a rule for choosing points on the nonnegative
quadrant. We propose inference procedures which are based on quadratic dis-

tance and which lead to chi-square tests statistics for the composite hypothesis.

H, :C(u,v)e{C0 (u,v)} (2)

m

with the vector of parameters given by 6=(6,,---,6 )' and in most of the ap-
plications, we just need one or two parameters and the true vector of parameters
for the copula model is denoted by 6, . Also, by copula in general we mean sur-
vival copula.

In actuarial science we often encounter grouped data, see Klugman et al [5]
for the univariate case. Inferences procedures for bivariate censored data have
been developed by Shih and Louis [6], see the review paper by Genest et al [7]
but inference procedures for grouped data do not seem to receive attention and
furthermore, despite that the chi-square tests statistics that Dobric and Schmid
[4] propose to make use of a contingency table, complete data must be available

first, and then transformed by the marginal empirical distribution functions,
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subsequently put into cells of a contingency table. By making use of multinomial
distributions which are induced by a contingency table, chi-square tests can be
proposed. In practice, if data are gouped into a contingency table without being
transformed, then the tests procedures are no longer applicable. They also note
that chi-square tests statistics can have good power along some direction of the
alternatives yet being simple to apply and might be of interest for practitioners.

We also know that chi-square tests statistics in one dimension might not be
consistent in all direction of the alternatives yet due to its simplicity to apply as
there is a unique asymptotic chi-square distribution across the composite hy-
pothesis, one can control the size of the test. Depending on the alternatives and
by carefully choosing the intervals to partition the real line, chi-square tests can
still have good power against some directions of the alternatives and in practice.
Often we are primarily concerned about some type of alternatives instead of all
alternatives. For these advantages, chi-square tests are still used despite there are
more powerful tests such as the Cramer-Von Mises tests, see Greenwood and
Nikulin [8] (p 124-126) for power under contaminated mixture distributions al-
ternatives and Lehmann [9] (p 326-329) for discussions on power of chi-square
tests which are related to the way to create intervals to group the data in one di-
mension.

Therefore, if we can retain the advantages of the chi-square tests in two di-
mensions of having a unique chi-square distribution across the null composite
hypothesis and improve on the issue of arbitrariness of a grouping rule, the in-
ference procedures might still be attractive for practitioners as implementing
other tests procedures might need extensive simulations to approximate a null
distribution which depends on 6, Q.

In this paper, we would like to develop minimum quadratic distance (MQD)
procedures for grouped data and the procedures can be extended to the situation
of having complete data and they must be grouped by specifying a rule which
make use of the Halton sequence of Quasi-Monte Carlo (QMC) numbers and
two empirical quantiles from the two marginal distributions or marginal survival
functions. Tests for copula models can be performed using chi-square tests sta-
tistics with data already grouped and if complete data is available they can be
grouped according a more clearly defined rule. As mentioned earlier, the rule to
select cells to group the data is a rule to select points on the nonnegative quad-
rant to construct quadratic distances. If complete data is available then it is es-
tablished using QMC methods and based on the idea of selecting points in the
nonnegative quadrant so that Cramer-Von Mises distances can be approximated
by quadratic distances. The methods can also be applied to Copula models with
a singular component when u=v provided that the Copula function is differ-
entiable with respect to the parameters given by 6. An example of such a copula
is the one parameter Marshall Olkin(MO) copula, for discussions on MO copu-
las, see Dobrowolski and Kumar [10] and Marshall and Olkin [11].

We briefly list some copula models often encountered in practice. Most of
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them just have one or two parameters. A subclass of Archimedean copulas has
the representation using a generator which is the Laplace transform (LT) of a
nonnegative random variable 7>0 denoted by w (s;é’):l//g (s) The class

can be represented as
Co(wv)=wo[w, (W) +y, " (v)], 0<u<1,0<v<l.

If we specify a gamma LT with y, (s)=(1+s)7€,49>0, then we have the

Clayton or Cook-Johnson copula model
1
C, (u,v) =(u7€ +v? —1) 9.6>0.

If we specify a positive stable LT y,(s)= ¢ then we have the positive sta-

ble copula model which is also called positive stable frailties model with
il "’
C,(u,v)=exp —{(—logu)b’ + (—logv)ﬂ} ,0<0<1,

see Shih and Louis [6] for these families and for simulations from these copulas,
and see the algorithms given by Mai and Scherer [12] (p 98-99).

Beside this subclass the one and two parameters Marshall Olkin copula mod-
els are also frequently used. The two parameters MO model can be expressed as

Cy(u,v)= u™y if % >v% and C, (u,v) =™ if % <V,
0<6,<1,0<6,<1,0=(6,6,) .

The model has a singular component and if 6, =6,, the MO copula model

just has one parameter and

C,(w,v)=u"v if u>v and C,(u,v)=uv"’ if u<v,

note that C,(u,v) is singular for u=v buta function of 6, C,(u,v) is dif-

ferentiable. For further discussions on MO copulas see Dobrowolski and Kumar
[10] and see Ross [13] (p 103-108) for simulations from MO copulas and Gaus-
sian copulas. The Gaussian Copula model can be represented by

&7 (u) po7(v) 1 1
C,(wv)=]" " mexp{‘m(

with the standard normal univariate quantile function denoted by ¢ () and

¥ +y? —2xy) dxdy,

the integrand of the above integral is a bivariate normal density function with
standard normal marginals and parameter p.

Copulas are often used to create bivariate distributions and for inference pro-
cedures for these distributions for actuarial science, see Klugman and Parsa [3],
Klugman et al. [14], Frees and Valdez [15] for examples.

Before giving further details and properties of MQD methods, we shall give
the logic behind the MQD procedures.

Let the bivariate empirical survival function be defined as

1 <
S, (x,y) = ;zizll[xi > X,y > y]
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with I[] being the usual indicator function, let C(u,v)=C00 (u,v) and de-
fine the two univariate empirical marginal survival functions as
F ()= 3 1[5 >x] and G, (x)=~ %11y, >,
n n
we then have the following convergence in probability properties,
S, (x,y)—L>S(x,), F, (x)L)IF(x), G, (x)—")é(x)

with the true survival function and the marginal survival functions are given re-
spectively by S(x,»), F(x) and G(»). We shall assume that F(x) and
G( y) are absolutely continuous, § (x, y) is either absolutely continuous or
S (x, y) is absolutely continuous everywhere except when x=y where the
survival distribution can be singular as in the case of the bivariate exponential

model introduced by Marshall and Olkin [11].

Now if the parametric survival copula model is valid,
S(x,y) = C(ﬁ(x),é(y)), C(u,v) = CG0 (u,v)
so that

S, (x,y)-C, (Fn (x),én (y))—"—)O for 8=6,.

For the time being assume that the A points given by (x,,y, )' A=1L- M
are already chosen, then we can define the vector of empirical components,

8, =(8, (x:31)5++58, (x50 )

with the counterpart vector which makes use of the copula model,

’

Z Z(Ca (Fﬂ (x).G, (yl)),...,Ce (Fn (%, ), G, (¥ ))) ,
and form the vector of differences G, (0) _ (én _5, ), by choosing a symmetric

positive definite matrix W we can form a class of quadratic distances (QD)
given by

0,(0)=(2,~2,) W (2, 2)-

A positive definite matrix can be used to create a weighted Euclidean norm, so

we can also let
0,(6)=[c, (@),

|||| is the weighted Euclidean norm induced by W and if we let W =1
then we obtain the classical Euclidean norm. QD inferences procedures devel-
oped subsequently are based on O, (#) which are similar to the univariate case.
For MQD procedures with univariate observations, see Luong and Thompson
[16].

The paper is organized as follows.

In Section 3, MQD methods will be developed using predetermined grouped
data such as data presented using a contingency table. The efficient quadratic

distances is derived and can be used for estimation and model testing. Asymp-
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totic theory is established for MQD estimators and chi-square tests using quad-
ratic distances can be constructed for testing copula models. In Section 4, by
viewing grouped data as defining a set of points on the nonnegative quadrant, a
rule to select points is proposed based on Quasi-Monte-Carlo numbers and two
sample quantiles if complete data is available and the methods can be extended
to the situation where complete data is available. The methods can be seen as
similar to minimum chi-square methods with random cells but with a rule to
define these cells. The choice of random cells for minimum chi-square methods
is less well defined. Section 5 illustrates the implementations of MQD methods
using a limited simulation study by comparing the methods of moment estima-
tor (MM) estimators based on sample Spearman rho which requires the avail-
ability of complete data versus the MQD estimator which uses grouped data for
the one parameter Marshall-Olkin model and it appears that the chi-square tests
have some power to detect alternatives which can be represented as mixture or
contaminated copula model such as the mixture of one parameter Mar-
shall-Olkin copula model and Gaussian copula model from the study. The find-
ings appear to be in line with chi-square tests in one dimension which also dis-

play similar properties if intervals are chosen properly.

2. MQD Methods Using Grouped Data
2.1. Contingency Tables

Contingency table data can be viewed as a special form of two-dimensional
grouped data. We will give some more details about this form of grouped data.

Assume that we have a sample Z, :(Xl.,Yl.)l ,i=1,---,n which are independ-
ent and identically distributed as Z =(X ,Y)’ which follows a non-negative
continuous bivariate distribution with model survival function given by
C, (F (x),(_}( y)) The marginal survival functions are given respectively by
F (x) and 6( y) assumed to be absolutely continuous but there is no para-
metric model assumed for the marginals.

The vector of parameters is @=(6,,---,0 )' , the true vector of parameters is

denoted by 6,. We do not observe the original sample but observations are
grouped and put into a contingency table and only the number which fall into
each cells of the contingency table are recorded or equivalently the sample pro-
portions which fall into these cells are recorded. Contingency tables are often
encountered in actuarial science and biostatistics, see Partrat [1] (p 225), Gib-
bons and Chakraborti [2] (p 511-512) and we shall give a brief description be-

low.
Let the nonnegative axis X be partitioned into disjoints interval

L) 1[ S, ,S,) with 5, =0,s, =c and similarly, the axis ¥ be partitioned into
= I— 1
PP . J .
disjoints interval | _,»:0[%1:’/) with £, =0,t, =0.

The nonnegative quadrant can be partitioned into nonoverlapping cells of the

form.
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Cy=[sms)x[t0t))si=Leee I, j=1e

The contingency table 7T = (Cl.j) is formed which can be viewed as a matrix

with elements given by
C

i=le d, j=lee

The empirical bivariate survival function is as defined earlier with
S, (x,y)—2—>S(x,y), the underlying bivariate survival distribution. We as-
sume that § (x, y) is either absolutely continuous or it can have a singular
component when X =Y as in the case of the bivariate exponential distribution
of Marshall Olkin [9] but absolutely continuous elsewhere. Implicitly, the mar-
ginal survival functions F(x) and G(y) are assumed to be absolutely con-
tinuous.

The sample proportion or empirical probability for one observation which

fallsinto cell C; can be obtained using S, (x,7)
p, (ij) =S5, (Si—v’j—l)_ S, (Si—l’tj)_Sn (Si’tj—l)Jr S, (Sf’tj) (3)

and the corresponding probability ;;(CU) using the copula model coupled
with the empirical survival distributions F, and G, with
S,(5.6)=C,(F,(s).G, (1)) is given by

@(Ci/) :S;(Si—l’tj—l)_‘gv;(Si—l’tj)_g;(Siﬂt/—l>+‘§;<sjﬂtj)'

It is not difficult to see that there is redundant information displayed by a

contingency table, one way to see that there is duplication is to note
Sy(s52,)=0, S, (s,,2,)=0,i=1,---,1 (4)

and similarly, S’;(s,,tj) =0, S, (s,,tj): 0,j=1---,J.

Therefore, the set points given by {(s,,tj),(sl.,tJ),izl,-~~,1,j:1,---,J} can
be discarded without affecting the information provided by the contingency ta-
ble. Consequently, we can view a contingency table implicitly define a grid on
the nonnegative quadrant with only M =(I—-1)(J—1) points. It is also clear
that if we want a rule to choose cells, the same rule will allow us to choose points
on the nonnegative quadrant.

The objective function of the proposed quadratic form will be given below. It
is a natural extension of the objective function used in the univariate case. De-
fine a vector with empirical components so that we only need one subscript by
collapsing the points of the contingency table given by

{(sl.,tj),i =1,---, 11,/ :1,~-,J—1} into a vector by putting the first row of
the matrix as the first batch of elements of the vector and the second row being

the second batch of elements so forth so on, Ze., let
%; Z(Sn (Sl,tl)’...’Sn (sM,tM))' , M =(1—1)(J—1) . (5)

and its counterpart which makes use of the copula model is

— — 4

z/;:(S0(Sl’tl)"“’Sﬂ(sM’tM)) . (6)
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The number of components of z, is A with the assumption M >m.
A class of quadratic distances can be defined as
0,(8)=(&,~2)) W (2,~%) )
with W being a symmetric and positive definite matrix. In this class, we focus
on two choices of W .

Letting W =1, we obtain the unweighted quadratic distance, this choice is
not optimum but it produces consistent estimators and can be used as prelimi-
nary estimates for @ to start the numerical procedures for finding more effi-
cient estimators. The matrix W is defined up to a positive constant as mini-
mizing the objective function multiplied by a positive constant still gives the
same estimators and W a consistent estimate of W can be used to replace
W without affecting the asymptotic theory for estimation and asymptotic dis-
tribution for test statistics. Using quadratic distance theory or generalized
methods of moment (GMM) theory, it is not difficult to see that an optimum
choice for W is to let W =W, where Q =W, and Q, is an asymptotic

covariance matrix which is given by
Jn (3, -2, ) —>N(0.9,),

see Remark 2.4.3 given by Luong and Thompson [16] (p 245).

Clearly, €, depends on @,. We shall obtain the expression for €, and
show that €, can be estimated by f)o in the next section as we can obtain a
preliminary consistent estimate for €, by using the unweighted quadratic dis-
tance or other quick methods; see the methods of moment using Spearman-rho
in Section 5.2 for example. Consequently, by quadratic distance we mean the

following efficient version with the objective function defined as
0,(8)=(2,~2,) Wy (3, —3) with W,=Q.". (8)

The version with W =1 will be called unweighted quadratic distance. In the
next section we shall use the influence function representation for Jn (én - 200)

to derive €, and we shall also propose f)o a consistent estimate for €.

2.2. Optimum Matrix W,

The matrix €, which is the asymptotic covariance matrix of the vector
Jn ( 2, — 200) plays an important role for MQD methods as we can obtain esti-
mators with good efficiencies for estimators using €, or a consistent estimate
of Q, and we also have chi-square tests statistics. Despite that € is un-
known, its elements are not complicated and moreover, it can be replaced by a
consistent estimate without affecting the asymptotic properties of the proce-
dures. We shall give more details about this matrix and construct §/)\0 , a consis-
tent estimate of Q).

Using influence representation for _the_ vector of functions of /n (5,1 —290)
which depend on three functions §,,F,,G, as discussed by Reid [17], see tech-
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nical appendix (TA1) in the Appendices for more details, it can be seen that
is the covariance matrix of the vector /(x,y) under 6, with

a,
h(x,y)=| © |,
a, Y
oC(F(s,),G(t)) oC(F(s,),G(t
o[ 2CF6)56) ac(Fe).G6))
ou ov

I[x>s,y>1,]-S(s,.1,)
I[x>sl.]—1?(s,.) ,i=1- M
I[y>t[]>6(t[)

~
I

and / [] is the usual indicator function,

S(s.)=C(F(5,).G(1)), C=C,.
6C(u,v) GC(u,v) . . L .
F are respectively the partial derivatives of C (u,v) with re-

spect to zand v

It is not difficult to see that the elements of €, are
Q,(i,j)= al.'Cov(Yl.,Yj)aj
with Cov(Yi,Yj) =K (Y,.Y f ) and since ¥, and ¥, are not identically distrib-

uted Cov(Yl.,Yj) is not symmetric, the matrix has 9 elements, see technical

Appendix (TA2) in the Appendices for more details. The elements can be ex-

pressed as
¢y =S (max(s,s, ), max (5,1, )) =S (5,.4,) S(s,.,)
¢, =S(max(s,,s;).1,) =S (s,4,) F (s,)
€ = S(Sl,max(t,,t/))—S(Sl,t,)é(t,)
S

= Flm(s.s))-F(3) (s,

c23=S(Sz”f)_F(Sf)é(tj)

¢y = S(s,max(t,t,)) = S(s,.,) G (1,) o
ey, =S (s.1,)-F(s,)G(t)

¢y = é(max(t.,tj))—(_;(ll)G(tj)

The elements ¢; can be estimated empirically by replacing S,F,G in the
expressions of e by S§,.F,,G, for i=123,;j=1,2,3 . The estimates
¢;»i=12,3,j=12,3 canbe formed.

Therefore, we can form C/’Jv(Y,,YJ) which estimates Cov(Yi,Yj) . Similarly,
by replacing 6, by a consistent preliminary estimate 9(50) which can be ob-

tained using the unweighted quadratic distance for example and replacing F,G
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by E,G_n we can estimate a, by c?i,izl,--',M.
Q, anestimate for € will have the elements given by
Q, (i, /) =a/Cov(¥,¥,)a, i=1,3,j=1-3 (10)
and define W\O =Q'. P/V\O will be used as an optimum matrix for constructing
quadratic distance as the asymptotic property remain unchanged. We can re-
place the unknown matrix W, ="' by its consitent estimate which is W,

without affecting asymptotic theory for estimation and tests.

3. MQD Methods Using Grouped Data

3.1. Estimation

The MQD estimators can be seen as given by the vector 6 which minimizes

0,(0)=(2,~2) Wa(2,~%)- (an
and since

2 = (S, (505, (st )) (12)
;'(\9 _(g;(sl’tl)" ’é;(SM’tM)) , (13)
Sﬂ(si’ti):CB(Ez(Si)’Gn(ti))’i:l’.”’M, (14)

6.(0)=(:. ).
we can also used the weighted Euclidean norm |||| with the use of I'/V\O and let
0,(0)=|G, ()" (15)

Consistency for quadratic distance estimators using predetermined grouped
data or if complete data is available but must be grouped according a rule can be
treated in a unified way using the following Theorem 1 which is essentially
Theorem 3.1 of Pakes and Pollard [18] (p 1038) and the proof has been given by
the authors. In fact, their Theorems 3.1 and 3.3 are also useful for Section 4
where we have complete data and we have choices to group the data into cells or
equivalently forming the artificial sample points on the nonnegative quadrant to
form the quadratic distances.

Theorem 1 (Consistency)

Under the following conditions # converges in probability to 6, :

1) “G (0)” <o,(1)+inf,q (|G, (6)

) , the parameter space ) is compact

2) |Gn (6, )” =0, (1),
3) SUPjg._g,J-5 (m} =0,(1) foreach 5>0.

Theorem 3.1 states condition b) as G, (00) =0, (1) but in the proof the au-
thors just use "Gn (6, )" =0,(1) sowe state condition b) as "Gn (6, )” =0,(1).
An expression is o, (1) if it converges to 0 in probability, O, (1) if it is
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bounded in probability and o, (n ZJ if it converges to 0 in probability faster

1
than n 2 - 0. We have inf,, (|

G, (0)”) occurs at the values of the vector
values of the MQD estimators, so the conditions 1) and 2) are satisfied for both
versions. Implicitly, we make the assumption that the parameter space Q is

compact. Also, for both versions ||Gn (6’)"—”)0 only at #=6, in general if

the number of components of G, (0) is greater than the number of parameters
of the model, e, M >m.

For ##6, we have 0<(Q,(6)<B for some B>0 since survival func-
tions evaluated at points are components of G, (0) and these functions are
bounded. This implies that there exist real numbers z and vwith 0<u <v<w
such that

1
P{u < SUP|g_g, -5 [m] < VJ —>1 as n—>oo.

Therefore, the minimum quadratic distance (MQD) estimators are consistent,
ie, é—”)@o . The Theorem 3.1 given by Pakes and Pollard [18] (p 1038-1039)
is an elegant theorem using the norm concept of functional analysis. Now we
turn our attention to the question of asymptotic normality for the quadratic dis-
tance estimators and it is possible to have unified approach using their Theorem
3.3, see Pakes and Pollard [18] (p 1040-1043) where we shall restate their Theo-
rem as Theorem 2 and Corollary 1 given subsequently after the following discus-
sions on the ideas behind their theorem, allowing us to get asymptotic normality
results for estimators obtained from extremum of a smooth or nonsmooth ob-

jective function.

Note that G, (6’)#)G(6’) (16)

with
G(6)=(S(51:4)~Co (F(5):G(1))..S (5313, ) = Co (F(s1)-G (1)) - 17)
The points (s,,z, )' s (Sara )’ are predetermined by a contingency table we

give and we have no choice but to analyze the grouped data as they are pre-
sented.

Note that G(0) is non-random and if we assume G(G) is differentiable
with repect to with derivative matrix 1"(0) , then we can define the random

function Q; (0) to approximate Q, (0) with
0:(8)=(|L,(6)|) . L,(6)=G,(6,)+T(6)(8-6,)- (18)

oC
By using M which is the partial derivative of C, (u,v) with repect

J

to @,j=1,---,m, the matrix 1"(0) can be displayed explicitly as
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- aC,(F(5).G(1)) aC,(F(5).G(1)) |
o6, o0,
T(9)=- : : . (19
0C, (F(s),G(ty)) 0C, (F(s),G(ty))
i o6, o0, |

Note that Q; (@) is differentiable and a quadratic function of @, the vector
@ which minimizes Q° (0) can be obtained explicitly with

—~ \~1 —~
6’ -6, =—(C'W,r) T'W,G,(6,) (20)
and since P/V; —L—>W,. W, isassumed to be a positive define matrix; we have
" —~ -1 —~
i (6" ~8,)=~(T'W,T) T'W,nG,(8,)

==(T'WIT) T'W,\nG, (6,)+0,(1).

21)

Clearly set up fits into the scopes of their Theorem 3.3 where we shall rear-
range the results to make them more suitable for MQD methods and verify that
we can satisfy the regularity conditions of Theorem 3.3. We shall state Theorem
2 and Corollary 1 below which are essentially their Theorem (3.3) and the proofs
have been given by Pakes and Pollard [18]. Note that the condition 4) is slightly
more stringent but simpler to check than the condition 3) in their Theorem.

Theorem 2

Let § be a vector of consistent estimators for 6, , the unique vector which
satisfies G(6,)=0.

Under the following conditions:

n

1) The parameter space Q2 is compact, @ is an interior point of Q.

2 [6.(6)]<0, [+ |+ talc, o)

3) G(.) is differentiable at @, with a derivative matrix I'=I'(6,) of full
rank.

4) suPjy g, \/;|
of positive numbers which converge to zero.

5) 6. (8,)]=0, (1)

6) 6, isan interior point of Q).

G, (0)-G(6)-G, (6’0)||:0p(1) for every sequence {J,}

n

Then, we have the following representation which will give the asymptotic

distribution of @ in Corollary 1, ie.

Vn(6-6,)=~(TWX) THNG, (8,)+0,(1). (@)
or equivalently, using equality in distribution,

Jn(6-6,)=' ~(T'W,L) ' JnT'W,G,(8,) (22)
or equivalently,

Jn(6-6,)= ~(TW,r) VuT'WG, (6,) (23)
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The proofs of these results follow the results used to prove Theorem 3.3 given
by Pakes and Pollard [18] (p 1040-1043). For expression (22) or expression (23)
to hold, in general only condition 5) of Theorem 2 is needed and there is no
need to assume that G, (00) has an asymptotic distribution. From the results
of Theorem 2, it is easy to see that we can obtain the main result of the following
Corollary 1 which gives the asymptotic covariance matrix for the quadratic dis-
tance estimators for both versions.

Corollary 1

Let ¥, =n['W,G,(6,),if ¥,—~>N(0,V) then
Jn(6-6,)—>N(0,T) with

T=('w,r) v(C'w,r)", (24)

The matrices T and V depend on 6,, we also adopt the notations
T=T(6,).V=V(6,).

We observe that when applying condition 4) of Theorem 2 to MQD methods
in general involves technicalities. Note that to verify the condition 4, it is

equivalent to verify

G,(6)-G(8)-G,(8,)) =0, (), (25)

SUPjo-gy|<s, /! (|

a regularity condition for the approximation is of the right order which implies
the condition 3 given by their Theorem 3.3, which might be the most difficult to
check. The rest of the conditions for Theorem 2 are satisfied in general.

Let

2,(0)=n(|
and define u,(6)=G,(6)-G(8)-G,(6,) which can be expressed as
(51): G, (6)) =S (s0:4)> Coy (B (530): G, (4)) = S (s011)
.Gy (51):G, (1)) = Co (F (), G (1)) @7)
Co(F (5u): G, (1))~ Co (F (51):G (1))
Consequently, g,(6) can also be expressed as

2, (68)=nu, (0)W,u,(6).

G,(6)-6(6)-6,(8)|) (26)

X

Since the elements of «/;u; (8) are bounded in probability, it is not difficult
to see that the sequence { g, (0)} is bounded in probability and continuous in
probability with g, (6)—2—>g,(8') as 86 . Also note that g,(6,)=0.
Therefore, results given in section of Luong ef al [19] (p 218) can be used to jus-
tify the sequence of functions. {gn (0)} attains its maximum on the compact
setC, = {0"0 - 00" < 5;1} in probability and hence has the property
SUP| g s, &1 (0)—"0 as n—>o and 86,.

Since \/nG, (B,)—2—>N(0.W,").

Using results of Corollary 1, we have asymptotic normality for the MQD es-

timators which is given by
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Jn (9—00)—L>N(0,(1"'W01")_]), (28)

[' as given by expression (19) can be estimated once the parameters are esti-

mated.

3.2. Model Testing
3.2.1. Simple Hypothesis

In this section, the quadratic distance Q, (0) will be used to construct good-
ness of fit test statistics for the simple hypothesis

Hy: data coming from a specified distribution with distribution £, , 6, is
specified. The chi-square test statistic with its chi-square asymptotic distribution

and its degree of freedom r are given below, e,

nQ( )—)Z (r=M). (29)

It is not difficult to see that indeed we have the above asymptotic chi-square
distribution as 70, (6,)=nG. (8 )W \/70"( 6,) and
JnG, (6 )—)N(O W‘l), W, =Q,, W,—2>W,, using standard results for
distribution of quadratic forms, see Luong and Thompson [16] (p 247) for ex-

ample.

3.2.2. Composite Hypothesis
The quadratic distances O, (0) can also be used for construction of the test
satistics for the composite hypothesis

H,: data comes from a parametric model {So} .The chi-square test statistic

and its asymptotic distribution are given similarly in this case by
nQn(ﬂA)—L—U(z(r:M—m), (30)

with M >m .To justify the asymptotic chi-square distribution given above, note

that we have the equality in probability, nQ, (8)=nQ¢ (é) +o,(1). It suffices to

consider the asymptotic distribution of nQ¢ (é) as we also have the following

equalities in distribution,

nQ"( )— nQ “L

(017 6).

L, (0) as given by expression. Therefore we also have the following equalities
in distribution, \/ZL”(é) = InG, (6,)+Tn (9—00) which can be reex-

pressed as

JnL,(6)=* VG, (8,)-T (T'W,T) ' T'W,\/nG, (6,)

or equivalently, ~/n. (é =d (I r(r'wpr) F’WO)«/ZG"(QO) with
\/;Gn (00) L ( W )

We have

JnL,(6)—>N(0,3),

3= (1 -T(r'w,r)" F’WO)WO" (1 -w,r(r'w,ry’ r') (31)
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and note that W, =B and the trace of the matrix B = I—l"(I"WOI")71 r'w,
is trace(B)=M —m the rank of the matrix B is also equal to its trace using

the techniques as given by Luong and Thompson [16] (p 248-249).

4. Estimation and Model Testing Using Complete Data

4.1. Preliminaries

In Section 4.1 and Section 4.2, we shall define a rule of selecting the points
(sl,t,),l =1,---,M if complete data are available. Selecting points is equivalent
to define the cells used to group the data and we shall see that random cells will
be used as the points (sl,t,),l =1,---,M constructed using Quasi-Monte Carlo
(QMC) numbers on the unit square multiplied by two chosen sample quantiles
from the two marginal distributions will be used. They are random and can be
viewed as sample points on the nonnegative quadrant forming an artificial sam-
ple. For minimum chi-square methods it appears to be difficult to have a rule to
choose cells to group the data, see discussions by Greenwood and Nikulin [8] (p
194-208). We need a few preliminary notions tools and define sample quantiles
then statistics can be viewed as functionals of the sample distribution; the notion
of influence function is also introduced and this useful tool will be used to find
their asymptotic variance of the functional.

We shall define the pth sample quantile of a distribution as we shall need two
sample quantiles from the marginal distributions together with QMC numbers
to construct an approximation of an integral. Our quadratic distance based on
selected points can be viewed as an approximation of a continuous version given
by an integral as given by expression (33).

From a bivariate distribution we have two marginal distributions F (x) and
G(»). The univariate sample pth quantile of the distribution F(x) assumed

to be continuous is based the sample distribution function

n

F, (x):lz;’:ll[xi <x] and it is defined to be 0‘,(:) =inf {F,(x)2 p} and its
n
model counterpart is given by a, =inf{F(x)2 p}. We also use the notation

aff’) =F,'(p) and a,=F"(p). We define similarly the qth sample quantile

n

for the distribution G(y) as ﬂé"):Gn’l(q) and its model counterpart
[)’q=G7'(q) with 0< p,g<l1.

The sample survival function is defined as
F(x) =1 X[y >4 =1-F ()
n

The sample quantile functions ai") or ﬂ;") can be viewed as statistical
functionals of the form T(H,) with H,=F, or H,=G,. The influence
function of T (Hn) is a valuable tool to study the asymptotic properties of the
statistical functional and will be introduced below. Let H be the true distribution
and H, is the usual empirical distribution which estimates /; also let J_ be

the degenerate distribution at x, ie, J,(u)=1 if u>x and &,(u)=0, oth-
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erwise; the influence function of 7 viewed as a function of x, IC; , (x) is de-
fined as a functional directional derivative at A in the direction of (5Y -H )
Letting H,=H+¢&(5,—H), IC,, (x) isdefined as

L T(H,)-T(H) .,
IC, ,; (x) =lim, ,, ——~————==T,,(6,—H) and T}, isalinear functional.
. - OoH S
Alternatively, it is easy to see that IC, , (x)=—= and this gives a con-
&

&=0

venient way to compute the influence function. It can be shown that the influ-

ence function of the pth sample quantile 7(H,) is given by

ICT’H(x)zh(I-]I?—?(lp))’x<H_l(p) and ]CT,H(x)=m

with A being the density function of the distribution A which is assumed to be
absolutely continuous, see Huber [20] (p 56), Hogg et al [21] (p 593). A statisti-

.x>H"(p)

cal functional with bounded influence function is considered to be robust,
B-robust and consequently the pth sample quantile is robust. The sample quan-
tiles are robust statistics.

Furthermore, as IC; (x) is based on a linear functional, the asymptotic
variance of T(H,) issimply lV(ICT,H (x)) with ¥(.) being the variance of
the expression inside the bracket since in general we have E (ICT'H (x)):O
and we have following representation when IC; , (x) is bounded as a function

of x,
T(Hn):T(H)+TF’(Hn—H)+op(—j_j
n
and T} (H, —H):lz;; T8, —H),
n

y (dn —H) =1IC; , (x,) see Hogg et al [21] (p 593). Consequently, in general

we have for bounded influence functional with the use of means of central limit

theorems (CLT) the following convergence in distribution
n(T(H,)-T(H))—>N(0.0%.), or =V (IC,, (x)).

The influence function representation of a functional which depends only on
one function such as H, is the equivalence of a Taylor expansion of a univari-
ate function and the influence function representation of a functional which de-
pends on many functions is the equivalence of a Taylor expansion of a multi-
variate function with domain in an Euclidean space and having range being the
real line. Since we work with marginal survival functions, we define the pth

sample quantiles of the marginals survival functions as
E'(p)=F'(1-p).G,' (p)=G,' (1-p).

The influence functions for F,' (p) and G, (p) can be derived using the
definitions of influence functions or obtained from the influence functions of
F (l—p) and G,' (l—p).

n
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Subsequently, we shall introduce the Halton sequences with the bases b =2
and b, =3 and the first M terms are denoted by

(w.v,) = (2, (1)- 0, (1)1 =1,2,--,M .

We also use H,, to denote set of points {(u,,v,),l = 1,2,---,M}. The sequence
of points belong to the unit square (0,1)x(0,1) can be obtained as follows.

For b, =2, we divide the interval (0,1) into half (b, =2) then in fourth

(b,2 =2%) so forth so on to obtain the sequence %,%,%,---

For b, =3, we divide the interval (0,1) into third (b, =3 ) then in ninth

(l)22 =3) so forth so on to obtain the sequence %,%,é,m . Now pairing them

up we obtain the Halton sequence (l,lj,[l,gj,(i,lj, . Matlab and R
23)\43)\49

have packages to generate the sequences and see Glaserman [22] (p 293-297) for
the related pseudo codes; also see the seminal paper by Halton [23]; for the gen-
eral principles of QMC methods, see Glasserman [22] (p 281-292). The Halton
sequence together with two chosen sample quantiles from the two marginal dis-
tributions will allow us to choose points to match the bivariate empirical survival
function with its model counterpart as we shall have an artificial sample with
values on the nonnegative quadrant with the use of two empirical quantiles from
the marginal distributions. These points can be viewed as sample points from an
artificial sample and since they depend on quantiles which are robust, the artifi-
cial sample can be viewed as free of outliers and the methods which make use of
them will be robust.

Note that the Halton sequence of numbers are deterministic and useful for
approximating an integral, if we would like to compute numerically an integral

of the form
Azj.;ﬁ(//(x,y)dxdy with !//(x,y) being a bivariate function. Using the A

terms of the Halton sequence and QMC principles, it can be approximated as
l «um
AzﬁZl:lvl(S“t’)' (32)

but if we are used to integration by simulation we might want to think the A/
terms represent a quasi random sample of size M from a bivariate uniform dis-
tribution which is useful for approximating A.

From observations which are given by Z = (Xl.,Yl.)l yi=1---,n iid with
common bivariate survival distribution S (x, »). Let the two marginal survival
functions be denoted by F (x) and G (») and they are absolutely continuous
by assumption; also define the bivariate empirical distribution function which is

similar to the bivariate empirical survival function as
1 n
K,(x,y) :;Zizll[x[ <x,y<y].

The two empirical marginal survival functions are defined respectively by
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- 1 n ~ 1 n
F(x)=150 1> and G,0)=250 050
We might want to think that we would like to approximate the following
Cramer-Von Mises distance expressed as an integral given by

0 (5, (500)= 80 () 4K, () (33)

which is similar to univariate Cramér-Von Mises (CVM) distance and minimiz-
ing the distance with respect to @ will give the CVM estimator for 8, see Lu-
ong and Blier-Wong [24] for CVM estimation for example.

In the next section we shall give details on how to form a type of quasi sample
or artificial sample of size M using the M terms of the Halton sequence of M
terms and the two sample quantiles of the marginal distributions F and G or
equivalently using the corresponding empirical function quantiles as discuss ear-
lier and this will allow us to define the sequence (Sl,f,),l =1,---,M so that the
above integral can be approximated by the following finite sum of the type of an
average of M terms

1 M A 2
HZJZ](Sn(Sl’tl)_SB(Sl’tl)) . (34)

We can see the expression (34) is an unweighted quadratic distance using the
identity matrix I as weight matrix instead of l'/V\O . The unweighted quadratic
distance still produces consistent estimators but possibly less efficient estimators
than estimators using the quadratic distance with P/V\O for large samples and for
finite samples the estimators obtained using I might still have reasonable per-
formances and yet being simple to obtained.

The set of points (S,,t,),l =1,---,M is a set of points proposed to be used to
form optimum quadratic distances in case that complete data is available. We
shall see the set of points depend on two quantiles chosen from the two marginal
distributions and they are random consequently. We might want to think that
we end up working with random cells.

As for the minimum chi-square methods if random cells stabilize into fixed
cells minimum chi-square methods in general have the same efficiency as based
on stabilized fixed cells, see Pollard [25] (p 324-326) and Moore and Spruill [26]
for the notion of random cells; quadratic distance methods will share the same
properties. The chosen points are random but it will be shown that they do sta-
bilize and therefore these random points can be viewed as fixed at stabilized
points and despite that they are random, it does not affect efficiencies of the es-
timators or asymptotic distributions of goodness-of-fit test statistics which make
use of them. These properties will be further discussed and studied in more de-
tails in the next section along with the introduction of an artificial sample of size
M given by the points (s,,tl),l =L---,M on the nonegative quadrant which

give us a guideline on how to choose points if complete data is available.

4.2. Halton Sequences and an Artificial Sample

From the A/ terms of the Halton sequences, we have (u,,vl),l =L M.
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! nd o= ! , we can form the
max (u,,[ =1,---,M)

Let n=
_ max (v,,/ =1,-+-,M)

artificial sample with elements given by (s,.7,),/=1, with
s, =nu,F,’ (p).1, =ov,G,' (p) with 0.01<p<0.05. Note that we have the
following relationships between empirical quantile based on distributions and
survival functions with F, ! (0. 01) =F,'(0.99) and G, (0.01)=G,"(0.99).

We can view (sl, ) [=1,---,M Dbeing a form of quasi random sample on the
nonnegative quadrant and these are the points proposed to be used in case of
complete data is available. In general, we might want to choose 20<M <35 if
M?<n and if nis small we try to ensure M < Jn . Consequently as »n — oo,
M remains bounded. If M >35, there might be difficulty to obtain the matrix
WO as Q0 might be nearly singular. In practice we tend to replace W by a
near optimum matrix WO obtained from QO by regularizing the eigenvalues
of f)o which might not be stable which causes the matrix to be nearly singular
hence WO will not be available; see Section 5.1 for more discussions on these
issues.

Since F,'(p)—2>F '(p) and G,'(p)—2>G'(p),

(sl,tl)—”>(s,°,tl°) with s} —nu,l?" (p) and ' =ovG'(p) for
[=1,--,M and the points (s, , ) [=1,---,M are non-random or fixed.

It turns out that quadratlc distances for both versions constructed with the
points (Sl, ) I=1,---,M are asymptotic equivalent to quadratic distances us-
ing the points (s, , ) [=1,---,M so that asymptotic theory developed using
the points (Sl, ) [=1,---,M considered to be fixed continue to be valid; we
shall show indeed this is the case. Similar conclusions have been established for
the minimum chi-square methods with the use of random cells provide that
these cells stabilize to fixed cells, see Theorem 2 given by Pollard [25] (p
324-326). We shall define a few notations to make the arguments easier to fol-
low.

Define {(s,t)} = {(s,,tl),l = l,--',M} and similarly let

{(so,to)} ={(S?,t1°),l:1,...,M}_

We work with the quadratic distance defined using {(s,t)} which leads to
consider quadratic of the form "Gﬂ (ﬂ)"2 Now to emphasize ;,; and ;,;

which depend on {(s,¢)} , we also use respectively the notations
2;=ZA,,({(SJ)}) and z,g—zg({(s,t)}) and define

a2l ) -5 ()

It suffices to verify that results of Theorem 1, Theorem 2 and its corollary in
Section 3 continue to hold.

Observe that we have
(z,-2)——G(9) (35)

and
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(27 -25)——>G(9) (36)

’

G(6)=(S(s1t) = Co(F(s7):G (1)), (st )~ Co (F (51 ). G (11)) -

This also means that we have the same limit in probability for (z,-z,) and
(20 -%) aswe have {(s.0)}—2>{(s".¢")} and S, (x.y)—L=>5(x.y).

Clearly, W, ({(s.1)})—2-W,(s".c").

It remains to establish /1 (2, ~2, ) =/ (] ~ 2 ) +0, (1).

Using results on the influence functions representations for functionals as
discussed, it suffices to show that the vector (zAn —;,;) has the same influence
representation as the vector (23 —22) to conclude that all the asymptotic re-
sults are valid even {(s,t)} are random.

We shall derive the influence functions for elements of the vector of func-
tional (z: —E,;) and show that they are the same for the corresponding ele-
ments of the vector of functional (23 —22). Let S(x,y) be the true bivariate
survival function and under the parametric model being considered,

S(x,y) = C(,O (F(x),é(y)) and we also use the notation C(u,v) = Cg0 (u,v) .

Let 55) (u,v) be the degenerate bivariate survival function at the point
(x,y) ,Le., 5fv (u,v) =1 if u<x and v<y and 55} (u,v) =0, otherwise.

Let the degenerate survival function at x be defined as &. (u)=1 if x>u
and &7 (u)=0, otherwise. Similarly, let the degenerate survival function at y
be defined as &) (v)=1 if y>v and &,(v)=0, otherwise. Now we can de-
fine the following contaminated bivariate survival and marginal survival func-

tions,

S, (u,v):S(u,v)—i-g(é'iy (u,v)—S(u,v)), 0<e<l1
which is a contaminated bivariate survival function and
Ii] (u)=F(u)+81(df(u)—ﬁ(u)),OSgl <L
Similarly for the marginals,
G, (v)=G(v)+& (65 (v)-G(v)),0< 2 <1,
) the jth element of (én - 200 ) s
1,---,M with each

Now, we consider (2

jn

(2, - 24 )=T,(5, F_)_jj:o
7,(,.F,.G,)=5 ( (F)t (En))—cgu(Fn(s,,(ﬁn)),g—n(;,(Gﬂ))),jzl,...,M,
Clearly, T (
T,(S,.F,,
=S£(s_,-(él),:,-(G?))—c%(zzl(s_,-(a)),a(z,,(Q))),jzl,...,M,

but we can use the influence function representation of 7 (Sn, F, ,al) , a tech-

F,G, and

) dependon §,,F,

ns“n nd

nique proposed by Reid [29] (p 80-81) but in this case it will need three influ-

ence functions which are given by
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or,(s,.F, G,, )

2" g

= :I[x>s;),y>tﬂ—S(s9 t(.’)

J’7i

e=g1=6,=0
which is bounded with respect to (x, y) ,
aT/’ (SE’Efl ’Gé‘z)
Og,

£=£1=6,=0

~ 6S(s?,t?) Os; (F_gl)

a&AF@s)ﬁ@s)){w( )5 (7))

s o, ou os  0g
=0
oc, (F(s° ,(_; £° _
B 00( (a;) (’))(5f(s?)—F(s?))
and the expression is reduced to
or,(8,.F, .G, aC,, (F(s9).G(2)) _
R )
e=g1=6,=0

by noting the first two terms of the the RHS of the above expression cancel each
other since we have S(s,7)=C, (F(s),(_;(t)) which implies

05 (s.1) oo (F(5).G(1)) oF (s)

Os ou Os

Similarly,
oC

% (F(Sf)’é(t?))(aj (4)-G())

ov /

or,(s,.F,.G,)

&2 g

Os,

£=£1=6,=0

If we compare with the corresponding jth term of (22 —220) given by the
functional Gj(Sn,IFn,En):Sn (slo,tlo)—CgO (Fn (s,"),En(t;’)), we can verify the
functional G, (Sn, F, ,G_n) has the same influence functions as the functional

(S F. .G, ) It is not difficult to see that we have the equalities

2" g

0G,($,.7,G,,) o1, (8.7, G,
o€ - o€
e=g1=6y=0 e=g1=6y=0
oG, (Sg F,G, ) aTj(Sg,Fgngz)
0g, B 0s,
£=51=67=0 £=51=£7=0
oG, (s,.F,G,) _arl.(sg,élcgz) oy
os, - os, RO
e=g1=£,=0 £=£1=6,=0

Therefore, all the asymptotic results of Section 3 remain valid and all these in-
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fluence functions are bounded so that inference methods making use of these
functionals are robust in general. Furthermore, we can consider the inference
procedures based on quadratic distances as we have non-random points
{(so,to )} if they can be replaced by {(s,z)} without affecting the asymptotic
results already established in Section 3. For more discussions on random cells
and influence function techniques for minimum chi-square methods and related

quadratic distance methods, see Luong [27].

5. Numerical Issues and a Limited Study
5.1. Numerical Issues

In this section we shall consider the numerical problem of not being able to ob-
tain the matrix WO as QO might be nearly singular and we need to replace
WO by a near optimum matrix W, obtained from f)o .The techniques of
regularizing a matrix have been introduced by Carrasco and Florens [28] (p
809-810) for GMM estimation with continuum moment conditions, MQD
methods can be viewed as similar to GMM with a finite number of moment
conditions and clearly the techniques can also be applied for MQD methods. We
use the spectral decomposition of f)o to obtain its eigenvalues and eigenvec-
tors, see Hogg et al. [21] (p 179) for the spectral decomposition of a symmetric

positive definite matrix which allows us to express
Qo = Z:: vy,

where the As are positive eigenvalues with corresponding eigenvectors given
by the v/s of the matrix f)o . Now, observe that

is not obtainable numerically. It is due to the eigenvalues which are not stable,
the regularization of f)o will lead to the following matrix which hopefully is
obtainable and approximate WO. It consists of perturbing the A’s by a small

positive number a and define the approximate optimum matrix as

A
W, :ZZI /1|2 ;_'av,vi’,a>0.
i

Carrasco and Florens [28] (p 809-810) for GMM estimation with continuum
moment conditions have shown that asymptotic theory remains unchanged if
a— 0 at a suitable rate as » — . This condition is difficult to verify in prac-
tice. However, we might want to continue to use the asymptotic theory in an ap-
proximate sense, Ze., we can replace WO by WO and view such a replacement
does not modify the asymptotic theory in practice.

A more rigorous approach to justify the chi-square distribution for goodness
of fit tests is to divide into 2 steps, first using W, to construct the distance for

estimation and letting @ be the vector which minimizes

(2, —2¢) Wo(2,—25)-
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Using Equation (31) we have
JnL, (é)—L—>N(0,Z) ,

. YV RV WA RN Y
Z:(I—F(F’WOF) F'WO)QO(I—F(F'WOF) F’WO) ,
also see expression (3.4.2) given by Luong and Thompson [16] (p 248). The ma-
trices £ and I are respectively consistent estimates of X and I'.

It suffices to find the Moore-Penrose 3~ generalized inverse of 3 and con-
struct the test statistics as

n(z,-%) 2 (5,-%)-

The asymptotic distribution of the test statistics will be again chi-square with
M —m degree of freedom using distribution theory for quadratic forms, see
Luong and Thompson [16] (p 247) for example and for generalized inverses, see
Harville [29] (p 493-514).

Note that if Wo can be used for estimation then we can let 3 =W0, Le.

there is no need to use two quadratic distances separately.

5.2. A Limited Simulation Study

For the study, we fix the number of points M =25. The two samples quantiles
are 0.99 quantiles or 0.01 survival functions quantiles if marginal empirical sur-
vival functions are used instead of distribution functions for estimation without
construction of goodness-of-fit tests. The points used are constructed using the
procedures given in Section 4.2. We consider the one parameter MO copula

model with

Cg(u,v)zulf'gv if u>v and Cg(u,v)=uv'7‘9 if u<v. (37)

C,(u,v) is differentiable with respect to & and C,(u,v) is singular if u=v
and 66(0,1) see Dobrowolski and Kumar [10] (p 2). For this model, the
model

3 30
40-0° 4-0

The sample Spearman rho pg, is simply the Pearson correlation coefficient

Spearman rho pg, = , see Dobrowolski and Kumar [10] (p 5).

but computed using ranks of the observations from the two empirical marginal
distributions, see Conover [30] (p 314-318).
If complete data are available, equating pg, = p,, gives the moment estimator
=P
3+ pgp

efficiency as we only has one parameter in this model and the estimate is based

and one might expect that the moment estimator has reasonable

on ranks.
The moment estimate can be used to compute €' =W, which is needed for
chi-square tests and for estimation using quadratic distances. We use M =25

and there is no problem on inverting the matrix f)o Clearly if data is already
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grouped we can use the unweighted quadratic distance to provide a consistent
preliminary estimate for 6, . The efficient MQD estimator is denoted by 6.1In
the simulation study since we have so many marginal survival functions which
can be used so we decide to draw observations directly from the Copula Models.
This is not what happens in real life situation but we want to test the procedures.
We do not have the computing resources for a large scale study and try various
marginal survival functions. More works need to be done but we want to illus-
trate the procedures.

We use sample size n=2000 and the number of samples used is N =100.
For comparison of of MQD estimator 0 versus Methods of moment (MM) es-
timator @ we use the ratio of relative efficiency
MSE(6)

AREZM

where the mean square error of an estimator 7 for 7z, isdefined as
MSE(#)=E(7-m,),
which can be estimated using M samples each of size n.
The unweighted QD estimator is denoted by é; as the identity matrix 7/ is
used for the unweighted quadratic distance. The corresponding
MSE(8,)

can similarly be used for comparison and it can be estimated using simulated
samples.

The range of parameter being considered is 6 =0.1,0.2,---,0.9, the results are
summarized using the first table of Table 1 where we find that the MM estima-
tor and the two quadratic distance estimators have practically equal efficiency up
to 4 or 5 decimal precisions.

To study the size of the chi-square tests and the power of the tests let Hy: The
MO copula model C" with C, (u,v) as given by expression (37) and

0:%. With 0:%, Psp :%. Observations are drawn from the model speci-
fied by by H, which specifies the model is a contaminated one given by
(1= 2)CY (1,) + ACO™5 (11,1), 0 < 2 <1.

C"(u,v) is as defined earlier, C““"(u,v) is the Gaussian copula de-

fined as
o) o7'(v) 1 1
Cp (M,V)Zjﬂo .[700 mexp —m(xz +y2 —ny) dxdy
with p=0.5.

Procedures to simulate from Gaussian and MO copulas are given in chapter 6
by Ross [13] (p 97-108). We use M =25 and M =35, the sample size
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Table 1. Asymptotic relative efficiencies comparisons for MQD estimators versus MM
estimator using N = 1000 samples of size n = 1000 for the one parameter MO copula

Model.
(a)
ARE"-.0 ! 1 Il ! 1 2 4
i 6 5 4 3 2 3 5
MSE(6
( ) 0.9999 0.9999 0.9999 0.999 0.9999 0.9999 0.9999
MSE(@)
MSE(0
7(1) 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
MSE(@)

Power study using M = 25 points, n = 3000 and the alternative hypothesis specified as the contaminated
model (1-24)C* (u,v) + AC™ " (u,v) ,0 <A< 1.

(b)

A 0 0.10 020 030 040 050 060 070 0.80 090
Mean of the
chi-square 1396 20.89 21.01 22.19 19.67 16.43 2235 5572 102.79 338.95
statistics
SD of the
chi-square 2.48 5.04 9.65 10.89 9.63 10.11 9.37 3947 4549 184.10
statistics

Critical point for the test using the 95th percentile of a chi-square distribution, y;,, (24) =36.41 .Power

study using M = 35 points, n = 3000 and the alternative hypothesis specified as the contaminated model
(1=2)C" (u,v) + AC™"" (u,v) ,0< A< 1.

(©)

A 0 010 020 030 040 050 060 0.70 0.80 0.90
Mean of the
chi-square 32 761 2332 5045 9289 15284 23711 34981 48675 66843
statistics
SD of the
chi-square 548 3694 66.10 82.25 99.29 112.74 219.00 88.84 85.02 26.72
statistics

Critical point for the test using the 95th percentile of a chi-square distribution, z;,, (34) =48.60.

n=3000 and we use N =30. Dobric and Schmid [6] (p 1060-1061) in their
study have used #n=2500 and their chi-square tests have around 70 degrees of
freedom. With M =35 only occasionally that f)o is nearly singular, if this
happens we discard the sample. We do not have resources for larger scale study;
each run takes around three minutes to complete. As most of the time we are
drawing observations using an alternative model but for testing we must esti-
mate the parameter 6 of the MO model, the algorithm tends to take time to
converge. The study is very limited as the number of simulated samples is small
with N =30 and only a few copula models are considered but it seems to point
to the potential uses of MQD chi-square tests. The tests especially with M =35
seem to have power especially along some directions which can be represented

as a mixture type of models as shown by the means and standard deviations of
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the chi-square statistics as displayed in the second and third table of Table 1.
More simulation works are needed to assess the power of the MQD tests using
various copula models. There are not many statistical procedures for copula
models using data that have been already grouped. MQD methods might be

useful for this type of situation.

6. Conclusions

Minimum Quadratic Distance Methods (MQD) offer a unified for estimation
and model testing using grouped data under the form of a contingency table for
parametric copula models without having to assume parametric models for the
marginal distributions. The methods share with minimum chi-square methods
by having a unique asymptotic distribution across the composite hypothesis for
testing which make the implementations relatively simple without requiring ex-
tensive simulations for approximating the null asymptotic distribution. It is
shown in this paper that if complete data are available, a rule to define points
based on QMC numbers can be proposed to alleviate the arbitrariness on the
choice of points to construct quadratic distances. The rule will also make quad-
ratic distances close to Cramer-Von Mises distances. It is well known that in one
dimension, chi-square tests cannot be consistent against all alternatives but if the
intervals are chosen properly the tests still can have good power against some
form of alternatives considered to be useful for applications.

MQD tests statistics with the rule of choosing points might preserve the same
properties and by being relative simple to implement, they can be useful for ap-
plied works. More numerical and simulation works are needed for further study
the power of the MQD tests.
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Appendices
Technical Appendix 1 (TA1)

In this technical appendix, we shall consider influence function representation
for the vector of functionals (2n - 290) to justify the expression. €Q, (i, J ) is as

given by expression (9) in Section 3.2.

’

Let (5~ )=(1"(5,.5.G,)..T"(5,.%,.G,))

consider the Ith element of (ﬁn 290 ) , it is given by

s (Sn’F;l’En) =S, (Sl:tl)_ceo (Fn (SI)’én (tz))

which is a functional which depend on three functions Sn,Fn,an but we still
can applied the techniques given by Reid [17] (p 80) to have an influence repre-
sentation of the functional. Since it depends on three functions we shall have
three coresponding influence functions. Let S, =S +8(5XS’ ) —S) with
5)5},(u,v)=1 if u<x and v<y and é'fy (u,v)zO, elsewhere; also, similarly
let F,=F+eg (55 —F) with &8 (u)=1 if u<x and &’ (u)=0, elsewhere
and let Iiz :F+52(5XS —17) with é'_f(v)zl if v<y and 5f(v):O , else-

where, with 0<¢,¢,&, <1. Consequently,
70 (SFG_) =S, (5.4)-Cy, (F, (5,).G,, (1,)) and r(8,F,G)=0.
The three influence functions are given respectively by

or'(s,.F,.G,,)

:[Cl(l)(x,y):I[x>s,,y>t,]—S(s,,t,),

og
£=0,6,=0,6,=0

or(s, 7.5

%%, 20,6,=0,6,=0
— 1) (x) :_5C90 (F(;’I)’G(t’))(l[x>s,]—ﬁ(sl)),
or(s,.F,.G,,)

682 =0,£,=0,6,=0

ac, (F(s).G _

=IC3(1)(y):_ Cs, (F(;l}) G(tl)) ([[y >t1]—G(t,)).

Consequently, we have the influence representation for the /~th element of

Jn(z, -2, ) with
A A 1 n 1 n
\/;(Z”J ~Zo, ) :ﬁzi:llcl(l) (x"’y’-)—i_ﬁzi:llcg) (xi)
1 n
+ﬁzi:llc3(l)(yi)+op (1)

and since (x,,y, )' are iid we have the equality in distribution asymptotically,
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\/;(En,l - 290,, ) =1 [Cl(]) (x,y) + ICQ) (x) + 1C3(1) (y), [=1,---,M.

Equivalently, using vector notations we have the following equality in distribu-

tion asymptotically by letting

ST s Pt

ou ’ ov

Y =

f I[x>sl]—f(sl)

I[y>t]>G(t)

\/;(2,1’1 =2, ) =? @)Y, , a result which is needed in Section 3.2.

Technical Appendix 2 (TA2)

In this technical appendix, we shall justify the validity of expression (9) of Sec-
tion 3.2.

The covariance matrix Cov(Yi, YJ) is defined as £ (Y,.Y f ) , the vector

{I[x>si,y>tl]S(s,,ti)J
Y, = I[x>s]-F(s,) and
I[y>1]-G(1)

Y] =(I[x>sj,y>t].]—S(sj,tj),][x>s(/}—l?(sj),l[y>tj}—é(tj)).

Therefore the elements of the matrix Cov(Y,,Y,) are given by
e =E((1[x> 59> 6]=8(58))(1[x>5,,0>1,]-S(5,.1,)))

o = E((1[v> 5002115 (5.0))(1[x>5,]-F(5,))
s = E((1x> 50> 1]-5(5.0))(1[3>1,]-G (1)
ey =E((1[x>5]-F(s))(1[x>5,0>4,]-5(s,.1,))

= E((11x>5]-F())(1[x>5,]-F(s,)))

= E(1[x>5]-F(s)(1[y>1,]-G(1,)))
en=E((1[y>1]-G(0))(1[x>5,,>1,]-5(s,.1.)))

en = E((1[y>1]-G(0)(1[x>5,]-F(5))

o= (1T >11-G )T >11-500)

Now, note that the above equalities which give the elements of the matrix

[[x>s,,y>t,]S(s,,t,)}

Cov(Yi,Yj) can be reexpressed as the equalities as given by expression (9) in
Section 3.2.
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