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Abstract 
Minimum quadratic distance (MQD) methods are used to construct 
chi-square test statistics for simple and composite hypothesis for parametric 
families of copulas. The methods aim at grouped data which form a contin-
gency table but by defining a rule to group the data using Quasi-Monte Carlo 
numbers and two marginal empirical quantiles, the methods can be extended 
to handle complete data. The rule implicitly defines points on the nonnegative 
quadrant to form quadratic distances and the similarities of the rule with the 
use of random cells for classical minimum chi-square methods are indicated. 
The methods are relatively simple to implement and might be useful for ap-
plied works in various fields such as actuarial science. 
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1. Introduction 

In actuarial science or biostatistics we often encounter bivariate data which are 
already grouped into cells forming a contingency table, see Partrat [1] (p 225), 
Gibbons and Chakraborti [2] (p 511-512) for examples, and the primary focus is 
on dependency study and we only want like to make inference on association 
parameters of the parametric survival copula used to model the dependency of 
the two components of the bivariate observations. 

For the complete data, in actuarial science or biostatistics usually we assume 
to have a sample of nonnegative bivariate observations ( ),i i iZ X Y ′=  which are 
independent and identically distributed (iid) as ( ),Z X Y ′=  with the bivariate 
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survival function expressible as  

( ) ( ) ( )( ), ,S x y C F x G y=θ θ                          (1) 

where ( ), ,0 1,0 1C u v u v≤ ≤ ≤ ≤θ  is the survival copula function, 
( ) ( )F x P X x= >  and ( ) ( )G y P Y y= >  are the marginal survival functions. 

The bivariate model with deductibles in actuarial science as given by Klugman 
and Parsa [3] can be considered as having complete data within this framework 
as we still have a sample of bivariate observations which are iid. 

In this paper, we emphasize nonnegative distributions. So in general we use 
survival functions and survival copula functions but it is not difficult to see that 
the statistical procedures developed can be adjusted to handle the situation 
where we use distribution functions and distribution copula instead of survival 
function and survival copula. If we use distributions functions then the bivariate 
distribution function  

( ) ( ) ( )( ), ,H x y C F x G y= θ   

where the marginal distribution functions are given respectively by ( )F x  and 
( )G y . In the paper by Dobric and Schmid [4], distributions functions are used 

as the authors emphasize financial applications instead of actuarial science ap-
plications. It is not difficult to see that statistical procedures are similar. 

For illustrations, we shall discuss of few examples of parametric model for 
survival copulas. In general, a survival copula can be viewed as a bivariate sur-
vival function but the bivariate sample of observations which is given by the 
complete data is not drawn directly from this bivariate survival function. This 
should be taken into account when developing inferences methods even when 
the data is complete. It is natural to have procedures which provide a unified 
approach for grouped data and for complete data but must be grouped so a rule 
for grouping the complete data needs to be specified. We shall see that a rule for 
grouping the data is equivalent to a rule for choosing points on the nonnegative 
quadrant. We propose inference procedures which are based on quadratic dis-
tance and which lead to chi-square tests statistics for the composite hypothesis. 

( ) ( ){ }0 : , ,H C u v C u v∈ θ                      (2) 

with the vector of parameters given by ( )1, , mθ θ ′= θ  and in most of the ap-
plications, we just need one or two parameters and the true vector of parameters 
for the copula model is denoted by 0θ . Also, by copula in general we mean sur-
vival copula.  

In actuarial science we often encounter grouped data, see Klugman et al. [5] 
for the univariate case. Inferences procedures for bivariate censored data have 
been developed by Shih and Louis [6], see the review paper by Genest et al. [7] 
but inference procedures for grouped data do not seem to receive attention and 
furthermore, despite that the chi-square tests statistics that Dobric and Schmid 
[4] propose to make use of a contingency table, complete data must be available 
first, and then transformed by the marginal empirical distribution functions, 
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subsequently put into cells of a contingency table. By making use of multinomial 
distributions which are induced by a contingency table, chi-square tests can be 
proposed. In practice, if data are gouped into a contingency table without being 
transformed, then the tests procedures are no longer applicable. They also note 
that chi-square tests statistics can have good power along some direction of the 
alternatives yet being simple to apply and might be of interest for practitioners. 

We also know that chi-square tests statistics in one dimension might not be 
consistent in all direction of the alternatives yet due to its simplicity to apply as 
there is a unique asymptotic chi-square distribution across the composite hy-
pothesis, one can control the size of the test. Depending on the alternatives and 
by carefully choosing the intervals to partition the real line, chi-square tests can 
still have good power against some directions of the alternatives and in practice. 
Often we are primarily concerned about some type of alternatives instead of all 
alternatives. For these advantages, chi-square tests are still used despite there are 
more powerful tests such as the Cramer-Von Mises tests, see Greenwood and 
Nikulin [8] (p 124-126) for power under contaminated mixture distributions al-
ternatives and Lehmann [9] (p 326-329) for discussions on power of chi-square 
tests which are related to the way to create intervals to group the data in one di-
mension. 

Therefore, if we can retain the advantages of the chi-square tests in two di-
mensions of having a unique chi-square distribution across the null composite 
hypothesis and improve on the issue of arbitrariness of a grouping rule, the in-
ference procedures might still be attractive for practitioners as implementing 
other tests procedures might need extensive simulations to approximate a null 
distribution which depends on 0 ∈Ωθ .  

In this paper, we would like to develop minimum quadratic distance (MQD) 
procedures for grouped data and the procedures can be extended to the situation 
of having complete data and they must be grouped by specifying a rule which 
make use of the Halton sequence of Quasi-Monte Carlo (QMC) numbers and 
two empirical quantiles from the two marginal distributions or marginal survival 
functions. Tests for copula models can be performed using chi-square tests sta-
tistics with data already grouped and if complete data is available they can be 
grouped according a more clearly defined rule. As mentioned earlier, the rule to 
select cells to group the data is a rule to select points on the nonnegative quad-
rant to construct quadratic distances. If complete data is available then it is es-
tablished using QMC methods and based on the idea of selecting points in the 
nonnegative quadrant so that Cramer-Von Mises distances can be approximated 
by quadratic distances. The methods can also be applied to Copula models with 
a singular component when u v=  provided that the Copula function is differ-
entiable with respect to the parameters given by θ . An example of such a copula 
is the one parameter Marshall Olkin(MO) copula, for discussions on MO copu-
las, see Dobrowolski and Kumar [10] and Marshall and Olkin [11]. 

We briefly list some copula models often encountered in practice. Most of 
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them just have one or two parameters. A subclass of Archimedean copulas has 
the representation using a generator which is the Laplace transform (LT) of a 
nonnegative random variable 0T ≥  denoted by ( ) ( );s sθψ θ ψ= . The class 
can be represented as 

( ) ( ) ( )1 1, , 0 1, 0 1C u v u v u vθ θ θ θψ ψ ψ− − = + ≤ ≤ ≤ ≤  . 

If we specify a gamma LT with ( ) ( )1 , 0s s θ
θψ θ−= + > , then we have the 

Clayton or Cook-Johnson copula model 

( ) ( )
1

, 1 , 0C u v u vθ θ θ
θ θ

−− −= + − > . 

If we specify a positive stable LT ( ) e ss
θ

θψ
−=  then we have the positive sta-

ble copula model which is also called positive stable frailties model with 

( ) ( ) ( )
1 1

, exp log log , 0 1C u v u v
θ

θ θθ θ
  = − − + − < <  

   
,  

see Shih and Louis [6] for these families and for simulations from these copulas, 
and see the algorithms given by Mai and Scherer [12] (p 98-99). 

Beside this subclass the one and two parameters Marshall Olkin copula mod-
els are also frequently used. The two parameters MO model can be expressed as 

( ) 11,C u v u vθ
θ

−=  if 1 2u vθ θ≥  and ( ) 21,C u v uv θ
θ

−=  if 1 2u vθ θ≤ ,  

( )1 2 1 20 1, 0 1, ,θ θ θ θ ′< < < < =θ .  

The model has a singular component and if 1 2θ θ= , the MO copula model 
just has one parameter and  

( ) 1,C u v u vθθ
−=  if u v≥  and ( ) 1,C u v uv θ

θ
−=  if u v≤ , 

note that ( ),C u vθ  is singular for u v=  but a function of θ , ( ),C u vθ  is dif-

ferentiable. For further discussions on MO copulas see Dobrowolski and Kumar 
[10] and see Ross [13] (p 103-108) for simulations from MO copulas and Gaus-
sian copulas. The Gaussian Copula model can be represented by 

( ) ( ) ( )( )( )1 1
2 2ф

22

ф 1 1, exp 2 d d
2 12π 1

u v
C u v x y xy x yρ ρρ

− −

−∞ −∞

  = − + − 
−−   

∫ ∫ , 

with the standard normal univariate quantile function denoted by ( )1ф .−  and 

the integrand of the above integral is a bivariate normal density function with 
standard normal marginals and parameter ρ.  

Copulas are often used to create bivariate distributions and for inference pro-
cedures for these distributions for actuarial science, see Klugman and Parsa [3], 
Klugman et al. [14], Frees and Valdez [15] for examples.   

Before giving further details and properties of MQD methods, we shall give 
the logic behind the MQD procedures. 

Let the bivariate empirical survival function be defined as  

( ) [ ]1

1, ,n
n i iiS x y I x x y y

n =
= > >∑   
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with [ ].I  being the usual indicator function, let ( ) ( )
0

, ,C u v C u v= θ  and de-
fine the two univariate empirical marginal survival functions as  

( ) [ ]1

1 n
n iiF x I x x

n =
= >∑  and ( ) [ ]1

1 n
n iiG x I y x

n =
= >∑ ,  

we then have the following convergence in probability properties, 

( ) ( ) ( ) ( ) ( ) ( ), , , ,p p p
n n nS x y S x y F x F x G x G x→ → →   

with the true survival function and the marginal survival functions are given re-
spectively by ( ),S x y , ( )F x  and ( )G y . We shall assume that ( )F x  and 
( )G y  are absolutely continuous, ( ),S x y  is either absolutely continuous or 
( ),S x y  is absolutely continuous everywhere except when x y=  where the 

survival distribution can be singular as in the case of the bivariate exponential 
model introduced by Marshall and Olkin [11]. 

Now if the parametric survival copula model is valid, 

( ) ( ) ( )( ) ( ) ( )
0

, , , , ,S x y C F x G y C u v C u vθ= =   

so that  

( ) ( ) ( )( ), , 0p
n n nS x y C F x G y− →θ  for 0=θ θ . 

For the time being assume that the M points given by ( ), , 1, ,l lx y l M′ = 
 

are already chosen, then we can define the vector of empirical components, 

( ) ( )( )1 1, , , ,ˆn n n M MS x y S x y ′=z   

with the counterpart vector which makes use of the copula model, 

( ) ( )( ) ( ) ( )( )( )1 1, , ,ˆ ,n n n M n MC F x G y C F x G y ′=z θ θ θ , 

and form the vector of differences ( ) ( )ˆ ˆn n θ
′= −zG zθ , by choosing a symmetric 

positive definite matrix W  we can form a class of quadratic distances (QD) 
given by  

( ) ( ) ( )ˆ ˆ ˆ ˆn n nQ θ
′= − −z z zW zθθ . 

A positive definite matrix can be used to create a weighted Euclidean norm, so 
we can also let 

( ) ( ) 2
n nQ G=θ θ , 

.  is the weighted Euclidean norm induced by W  and if we let =W I  
then we obtain the classical Euclidean norm. QD inferences procedures devel-
oped subsequently are based on ( )nQ θ  which are similar to the univariate case. 
For MQD procedures with univariate observations, see Luong and Thompson 
[16]. 

The paper is organized as follows.  
In Section 3, MQD methods will be developed using predetermined grouped 

data such as data presented using a contingency table. The efficient quadratic 
distances is derived and can be used for estimation and model testing. Asymp-
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totic theory is established for MQD estimators and chi-square tests using quad-
ratic distances can be constructed for testing copula models. In Section 4, by 
viewing grouped data as defining a set of points on the nonnegative quadrant, a 
rule to select points is proposed based on Quasi-Monte-Carlo numbers and two 
sample quantiles if complete data is available and the methods can be extended 
to the situation where complete data is available. The methods can be seen as 
similar to minimum chi-square methods with random cells but with a rule to 
define these cells. The choice of random cells for minimum chi-square methods 
is less well defined. Section 5 illustrates the implementations of MQD methods 
using a limited simulation study by comparing the methods of moment estima-
tor (MM) estimators based on sample Spearman rho which requires the avail-
ability of complete data versus the MQD estimator which uses grouped data for 
the one parameter Marshall-Olkin model and it appears that the chi-square tests 
have some power to detect alternatives which can be represented as mixture or 
contaminated copula model such as the mixture of one parameter Mar-
shall-Olkin copula model and Gaussian copula model from the study. The find-
ings appear to be in line with chi-square tests in one dimension which also dis-
play similar properties if intervals are chosen properly. 

2. MQD Methods Using Grouped Data  
2.1. Contingency Tables 

Contingency table data can be viewed as a special form of two-dimensional 
grouped data. We will give some more details about this form of grouped data. 

Assume that we have a sample ( ), , 1, ,i i iZ X Y i n′= = 
 which are independ-

ent and identically distributed as ( ),Z X Y ′=  which follows a non-negative 
continuous bivariate distribution with model survival function given by

( ) ( )( ),C F x G yθ . The marginal survival functions are given respectively by 
( )F x  and ( )G y  assumed to be absolutely continuous but there is no para-

metric model assumed for the marginals. 
The vector of parameters is ( )1, , mθ θ ′= θ , the true vector of parameters is 

denoted by 0θ . We do not observe the original sample but observations are 
grouped and put into a contingency table and only the number which fall into 
each cells of the contingency table are recorded or equivalently the sample pro-
portions which fall into these cells are recorded. Contingency tables are often 
encountered in actuarial science and biostatistics, see Partrat [1] (p 225), Gib-
bons and Chakraborti [2] (p 511-512) and we shall give a brief description be-
low. 

Let the nonnegative axis X be partitioned into disjoints interval 

[ )1 1,i

I

i is s= −

 with 0 0, Is s= = ∞  and similarly, the axis Y be partitioned into 

disjoints interval )10
,J

j jj
t t−=


 with 0 0, Jt t= = ∞ . 

The nonnegative quadrant can be partitioned into nonoverlapping cells of the 
form. 
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[ ) )1 1, , , 1, , , 1, ,ij i i j jC s s t t i I j J− −= × = =   . 

The contingency table ( )ijT C=  is formed which can be viewed as a matrix 
with elements given by  

, 1, , , 1, ,ijC i I j J= =  .  

The empirical bivariate survival function is as defined earlier with
( ) ( ), ,p

nS x y S x y→ , the underlying bivariate survival distribution. We as-
sume that ( ),S x y  is either absolutely continuous or it can have a singular 
component when X Y=  as in the case of the bivariate exponential distribution 
of Marshall Olkin [9] but absolutely continuous elsewhere. Implicitly, the mar-
ginal survival functions ( )F x  and ( )G y  are assumed to be absolutely con-
tinuous. 

The sample proportion or empirical probability for one observation which 
falls into cell ijC  can be obtained using ( ),nS x y  

 ( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,n ij n i j n i j n i j n j jp C S s t S s t S s t S s t− − − −= − − +        (3) 

and the corresponding probability  ( )ijp Cθ  using the copula model coupled 
with the empirical survival distributions nF  and nG  with 
 ( ) ( ) ( )( ), ,n nS s t C F s G tθ = θ  is given by 

 ( )  ( )  ( )  ( )  ( )1 1 1 1, , , ,ij i j i j i j j jp C S s t S s t S s t S s t− − − −= − − +θ θ θ θ θ . 

It is not difficult to see that there is redundant information displayed by a 
contingency table, one way to see that there is duplication is to note 

 ( ) ( ), 0, , 0, 1, ,i J n i JS s t S s t i I= = = θ                 (4) 

and similarly,  ( ) ( ), 0, , 0, 1, ,I j n I jS s t S s t j J= = = θ .  
Therefore, the set points given by ( ) ( ){ }, , , , 1, , , 1, ,I j i Js t s t i I j J= = 

 can 
be discarded without affecting the information provided by the contingency ta-
ble. Consequently, we can view a contingency table implicitly define a grid on 
the nonnegative quadrant with only ( )( )1 1M I J= − −  points. It is also clear 
that if we want a rule to choose cells, the same rule will allow us to choose points 
on the nonnegative quadrant.  

The objective function of the proposed quadratic form will be given below. It 
is a natural extension of the objective function used in the univariate case. De-
fine a vector with empirical components so that we only need one subscript by 
collapsing the points of the contingency table given by 

( ){ }, , 1, , 1, 1, , 1i js t i I j J= − = − 
 into a vector by putting the first row of 

the matrix as the first batch of elements of the vector and the second row being 
the second batch of elements so forth so on, i.e., let 

 ( ) ( )( ) ( )( )1 1, , , , , 1 1n n n M MS s t S s t M I J′= = − −z  .          (5) 

and its counterpart which makes use of the copula model is 

  ( )  ( )( )1 1, , , ,M MS s t S s t ′=z θ θ θ .                 (6) 
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The number of components of nz  is M with the assumption M m> . 
A class of quadratic distances can be defined as 

( ) ( ) ( )ˆ ˆ ˆ ˆn n nQ θ
′= − −z z zW zθθ                   (7) 

with W  being a symmetric and positive definite matrix. In this class, we focus 
on two choices of W . 

Letting =W I , we obtain the unweighted quadratic distance, this choice is 
not optimum but it produces consistent estimators and can be used as prelimi-
nary estimates for θ  to start the numerical procedures for finding more effi-
cient estimators. The matrix W  is defined up to a positive constant as mini-
mizing the objective function multiplied by a positive constant still gives the 
same estimators and Ŵ  a consistent estimate of W  can be used to replace 
W  without affecting the asymptotic theory for estimation and asymptotic dis-
tribution for test statistics. Using quadratic distance theory or generalized 
methods of moment (GMM) theory, it is not difficult to see that an optimum 
choice for W  is to let 0=W W  where 1

0 0
−=WΩ  and 0Ω  is an asymptotic 

covariance matrix which is given by 

( ) ( )
0 0ˆ ˆ , ,L

nn N− →z z 0θ Ω  

see Remark 2.4.3 given by Luong and Thompson [16] (p 245). 
Clearly, 0Ω  depends on 0θ . We shall obtain the expression for 0Ω  and 

show that 0Ω  can be estimated by 0Ω̂  in the next section as we can obtain a 
preliminary consistent estimate for 0θ  by using the unweighted quadratic dis-
tance or other quick methods; see the methods of moment using Spearman-rho 
in Section 5.2 for example. Consequently, by quadratic distance we mean the 
following efficient version with the objective function defined as 

( ) ( )  ( )0ˆ ˆ ˆ ˆn n nQ θ
′= − −z z zW zθθ  with  1

0 0
ˆ −=W Ω .            (8) 

The version with =W I  will be called unweighted quadratic distance. In the 
next section we shall use the influence function representation for ( )0

ˆ ˆnn −z zθ  
to derive 0Ω  and we shall also propose 0Ω̂  a consistent estimate for 0Ω . 

2.2. Optimum Matrix W0 

The matrix 0Ω  which is the asymptotic covariance matrix of the vector 

( )0
ˆ ˆnn −z zθ  plays an important role for MQD methods as we can obtain esti-

mators with good efficiencies for estimators using 0Ω  or a consistent estimate 
of 0Ω  and we also have chi-square tests statistics. Despite that 0Ω  is un-
known, its elements are not complicated and moreover, it can be replaced by a 
consistent estimate without affecting the asymptotic properties of the proce-
dures. We shall give more details about this matrix and construct 0Ω , a consis-
tent estimate of 0Ω . 

Using influence representation for the vector of functions of ( )0
ˆ ˆnn −z zθ  

which depend on three functions ,,n n nS F G  as discussed by Reid [17], see tech-
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nical appendix (TA1) in the Appendices for more details, it can be seen that 0Ω  
is the covariance matrix of the vector ( ),x yh  under 0θ  with 

( )
1 1

,

M m

x y
′ 

 =  
 ′ 

a Y
h

a Y


,  

( ) ( )( ) ( ) ( )( ), ,
1, , , 1, ,i i i i

i

C F s G t C F s G t
i M

u v

 ∂ ∂
 ′ = − − =
 ∂ ∂ 

a  , 

[ ] ( )
[ ] ( )
[ ] ( )

, ,
, 1, ,

i i i i

i i i

i i

I x s y t S s t
I x s F s i M
I y t G t

 > > −
 = > − = 
 > > 

Y    

and [ ].I  is the usual indicator function, 

( ) ( ) ( )( ), ,i i i iS s t C F s G t= , 
0

C C= θ . 

( ) ( ), ,
,

C u v C u v
u v

∂ ∂
∂ ∂

 are respectively the partial derivatives of ( ),C u v  with re-

spect to u and v. 
It is not difficult to see that the elements of 0Ω  are  

( ) ( )0 , ,i i j ji j Cov′Ω = a Y Y a   

with ( ) ( ),i j i jCov E ′=Y Y YY  and since iY  and jY  are not identically distrib-
uted ( ),i jCov Y Y  is not symmetric, the matrix has 9 elements, see technical 
Appendix (TA2) in the Appendices for more details. The elements can be ex-
pressed as 

( ) ( )( ) ( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

11

12

13

21

22

max , ,max , , ,

max , , ,

,max , ,

max , , ,

max ,

i j i j i i j j

i j i i i j

i i j i i j

i j j j j i

i j i j

c S s s t t S s t S s t

c S s s t S s t F s

c S s t t S s t G t

c S s s t S s t F s

c F s s F s F s

= −

= −

= −

= −

= −

 

( ) ( ) ( )
( )( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

23

31

32

33

,

,max , ,

,

max ,

i j i j

j i j j j i

i j j i

i j i j

G

G

c S s t F s t

c S s t t S s t t

c S s t F s t

c t

G

G G Gt t t

= −

= −

= −

= −

                   (9) 

The elements ijc  can be estimated empirically by replacing , ,S F G  in the 
expressions of ijc  by ,,n n nS F G  for 1,2,3, 1,2,3i j= = . The estimates 
, 1, 2,3, 1, 2,3ijc i j= =  can be formed. 

Therefore, we can form  ( ),i jCov Y Y  which estimates ( ),i jCov Y Y . Similarly, 
by replacing 0θ  by a consistent preliminary estimate ( )0

0θ  which can be ob-
tained using the unweighted quadratic distance for example and replacing ,F G  
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by ,n nF G  we can estimate ia  by  , 1, ,ia i M=  . 


0Ω  an estimate for 0Ω  will have the elements given by 
 ( )  ( )0 ˆ ˆ, , , 1, ,3, 1, ,3i i j ji j i j′Ω = = =a Cov Y Y a            (10) 

and define  1
0 0

ˆ −=W Ω . 0W  will be used as an optimum matrix for constructing 
quadratic distance as the asymptotic property remain unchanged. We can re-
place the unknown matrix 1

0 0
−=W Ω  by its consitent estimate which is 0W  

without affecting asymptotic theory for estimation and tests. 

3. MQD Methods Using Grouped Data 
3.1. Estimation 

The MQD estimators can be seen as given by the vector θ̂  which minimizes  

( ) ( )  ( )0ˆ ˆ ˆ ˆn n nQ θ
′= − −z z zW zθθ .                (11)  

and since 

 ( ) ( )( )1 1, , , ,n n n M MS s t S s t ′=z  ,                (12) 

  ( )  ( )( )1 1, , , ,M MS s t S s t ′=z θ θ θ ,                (13) 

 ( ) ( ) ( )( ), , , 1, ,i i n i n iS s t C F s G t i Mθ= = θ ,            (14) 

( ) ( )ˆ ˆn n θ= −zG zθ ,  

we can also used the weighted Euclidean norm ⋅  with the use of 0W  and let 

( ) ( ) 2
n nQ = Gθ θ .                      (15)  

Consistency for quadratic distance estimators using predetermined grouped 
data or if complete data is available but must be grouped according a rule can be 
treated in a unified way using the following Theorem 1 which is essentially 
Theorem 3.1 of Pakes and Pollard [18] (p 1038) and the proof has been given by 
the authors. In fact, their Theorems 3.1 and 3.3 are also useful for Section 4 
where we have complete data and we have choices to group the data into cells or 
equivalently forming the artificial sample points on the nonnegative quadrant to 
form the quadratic distances.  

Theorem 1 (Consistency) 
Under the following conditions θ̂  converges in probability to 0θ : 

1) ( ) ( ) ( )( )ˆ 1 infn p no ∈≤ +G Gθθ θΩ , the parameter space Ω is compact 

2) ( ) ( )0 1n po=G θ , 

3) 
( )

( )
0

1sup 1p
n

Oδ− >

 
=  

 Gθ θ θ
 for each 0δ > . 

Theorem 3.1 states condition b) as ( ) ( )0 1n po=G θ  but in the proof the au-
thors just use ( ) ( )0 1n po=G θ  so we state condition b) as ( ) ( )0 1n po=G θ . 

An expression is ( )1po  if it converges to 0 in probability, ( )1pO  if it is  
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bounded in probability and 
1
2

po n
− 

  
 

 if it converges to 0 in probability faster 

than 
1
2 0n

−
→ . We have ( )( )inf n∈ Gθ θΩ  occurs at the values of the vector 

values of the MQD estimators, so the conditions 1) and 2) are satisfied for both 
versions. Implicitly, we make the assumption that the parameter space Ω is 
compact. Also, for both versions ( ) 0p

n →G θ  only at 0=θ θ  in general if 

the number of components of ( )nG θ  is greater than the number of parameters 

of the model, i.e., M m> .  

For 0≠θ θ  we have ( )0 nQ B< ≤θ  for some 0B >  since survival func-
tions evaluated at points are components of ( )nG θ  and these functions are 
bounded. This implies that there exist real numbers u and v with 0 u v< < < ∞  
such that 

( )0

1sup 1
n

P u vδ− >

  
 ≤ ≤ →     Gθ θ θ

 as n →∞ . 

Therefore, the minimum quadratic distance (MQD) estimators are consistent, 
i.e., 0

ˆ p→θ θ . The Theorem 3.1 given by Pakes and Pollard [18] (p 1038-1039) 
is an elegant theorem using the norm concept of functional analysis. Now we 
turn our attention to the question of asymptotic normality for the quadratic dis-
tance estimators and it is possible to have unified approach using their Theorem 
3.3, see Pakes and Pollard [18] (p 1040-1043) where we shall restate their Theo-
rem as Theorem 2 and Corollary 1 given subsequently after the following discus-
sions on the ideas behind their theorem, allowing us to get asymptotic normality 
results for estimators obtained from extremum of a smooth or nonsmooth ob-
jective function. 

Note that ( ) ( )p
n →G Gθ θ                   (16) 

with  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )1 1 1 1, , , , , ,M M M MS s t C s t S s t C sG tF F G ′= − −G θ θθ . (17) 

The points ( ) ( )1 1, , , ,M Ms t s t ′′


 are predetermined by a contingency table we 
give and we have no choice but to analyze the grouped data as they are pre-
sented. 

Note that ( )G θ  is non-random and if we assume ( )G θ  is differentiable 
with repect to with derivative matrix ( )θΓ , then we can define the random 
function ( )a

nQ θ  to approximate ( )nQ θ  with 

( ) ( )( ) ( ) ( ) ( )( )
2

0 0,a
n n n nQ = = + −L L Gθ θ θ θ θ θ θΓ .        (18) 

By using ( ),

j

C u v
θ

∂
∂
θ  which is the partial derivative of ( ),C u vθ  with repect 

to , 1, ,j j mθ =  , the matrix ( )θΓ  can be displayed explicitly as 
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( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1 1

1

1

, ,

, ,

m

M M M M

m

C F s G t C F s G t

C F s G t C F s G t

θ θ

θ θ

θ θ

θ θ

 ∂ ∂
 

∂ ∂ 
 = −  
 ∂ ∂
 
 ∂ ∂ 



  



θΓ .    (19) 

Note that ( )a
nQ θ  is differentiable and a quadratic function of θ , the vector 

*θ  which minimizes ( )a
nQ θ  can be obtained explicitly with  

( )  ( )
1

*
0 0 0 0n

−
′ ′− = − W W Gθ θ θΓ Γ Γ                (20) 

and since 0 0
p→W W . 0W  is assumed to be a positive define matrix; we have 

( ) ( )  ( )

( ) ( ) ( )

1
*

0 0 0 0

1
0 0 0 1 .

n

n p

n n

n o

−

−

′ ′− = −

′ ′= − +

W W G

W W G

θ θ θ

θ

Γ Γ Γ

Γ Γ Γ
     (21)  

Clearly set up fits into the scopes of their Theorem 3.3 where we shall rear-
range the results to make them more suitable for MQD methods and verify that 
we can satisfy the regularity conditions of Theorem 3.3. We shall state Theorem 
2 and Corollary 1 below which are essentially their Theorem (3.3) and the proofs 
have been given by Pakes and Pollard [18]. Note that the condition 4) is slightly 
more stringent but simpler to check than the condition 3) in their Theorem.  

Theorem 2 
Let θ̂  be a vector of consistent estimators for 0θ , the unique vector which 

satisfies ( )0 =G θ 0 . 
Under the following conditions: 
1) The parameter space Ω is compact, θ̂  is an interior point of Ω. 

2) ( ) ( )
1
2ˆ infn p no n

−

∈

 
≤ +  

 
G Gθθ θΩ  

3) ( ).G  is differentiable at 0θ  with a derivative matrix ( )0= θΓ Γ  of full 
rank. 

4) ( ) ( ) ( ) ( )
0 0sup 1

n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ  for every sequence { }nδ  
of positive numbers which converge to zero. 

5) ( ) ( )0 1n po=G θ . 
6) 0θ  is an interior point of Ω. 
Then, we have the following representation which will give the asymptotic 

distribution of θ̂  in Corollary 1, i.e., 

( ) ( )  ( ) ( )
1

0 0 0 0
ˆ 1n pn n o

−
′ ′− = − +W W Gθ θ θΓ Γ Γ ,        (21)  

or equivalently, using equality in distribution, 

( ) ( ) ( )1
0 0 0 0

ˆ d
nn n−′ ′− = − W W Gθ θ θΓ Γ Γ              (22)  

or equivalently, 

( ) ( )  ( )
1

0 0 0 0
ˆ d

nn n
−

′ ′− = − W W Gθ θ θΓ Γ Γ               (23) 
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The proofs of these results follow the results used to prove Theorem 3.3 given 
by Pakes and Pollard [18] (p 1040-1043). For expression (22) or expression (23) 
to hold, in general only condition 5) of Theorem 2 is needed and there is no 
need to assume that ( )0nG θ  has an asymptotic distribution. From the results 
of Theorem 2, it is easy to see that we can obtain the main result of the following 
Corollary 1 which gives the asymptotic covariance matrix for the quadratic dis-
tance estimators for both versions. 

Corollary 1 
Let ( )0 0n nn ′=Y W G θΓ , if ( ),L

n N→Y V0  then  

( ) ( )0
ˆ ,Ln N− → Tθ θ 0  with 

( ) ( )1 1
0 0

− −′ ′=T W V WΓ Γ Γ Γ ,                    (24) 

The matrices T  and V  depend on 0θ , we also adopt the notations 
( ) ( )0 0,= =T T V Vθ θ . 

We observe that when applying condition 4) of Theorem 2 to MQD methods 
in general involves technicalities. Note that to verify the condition 4, it is 
equivalent to verify 

( ) ( ) ( )( ) ( )
0

2

0sup 1
n n n pn oδ− ≤ − − =G G Gθ θ θ θ θ ,          (25) 

a regularity condition for the approximation is of the right order which implies 
the condition 3 given by their Theorem 3.3, which might be the most difficult to 
check. The rest of the conditions for Theorem 2 are satisfied in general.  

Let 

( ) ( ) ( ) ( )( )2

0n n ng n= − −G G Gθ θ θ θ                 (26) 

and define ( ) ( ) ( ) ( )0n n n= − −u G G Gθ θ θ θ  which can be expressed as 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )(
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ))

0 01 1 1 1

1 1 1 1

, , , , , ,

, , , , , ,

, , .

n n n n M n M M M

n n

n M n M M M

C F s G t S s t C F s G t S s t

C F s G t C F s G t

C F s G t C F s G t

θ θ

θ θ

θ θ

= − −

−

−

u 

 

θ

(27) 

Consequently, ( )ng θ  can also be expressed as 

( ) ( ) ( )0n nng n ′ ′= u W uθ θ θ . 

Since the elements of ( )nn ′u θ  are bounded in probability, it is not difficult 
to see that the sequence ( ){ }ng θ  is bounded in probability and continuous in 
probability with ( ) ( )p

n ng g ′→θ θ  as ′→θ θ . Also note that ( )0 0ng =θ . 
Therefore, results given in section of Luong et al. [19] (p 218) can be used to jus-
tify the sequence of functions. ( ){ }ng θ  attains its maximum on the compact 
set { }0n nC δ= − ≤θ θ θ  in probability and hence has the property  

( )
0

sup 0
n n

pgδ− ≤ →θ θ θ  as n →∞  and 0→θ θ .  
Since ( ) ( )1

0 00,p
nn N −→G Wβ .  

Using results of Corollary 1, we have asymptotic normality for the MQD es-
timators which is given by 
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( ) ( )( )1
0 0

ˆ 0,Ln N −′− → Wθ θ Γ Γ ,             (28) 

Γ  as given by expression (19) can be estimated once the parameters are esti-
mated. 

3.2. Model Testing  
3.2.1. Simple Hypothesis  
In this section, the quadratic distance ( )nQ θ  will be used to construct good-
ness of fit test statistics for the simple hypothesis  

H0: data coming from a specified distribution with distribution 
0

Fθ , 0θ  is 
specified. The chi-square test statistic with its chi-square asymptotic distribution 
and its degree of freedom 𝑟𝑟 are given below, i.e., 

( ) ( )2
0

L
nnQ r Mχ→ =θ .                   (29) 

It is not difficult to see that indeed we have the above asymptotic chi-square 
distribution as ( ) ( ) ( )0 0 0 0n n nnQ n n′= G W Gθ θ θ  and 

( ) ( )1
0 00,L

nn N −→G Wθ , 

0
1

0 0 0, p− =  →W W WΩ , using standard results for 
distribution of quadratic forms, see Luong and Thompson [16] (p 247) for ex-
ample.  

3.2.2. Composite Hypothesis  
The quadratic distances ( )nQ θ  can also be used for construction of the test 
satistics for the composite hypothesis  

H0: data comes from a parametric model { }Sθ .The chi-square test statistic 
and its asymptotic distribution are given similarly in this case by 

( ) ( )2ˆ L
nnQ r M mχ→ = −β ,                  (30) 

with M m> .To justify the asymptotic chi-square distribution given above, note 
that we have the equality in probability, ( ) ( ) ( )ˆ 1a

n n pnQ nQ o= +θ θ . It suffices to 
consider the asymptotic distribution of ( )ˆa

nnQ θ  as we also have the following 
equalities in distribution, 

( ) ( ) ( ) ( ) ( )2

0
ˆ ˆ ˆ ˆ ˆd a

n n n nnnQ nQ n L nL n′= = = W Lθ θ θ θ θ , 

( )nL θ  as given by expression. Therefore we also have the following equalities 
in distribution, ( ) ( ) ( )0 0

ˆ ˆd
n nn n n= + −L Gθ θ θ θΓ  which can be reex-

pressed as 

( ) ( ) ( ) ( )1
0 0 0 0

ˆ d
n n nn n n−′ ′= −L G W W Gθ θ θΓ Γ Γ Γ   

or equivalently,
 

( ) ( )( ) ( )1
0 0 0

ˆ d
n nn n−′ ′= −L I W W Gθ θΓ Γ Γ Γ  with  

( ) ( )1
0 00,L

nn N −→G Wθ . 
We have 

( ) ( )ˆ 0,L
nn N→L θ Σ ,                      

( )( ) ( )( )1 11
0 0 0 0 0

− −−′ ′ ′ ′= − −I W W W I W WΣ Γ Γ Γ Γ Γ Γ Γ Γ     (31) 
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and note that 0Σ =W B  and the trace of the matrix ( ) 1
0 0

−′ ′= −B I W WΓ Γ Γ Γ  
is ( )trace M m= −B ; the rank of the matrix B  is also equal to its trace using 
the techniques as given by Luong and Thompson [16] (p 248-249).  

4. Estimation and Model Testing Using Complete Data 
4.1. Preliminaries 

In Section 4.1 and Section 4.2, we shall define a rule of selecting the points 
( ), , 1, ,l ls t l M=   if complete data are available. Selecting points is equivalent 
to define the cells used to group the data and we shall see that random cells will 
be used as the points ( ), , 1, ,l ls t l M=   constructed using Quasi-Monte Carlo 
(QMC) numbers on the unit square multiplied by two chosen sample quantiles 
from the two marginal distributions will be used. They are random and can be 
viewed as sample points on the nonnegative quadrant forming an artificial sam-
ple. For minimum chi-square methods it appears to be difficult to have a rule to 
choose cells to group the data, see discussions by Greenwood and Nikulin [8] (p 
194-208). We need a few preliminary notions tools and define sample quantiles 
then statistics can be viewed as functionals of the sample distribution; the notion 
of influence function is also introduced and this useful tool will be used to find 
their asymptotic variance of the functional. 

We shall define the pth sample quantile of a distribution as we shall need two 
sample quantiles from the marginal distributions together with QMC numbers 
to construct an approximation of an integral. Our quadratic distance based on 
selected points can be viewed as an approximation of a continuous version given 
by an integral as given by expression (33). 

From a bivariate distribution we have two marginal distributions ( )F x  and 
( )G y . The univariate sample pth quantile of the distribution ( )F x  assumed 

to be continuous is based the sample distribution function  

( ) [ ]1

1 n
n iiF x I x x

n =
= ≤∑  and it is defined to be ( ) ( ){ }infn

p nF x pα = ≥  and its 

model counterpart is given by ( ){ }infp F x pα = ≥ . We also use the notation 
( ) ( )1n
p nF pα −=  and ( )1

p F pα −= . We define similarly the qth sample quantile 

for the distribution ( )G y  as ( ) ( )1n
q nG qβ −=  and its model counterpart 

( )1
q G qβ −=  with 0 , 1p q< < . 

The sample survival function is defined as  

( ) [ ] ( )1

1 1n
n i niF x I x x F x

n =
= > = −∑  

The sample quantile functions ( )n
pα  or ( )n

qβ  can be viewed as statistical 
functionals of the form ( )nT H  with n nH F=  or n nH G= . The influence 
function of ( )nT H  is a valuable tool to study the asymptotic properties of the 
statistical functional and will be introduced below. Let H be the true distribution 
and nH  is the usual empirical distribution which estimates H; also let xδ  be 
the degenerate distribution at x, i.e., ( ) 1x uδ =  if u x≥  and ( ) 0x uδ = , oth-
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erwise; the influence function of T viewed as a function of x, ( ),T HIC x  is de-
fined as a functional directional derivative at H in the direction of ( )x Hδ − . 
Letting ( )xH H Hε ε δ= + − , ( ),T HIC x  is defined as 

( ) ( ) ( ) ( ), 0lim HT H x

T H T H
IC x T Hε

ε δ
ε→

−
′= = −  and HT ′  is a linear functional. 

Alternatively, it is easy to see that ( ),
0

T H
HIC x ε

εε =

∂
=

∂
 and this gives a con-

venient way to compute the influence function. It can be shown that the influ-
ence function of the pth sample quantile ( )nT H  is given by 

( )
( )( ) ( )1

, 1

1 ,T H
pIC x x H p

h H p
−

−

−
= <  and ( )

( )( ) ( )1
, 1

,T H
pIC x x H p

h H p
−

−
= >  

with h being the density function of the distribution H which is assumed to be 
absolutely continuous, see Huber [20] (p 56), Hogg et al. [21] (p 593). A statisti-
cal functional with bounded influence function is considered to be robust, 
B-robust and consequently the pth sample quantile is robust. The sample quan-
tiles are robust statistics. 

Furthermore, as ( ),T HIC x  is based on a linear functional, the asymptotic 
variance of ( )nT H  is simply ( )( ),

1
T HV IC x

n
 with ( ).V  being the variance of  

the expression inside the bracket since in general we have ( )( ), 0T HE IC x =  
and we have following representation when ( ),T HIC x  is bounded as a function 
of x , 

( ) ( ) ( ) 1
Fn n pT H T H T H H o

n
 ′= + − +  
 

  

and ( ) ( )1

1
i

n
n xFiFT H H T H

n
δ

=
′ ′− = −∑ , 

( ) ( ),i T iF x HT H IC xδ′ − = , see Hogg et al. [21] (p 593). Consequently, in general 
we have for bounded influence functional with the use of means of central limit 
theorems (CLT) the following convergence in distribution  

( ) ( )( ) ( )20,L
n ICn T H T H N σ− → , ( )( )2

,IC T HV IC xσ = . 

The influence function representation of a functional which depends only on 
one function such as nH  is the equivalence of a Taylor expansion of a univari-
ate function and the influence function representation of a functional which de-
pends on many functions is the equivalence of a Taylor expansion of a multi-
variate function with domain in an Euclidean space and having range being the 
real line. Since we work with marginal survival functions, we define the pth 
sample quantiles of the marginals survival functions as 

( ) ( ) ( ) ( )1 1 1 11 , 1n n n nF p F p G p G p− − − −= − = − . 

The influence functions for ( )1
nF p−  and ( )1

nG p−  can be derived using the 
definitions of influence functions or obtained from the influence functions of 

( )1 1nF p− −  and ( )1 1nG p− − .  
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Subsequently, we shall introduce the Halton sequences with the bases 1 2b =  
and 2 3b =  and the first M terms are denoted by 

( ) ( ) ( )( )1 2
, , , 1, 2, ,l l b bu v l l l Mϕ ϕ= = 

.  

We also use MH  to denote set of points ( ){ }, , 1, 2, ,l lu v l M=  . The sequence 
of points belong to the unit square ( ) ( )0,1 0,1×  can be obtained as follows. 

For 1 2b = , we divide the interval ( )0,1  into half ( 1 2b = ) then in fourth  

( 2 2
1 2b = ) so forth so on to obtain the sequence 1 1 3, , ,

2 4 4
 . 

For 2 3b = , we divide the interval (0,1) into third ( 2 3b = ) then in ninth  

( 2 2
2 3b = ) so forth so on to obtain the sequence 1 2 1, , ,

3 3 9


. Now pairing them 

up we obtain the Halton sequence 
1 1 1 2 3 1, , , , , ,
2 3 4 3 4 9

     
     
     

 . Matlab and R  

have packages to generate the sequences and see Glaserman [22] (p 293-297) for 
the related pseudo codes; also see the seminal paper by Halton [23]; for the gen-
eral principles of QMC methods, see Glasserman [22] (p 281-292). The Halton 
sequence together with two chosen sample quantiles from the two marginal dis-
tributions will allow us to choose points to match the bivariate empirical survival 
function with its model counterpart as we shall have an artificial sample with 
values on the nonnegative quadrant with the use of two empirical quantiles from 
the marginal distributions. These points can be viewed as sample points from an 
artificial sample and since they depend on quantiles which are robust, the artifi-
cial sample can be viewed as free of outliers and the methods which make use of 
them will be robust. 

Note that the Halton sequence of numbers are deterministic and useful for 
approximating an integral, if we would like to compute numerically an integral 
of the form  

( )1 1

0 0
, d dA x y x yψ= ∫ ∫  with ( ),x yψ  being a bivariate function. Using the M 

terms of the Halton sequence and QMC principles, it can be approximated as 

( )1

1 ,M
l llA s t

M
ψ

=
≈ ∑ .                   (32) 

but if we are used to integration by simulation we might want to think the M 
terms represent a quasi random sample of size M from a bivariate uniform dis-
tribution which is useful for approximating A. 

From observations which are given by ( ), , 1, ,i i iZ X Y i n′= = 
 iid with 

common bivariate survival distribution ( ),S x y . Let the two marginal survival 
functions be denoted by ( )F x  and ( )G y  and they are absolutely continuous 
by assumption; also define the bivariate empirical distribution function which is 
similar to the bivariate empirical survival function as  

( ) [ ]1

1, ,n
n i iiK x y I x x y y

n =
= ≤ ≤∑ . 

The two empirical marginal survival functions are defined respectively by  
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( ) [ ]1

1 n
n iiF x I x x

n =
= >∑  and ( ) [ ]1

1 n
n iiG y I y y

n =
= >∑ . 

We might want to think that we would like to approximate the following 
Cramer-Von Mises distance expressed as an integral given by 

( ) ( )( ) ( )
2

0 0
ˆ, , d ,n nS x y S x y K x y

∞ ∞
−∫ ∫ θ                (33) 

which is similar to univariate Cramér-Von Mises (CVM) distance and minimiz-
ing the distance with respect to θ  will give the CVM estimator for θ , see Lu-
ong and Blier-Wong [24] for CVM estimation for example. 

In the next section we shall give details on how to form a type of quasi sample 
or artificial sample of size M using the 𝑀𝑀 terms of the Halton sequence of M 
terms and the two sample quantiles of the marginal distributions F and G or 
equivalently using the corresponding empirical function quantiles as discuss ear-
lier and this will allow us to define the sequence ( ), , 1, ,l ls t l M=   so that the 
above integral can be approximated by the following finite sum of the type of an 
average of M terms 

( ) ( )( )2

1

1 , ˆ ,M
n l l l ll SS s t s t

M =
−∑ θ .                (34) 

We can see the expression (34) is an unweighted quadratic distance using the 
identity matrix I  as weight matrix instead of 0W . The unweighted quadratic 
distance still produces consistent estimators but possibly less efficient estimators 
than estimators using the quadratic distance with 0W  for large samples and for 
finite samples the estimators obtained using I  might still have reasonable per-
formances and yet being simple to obtained. 

The set of points ( ), , 1, ,l ls t l M=   is a set of points proposed to be used to 
form optimum quadratic distances in case that complete data is available. We 
shall see the set of points depend on two quantiles chosen from the two marginal 
distributions and they are random consequently. We might want to think that 
we end up working with random cells. 

As for the minimum chi-square methods if random cells stabilize into fixed 
cells minimum chi-square methods in general have the same efficiency as based 
on stabilized fixed cells, see Pollard [25] (p 324-326) and Moore and Spruill [26] 
for the notion of random cells; quadratic distance methods will share the same 
properties. The chosen points are random but it will be shown that they do sta-
bilize and therefore these random points can be viewed as fixed at stabilized 
points and despite that they are random, it does not affect efficiencies of the es-
timators or asymptotic distributions of goodness-of-fit test statistics which make 
use of them. These properties will be further discussed and studied in more de-
tails in the next section along with the introduction of an artificial sample of size 
M given by the points ( ), , 1, ,l ls t l M=   on the nonegative quadrant which 
give us a guideline on how to choose points if complete data is available.  

4.2. Halton Sequences and an Artificial Sample  

From the M terms of the Halton sequences, we have ( ), , 1, ,l lu v l M=  . 
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Let 
( )

1
max , 1, ,lu l M

η =
= 

 and 
( )

1
max , 1, ,lv l M

=
= 

 , we can form the  

artificial sample with elements given by ( ), , 1, ,l ls t l M=   with 
( ) ( )1 1,l l n l l ns u F p t v pGη − −= =   with 0.01 0.05p≤ ≤ . Note that we have the 

following relationships between empirical quantile based on distributions and 
survival functions with ( ) ( )1 10.01 0.99n nF F− −=  and ( ) ( )1 10.01 0.99n nG G− −= .  

We can view ( ), , 1, ,l ls t l M=   being a form of quasi random sample on the 
nonnegative quadrant and these are the points proposed to be used in case of 
complete data is available. In general, we might want to choose 20 35M≤ ≤  if 

2M n≤  and if n is small we try to ensure M n≤ . Consequently as n →∞ , 
M remains bounded. If 35M > , there might be difficulty to obtain the matrix 

0Ŵ  as 0Ω̂  might be nearly singular. In practice we tend to replace 0Ŵ  by a 
near optimum matrix 0Ŵ  obtained from 0Ω̂  by regularizing the eigenvalues 
of 0Ω̂  which might not be stable which causes the matrix to be nearly singular 
hence 0Ŵ  will not be available; see Section 5.1 for more discussions on these 
issues. 

Since ( ) ( )1 1p
nF p F p− −→  and ( ) ( )1 1p

nG p G p− −→ ,  
( ) ( )0 0, ,p

l l l ls t s t→  with ( )0 1
l ls u pFη −=  and ( )0 1

l lt v G p−=   for 
1, ,l M=   and the points ( )0 0, , 1, ,l ls t l M=   are non-random or fixed. 

It turns out that quadratic distances for both versions constructed with the 
points ( ), , 1, ,l ls t l M=   are asymptotic equivalent to quadratic distances us-
ing the points ( )0 0, , 1, ,l ls t l M=   so that asymptotic theory developed using 
the points ( ), , 1, ,l ls t l M=   considered to be fixed continue to be valid; we 
shall show indeed this is the case. Similar conclusions have been established for 
the minimum chi-square methods with the use of random cells provide that 
these cells stabilize to fixed cells, see Theorem 2 given by Pollard [25] (p 
324-326). We shall define a few notations to make the arguments easier to fol-
low. 

Define ( ){ } ( ){ }, , , 1, ,l ls t s t l M= =   and similarly let  

( ){ } ( ){ }0 0 0 0, , , 1, ,l ls t s t l M= = 
. 

We work with the quadratic distance defined using ( ){ },s t  which leads to 
consider quadratic of the form ( ) 2

nG β . Now to emphasize nz  and zθ  
which depend on ( ){ },s t , we also use respectively the notations 
  ( ){ }( ),n n s t=z z  and   ( ){ }( ),s t=z zθ θ  and define 

 ( ){ }( )  ( ){ }( )0 00 0 0 0ˆ ˆ, , ,n n s t s t= =z z z zθ θ . 

It suffices to verify that results of Theorem 1, Theorem 2 and its corollary in 
Section 3 continue to hold.  

Observe that we have 

 ( ) ( )p
n − →z z Gθ θ                      (35) 

and  
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( ) ( )0 0ˆ ˆn
p− →z z Gθ θ                      (36) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( )0 0 0 0 0 0 0 0
1 1 1 1, , , , , ,M M M MS s t C F s G t S s t C F s G t ′

= − −G θ θθ . 

This also means that we have the same limit in probability for  ( )n −z zθ  and 

( )0 0ˆ ˆn −z zθ  as we have ( ){ } ( ){ }0 0, ,ps t s t→  and ( ) ( ), ,p
nS x y S x y→ . 

Clearly,  ( ){ }( ) ( )0 0
0 0, ,ps t s t→W W .  

It remains to establish  ( ) ( ) ( )0 0ˆ ˆ 1nn pn n o− = − +z z z zθ θ .  
Using results on the influence functions representations for functionals as 

discussed, it suffices to show that the vector  ( )n −z zθ  has the same influence 
representation as the vector ( )0 0ˆ ˆn −z zθ  to conclude that all the asymptotic re-
sults are valid even ( ){ },s t  are random. 

We shall derive the influence functions for elements of the vector of func-
tional  ( )n −z zθ  and show that they are the same for the corresponding ele-
ments of the vector of functional ( )0 0ˆ ˆn −z zθ . Let ( ),S x y  be the true bivariate 
survival function and under the parametric model being considered, 
( ) ( ) ( )( )0

, ,S x y C F x G yθ=  and we also use the notation ( ) ( )
0

, ,C u v C u vθ= . 
Let ( ), ,S

x y u vδ  be the degenerate bivariate survival function at the point
( ),x y , i.e., ( ), , 1S

x y u vδ =  if u x<  and v y<  and ( ), , 0S
x y u vδ = , otherwise. 

Let the degenerate survival function at x be defined as ( ) 1S
x uδ =  if x u>  

and ( ) 0S
x uδ = , otherwise. Similarly, let the degenerate survival function at 𝑦𝑦 

be defined as ( ) 1S
y vδ =  if y v>  and ( ) 0y vδ = , otherwise. Now we can de-

fine the following contaminated bivariate survival and marginal survival func-
tions, 

( ) ( ) ( ) ( )( ),, , , , , 0 1S
x yS u v S u v u v S u vε ε δ ε= + − ≤ ≤   

which is a contaminated bivariate survival function and 

( ) ( ) ( ) ( )( )1 1 1, 0 1.S
xF u F u u F uε ε δ ε= + − ≤ ≤  

Similarly for the marginals, 

( ) ( ) ( ) ( )( )2 2 2, 0 1.S
yG v G v v G vε ε δ ε= + − ≤ ≤  

Now, we consider ( )0
ˆ ˆjn j−z z θ  the jth element of ( )0

ˆ ˆn −z zθ ,  

( ) ( )0
ˆ ˆ , , , 1, ,jn j j n n nT S jF G M− = =z z θ  with each 

( ) ( ) ( )( ) ( )( ) ( )( )( )0
, , , , , 1, , .n nj n n n j n j n j n n j nFT S S s t C s t GF G F F G jG Mθ= − =   

Clearly, ( ), ,j n nn FT GS  depend on , ,n nnS F G  and 

( )
( ) ( )( ) ( )( ) ( )( )( )

1 2

1 2 0 1 1 2

, ,

, , , 1, , ,

j

j j j n j

T S G

S s t G C s G t GF F M

F

F j

ε ε ε

ε ε ε θ ε ε ε= − = 

 

but we can use the influence function representation of ( ), ,j n nn FT GS , a tech-
nique proposed by Reid [29] (p 80-81) but in this case it will need three influ-
ence functions which are given by 
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( ) ( )1 2

1 2

0 0 0 0

0

,
, ,

j
j j j j

T S G
I x t s

F
s y S t

ε ε ε

ε ε ε
ε

= = =

∂
 = > > − ∂

 

which is bounded with respect to ( ),x y , 

( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1 2

1 2

01 1

1 1

0

1
0

0 00 0 0

1 1
0 0

0 0
0 0

, ,

,,

,

j

j jj jj j j

j j S
x j j

T S G

C s G ts F s FS s t

F

F F

F
F

s

s u s

C s G t
s s

u

ε ε ε

ε ε ε

ε ε

ε ε

ε

ε ε

δ

= = =

= =

∂

∂

 ∂∂ ∂∂ ∂ = −  ∂ ∂ ∂ ∂ ∂ 
 

∂
− −

∂

θ

θ

 

and the expression is reduced to 

( ) ( ) ( )( ) ( ) ( )( )01 2

1 2

0 0
0 0

1
0

,, , j jj S
x j j

C s tT S F GF
F

G
s s

u
ε ε ε

ε ε ε

δ
ε

= = =

∂∂
= − −

∂ ∂
θ

  

by noting the first two terms of the the RHS of the above expression cancel each 
other since we have ( ) ( ) ( )( )0

, ,S s t C F Gs tθ=  which implies  

( ) ( ) ( )( ) ( )0
,, C F s G tS s t F s

s u s

∂∂ ∂
=

∂ ∂ ∂
θ . 

Similarly,  

( ) ( ) ( )( ) ( ) ( )( )01 2

1 2

0 0
0 0

2
0

,, , j jj S
y j j

C s tT S F GF
G

G
t t

v
ε ε ε

ε ε ε

δ
ε

= = =

∂∂
= − −

∂ ∂
θ

 

If we compare with the corresponding jth term of ( )0

0 0ˆ ˆn −z zθ  given by the 

functional ( ) ( ) ( ) ( )( )0

0 0 0 0, , , ,j n n n l ln nn l lG S S s tF G F GC s t= − θ , we can verify the 

functional ( ), ,j n nn FG GS  has the same influence functions as the functional 

( )1 2
, ,j FT S Gε ε ε . It is not difficult to see that we have the equalities 

( ) ( )1 2 1 2

1 2 1 20 0

, ,
,

j jG S F T GFG Sε ε ε ε ε ε

ε ε ε ε ε ε
ε ε

= = = = = =

∂ ∂
=

∂ ∂
 

( ) ( )1 2 1 2

1 2 1 2
1 1

0 0

, ,
,

j jG S G T S GF Fε ε ε ε ε ε

ε ε ε ε ε ε
ε ε

= = = = = =

∂ ∂
=

∂ ∂
  

( ) ( )1 2 1 2

1 2 1 2
2 2

0 0

, ,
, 1, , .

j jFG S G T S G
j

F
M

ε ε ε ε ε ε

ε ε ε ε ε ε
ε ε

= = = = = =

∂ ∂
= =

∂ ∂
  

Therefore, all the asymptotic results of Section 3 remain valid and all these in-
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fluence functions are bounded so that inference methods making use of these 
functionals are robust in general. Furthermore, we can consider the inference 
procedures based on quadratic distances as we have non-random points 

( ){ }0 0,s t  if they can be replaced by ( ){ },s t  without affecting the asymptotic 
results already established in Section 3. For more discussions on random cells 
and influence function techniques for minimum chi-square methods and related 
quadratic distance methods, see Luong [27].  

5. Numerical Issues and a Limited Study  
5.1. Numerical Issues 

In this section we shall consider the numerical problem of not being able to ob-
tain the matrix 0Ŵ  as 0Ω̂  might be nearly singular and we need to replace 

0Ŵ  by a near optimum matrix 0W  obtained from 0Ω̂ .The techniques of 
regularizing a matrix have been introduced by Carrasco and Florens [28] (p 
809-810) for GMM estimation with continuum moment conditions, MQD 
methods can be viewed as similar to GMM with a finite number of moment 
conditions and clearly the techniques can also be applied for MQD methods. We 
use the spectral decomposition of 0Ω̂  to obtain its eigenvalues and eigenvec-
tors, see Hogg et al. [21] (p 179) for the spectral decomposition of a symmetric 
positive definite matrix which allows us to express 

0 1
ˆ M

i iii λ
=

′= ∑ v vΩ   

where the isλ′  are positive eigenvalues with corresponding eigenvectors given 
by the is′v  of the matrix 0Ω̂ . Now, observe that 

1
0 0 1

1ˆ ˆ
i

M
ii

iλ
−

=
′= =∑W v vΩ   

is not obtainable numerically. It is due to the eigenvalues which are not stable, 
the regularization of 0Ω̂  will lead to the following matrix which hopefully is 
obtainable and approximate 0Ŵ . It consists of perturbing the isλ′  by a small 
positive number a and define the approximate optimum matrix as 

0 21 , 0M i
ii i

i

a
a

λ
λ=

′= >
+∑W v v . 

Carrasco and Florens [28] (p 809-810) for GMM estimation with continuum 
moment conditions have shown that asymptotic theory remains unchanged if 

0a →  at a suitable rate as n →∞ . This condition is difficult to verify in prac-
tice. However, we might want to continue to use the asymptotic theory in an ap-
proximate sense, i.e., we can replace 0Ŵ  by 0W  and view such a replacement 
does not modify the asymptotic theory in practice. 

A more rigorous approach to justify the chi-square distribution for goodness 
of fit tests is to divide into 2 steps, first using 0W  to construct the distance for 
estimation and letting θ̂  be the vector which minimizes 

( ) ( )0ˆ ˆ ˆ ˆn n
′− −z z W z z

θ θ . 
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Using Equation (31) we have  

( ) ( )ˆ ,L
nn N→L θ Σ0 , 

( )( ) ( )( )1 1

0 0 0 0 0
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ− − ′

′ ′ ′ ′= − −   I W W I W WΣ Γ Γ Γ Γ Ω Γ Γ Γ Γ ,  

also see expression (3.4.2) given by Luong and Thompson [16] (p 248). The ma-
trices Σ̂  and Γ̂  are respectively consistent estimates of Σ  and Γ . 

It suffices to find the Moore-Penrose ˆ −Σ  generalized inverse of Σ̂  and con-
struct the test statistics as 

( ) ( )ˆ ˆ
ˆˆ ˆ ˆ ˆn nn −′− −z z z z

θ θ
Σ . 

The asymptotic distribution of the test statistics will be again chi-square with 
M m−  degree of freedom using distribution theory for quadratic forms, see 
Luong and Thompson [16] (p 247) for example and for generalized inverses, see 
Harville [29] (p 493-514). 

Note that if 0Ŵ  can be used for estimation then we can let 0
ˆˆ − =WΣ , i.e. 

there is no need to use two quadratic distances separately. 

5.2. A Limited Simulation Study 

For the study, we fix the number of points 25M = . The two samples quantiles 
are 0.99 quantiles or 0.01 survival functions quantiles if marginal empirical sur-
vival functions are used instead of distribution functions for estimation without 
construction of goodness-of-fit tests. The points used are constructed using the 
procedures given in Section 4.2. We consider the one parameter MO copula 
model with  

( ) 1,C u v u vθθ
−=  if u v≥  and ( ) 1,C u v uv θ

θ
−=  if u v≤ .    (37) 

( ),C u vθ  is differentiable with respect to θ  and ( ),C u vθ  is singular if u v=  
and ( )0,1θ ∈  see Dobrowolski and Kumar [10] (p 2). For this model, the 
model  

Spearman rho 
2

2

3 3
44SP

θ θ
ρ

θθ θ
= =

−−
, see Dobrowolski and Kumar [10] (p 5). 

The sample Spearman rho SPρ  is simply the Pearson correlation coefficient 
but computed using ranks of the observations from the two empirical marginal 
distributions, see Conover [30] (p 314-318). 

If complete data are available, equating SP SPρ ρ=  gives the moment estimator  




4
3

SP

SP

ρ
θ

ρ
=

+


 
and one might expect that the moment estimator has reasonable  

efficiency as we only has one parameter in this model and the estimate is based 
on ranks. 

The moment estimate can be used to compute 

1
0 0

ˆ − =WΩ  which is needed for 
chi-square tests and for estimation using quadratic distances. We use 25M =  
and there is no problem on inverting the matrix 0Ω̂ . Clearly if data is already 
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grouped we can use the unweighted quadratic distance to provide a consistent 
preliminary estimate for 0θ . The efficient MQD estimator is denoted by θ̂ . In 
the simulation study since we have so many marginal survival functions which 
can be used so we decide to draw observations directly from the Copula Models. 
This is not what happens in real life situation but we want to test the procedures. 
We do not have the computing resources for a large scale study and try various 
marginal survival functions. More works need to be done but we want to illus-
trate the procedures.  

We use sample size 2000n =  and the number of samples used is 100N = . 
For comparison of of MQD estimator θ̂  versus Methods of moment (MM) es-
timator θ  we use the ratio of relative efficiency 

( )
( )

ˆMSE
ARE

MSE

θ

θ
=



 

where the mean square error of an estimator π̂  for 0π  is defined as 

( ) ( )2
0ˆ ˆMSE Eπ π π= − , 

which can be estimated using M samples each of size n. 
The unweighted QD estimator is denoted by Iθ  as the identity matrix I is 

used for the unweighted quadratic distance. The corresponding  

( )
( )

IMSE
ARE

MSE

θ

θ
=



  

can similarly be used for comparison and it can be estimated using simulated 
samples.  

The range of parameter being considered is 0.1,0.2, ,0.9θ =  , the results are 
summarized using the first table of Table 1 where we find that the MM estima-
tor and the two quadratic distance estimators have practically equal efficiency up 
to 4 or 5 decimal precisions. 

To study the size of the chi-square tests and the power of the tests let H0: The 
MO copula model MOC  with ( ),C u vθ  as given by expression (37) and  

1
2

θ = . With 1
2

θ = , 3
7SPρ = . Observations are drawn from the model speci-

fied by by aH  which specifies the model is a contaminated one given by 

( ) ( ) ( )1 , , , 0 1.MO GaussianC u v C u vλ λ λ− + < <  

( ),MOC u v  is as defined earlier, ( ),GaussianC u v  is the Gaussian copula de-
fined as  

( ) ( ) ( )( )( )1 1ф ф 2 2
22

1 1, exp 2 d d
2 12π 1

u v
C u v x y xy x yρ ρρ

− −

−∞ −∞

  = − + − 
−−   

∫ ∫   

with 0.5ρ = . 
Procedures to simulate from Gaussian and MO copulas are given in chapter 6 

by Ross [13] (p 97-108). We use 25M =  and 35M = , the sample size  
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Table 1. Asymptotic relative efficiencies comparisons for MQD estimators versus MM 
estimator using N = 1000 samples of size n = 1000 for the one parameter MO copula 
Model. 

(a) 

ARE θ  1
6

 1
5

 1
4

 1
3

 1
2

 2
3

 4
5

 

( )
( )

ˆ

ˆ
MSE

MSE

θ

θ
 0.9999 0.9999 0.9999 0.999 0.9999 0.9999 0.9999 

( )
( )
ˆ

ˆ
IMSE

MSE

θ

θ
 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 

Power study using M = 25 points, n = 3000 and the alternative hypothesis specified as the contaminated 
model ( )1 ( , ) ( , )MO GaussianC u v C u vλ λ− + , 0 < λ < 1. 

(b) 

λ  0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

Mean of the 
chi-square  
statistics 

13.96 20.89 21.01 22.19 19.67 16.43 22.35 55.72 102.79 338.95 

SD of the 
chi-square  
statistics 

2.48 5.04 9.65 10.89 9.63 10.11 9.37 39.47 45.49 184.10 

Critical point for the test using the 95th percentile of a chi-square distribution, ( )2
0.95 24 36.41χ = .Power 

study using M = 35 points, n = 3000 and the alternative hypothesis specified as the contaminated model  

( )1 ( , ) ( , )MO GaussianC u v C u vλ λ− + , 0 < λ < 1. 

(c) 

λ  0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

Mean of the 
chi-square  
statistics 

32 761 2332 5045 9289 15284 23711 34981 48675 66843 

SD of the 
chi-square  
statistics 

5.48 36.94 66.10 82.25 99.29 112.74 219.00 88.84 85.02 26.72 

Critical point for the test using the 95th percentile of a chi-square distribution, ( )2
0.95 34 48.60χ = . 

 
3000n =  and we use 30N = . Dobric and Schmid [6] (p 1060-1061) in their  

study have used 2500n =  and their chi-square tests have around 70 degrees of 
freedom. With 35M =  only occasionally that 0Ω̂  is nearly singular, if this 
happens we discard the sample. We do not have resources for larger scale study; 
each run takes around three minutes to complete. As most of the time we are 
drawing observations using an alternative model but for testing we must esti-
mate the parameter θ  of the MO model, the algorithm tends to take time to 
converge. The study is very limited as the number of simulated samples is small 
with 30N =  and only a few copula models are considered but it seems to point 
to the potential uses of MQD chi-square tests. The tests especially with 35M =  
seem to have power especially along some directions which can be represented 
as a mixture type of models as shown by the means and standard deviations of 
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the chi-square statistics as displayed in the second and third table of Table 1. 
More simulation works are needed to assess the power of the MQD tests using 
various copula models. There are not many statistical procedures for copula 
models using data that have been already grouped. MQD methods might be 
useful for this type of situation. 

6. Conclusions 

Minimum Quadratic Distance Methods (MQD) offer a unified for estimation 
and model testing using grouped data under the form of a contingency table for 
parametric copula models without having to assume parametric models for the 
marginal distributions. The methods share with minimum chi-square methods 
by having a unique asymptotic distribution across the composite hypothesis for 
testing which make the implementations relatively simple without requiring ex-
tensive simulations for approximating the null asymptotic distribution. It is 
shown in this paper that if complete data are available, a rule to define points 
based on QMC numbers can be proposed to alleviate the arbitrariness on the 
choice of points to construct quadratic distances. The rule will also make quad-
ratic distances close to Cramer-Von Mises distances. It is well known that in one 
dimension, chi-square tests cannot be consistent against all alternatives but if the 
intervals are chosen properly the tests still can have good power against some 
form of alternatives considered to be useful for applications. 

MQD tests statistics with the rule of choosing points might preserve the same 
properties and by being relative simple to implement, they can be useful for ap-
plied works. More numerical and simulation works are needed for further study 
the power of the MQD tests.  
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Appendices 

Technical Appendix 1 (TA1) 
In this technical appendix, we shall consider influence function representation 

for the vector of functionals ( )0
ˆ ˆnz zθ−  to justify the expression. ( )0 ,i jΩ  is as 

given by expression (9) in Section 3.2. 

Let ( ) ( ) ( ) ( ) ( )( )0

1ˆ ˆ , , , , , ,M
n n n n n n nT S F G T S F G ′
− =z z θ ,  

consider the l-th element of ( )0
ˆ ˆn −z zθ , it is given by 

( ) ( ) ( ) ( ) ( )( )0
, , , ,l

n n n n l l n l n lT S F G S s t C F s G tθ= −  

which is a functional which depend on three functions , ,n n nS F G  but we still 
can applied the techniques given by Reid [17] (p 80) to have an influence repre-
sentation of the functional. Since it depends on three functions we shall have 
three coresponding influence functions. Let ( ),

S
x yS S Sε ε δ= + −  with 

( ), , 1S
x y u vδ =  if u x<  and v y<  and ( ), , 0S

x y u vδ = , elsewhere; also, similarly 
let ( )1 1

S
xF F Fε ε δ= + −  with ( ) 1x

S uδ =  if u x<  and ( ) 0S
x uδ = , elsewhere 

and let ( )2 2
S
xF F Fε ε δ= + −  with ( ) 1S

y vδ =  if v y<  and ( ) 0S
y vδ = , else-

where, with 1 20 , , 1ε ε ε≤ ≤ . Consequently, 
( ) ( ) ( ) ( ) ( )( )1 2 0 1 2

, , , ,l
l l l lT S F G S s t C F s G tε ε ε ε ε ε= − θ  and ( ) ( ), , 0lT S F G = . 

The three influence functions are given respectively by 

( ) ( ) ( ) ( ) [ ] ( )1 2

1 2

1

0, 0, 0

,
,

,
, , ,

l
l

l l l l

T S F G
IC x y I x s y t S s t

ε ε ε

ε ε ε
ε

= = =

∂
= = > > −

∂
 

( ) ( )

( ) ( )
( ) ( )( ) [ ] ( )( )

1 2

1 2

0

1
0, 0, 0

2

, ,

,
,

l

l ll
l l

T S F G

C F s G t
IC x I x s F s

u

ε ε ε

ε ε ε

θ

ε
= = =

∂

∂

∂
= = − > −

∂  
( ) ( )

( ) ( )
( ) ( )( ) [ ] ( )( )

1 2

1 2

0

2
0, 0, 0

3

, ,

,
.

l

l ll
l l

T S F G

C F s G t
IC y I y t G t

v

ε ε ε

ε ε ε

θ

ε
= = =

∂

∂

∂
= = − > −

∂  

Consequently, we have the influence representation for the l-th element of 

( )0
ˆ ˆnn −z zθ  with  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0,, 1 21 1

31

1 1,

1 1

ˆ ˆ
l

n nl l
n l i i ii i

n l
i pi

n IC x y IC x
n n

IC

z

y o
n

zθ = =

=

− = +

+ +

∑ ∑

∑
 

and since ( ),i ix y ′  are iid we have the equality in distribution asymptotically, 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
0,, 1 2 3ˆ ˆ , , 1, , .

l

l l ld
n ln IC x y IC x IC y l Mz zθ− = + + = 

 

Equivalently, using vector notations we have the following equality in distribu-
tion asymptotically by letting 

( ) ( )( ) ( ) ( )( )0 0
, ,

1, ,l l
l

l lC F s G t C F s G t

u v
θ θ

 ∂ ∂
 ′ = − −
 ∂ ∂ 

a ,  

[ ] ( )
[ ] ( )
[ ] ( )

, ,l l l l

l l l

l l

I x s y t S s t
I x s F s
I y t G t

 > > −
 = > − 
 > > 

Y . 

( )0,,ˆ ˆ
l l

d
n l ln z zθ ′− = a Y , a result which is needed in Section 3.2. 

Technical Appendix 2 (TA2) 
In this technical appendix, we shall justify the validity of expression (9) of Sec-

tion 3.2. 
The covariance matrix ( ),i jCov Y Y  is defined as ( )i jE ′YY , the vector 

[ ] ( )
[ ] ( )
[ ] ( )

, ,i i i i

i i i

i i

I x s y t S s t
Y I x s F s

I y t G t

 > > −
 = > − 
 > − 

 and 

( ) ( ) ( )( ), , , ,j j j j j j j j jI x s y t S s t I x s F s I y t G t′      = > > − > − > −     Y . 

Therefore the elements of the matrix ( ),i jCov Y Y  are given by  

[ ] ( )( ) ( )( )( )11 , , , ,i i i i j j j jc E I x s y t S s t I x s y t S s t = > > − > > −    

[ ] ( )( ) ( )( )( )12 , ,i i i i j jc E I x s y t S s t I x s F s = > > − > −   

[ ] ( )( ) ( )( )( )13 , ,i i i i j jc E I x s y t S s t I y t G t = > > − > −   

[ ] ( )( ) ( )( )( )21 , ,i i j j j jc E I x s F s I x s y t S s t = > − > > −   

[ ] ( )( ) ( )( )( )22 i i j jc E I x s F s I x s F s = > − > −   

[ ] ( ) ( )( )( )23 i i j jc E I x s F s I y t G t = > − > −   

[ ] ( )( ) ( )( )( )31 , ,i i j j j jc E I y t G t I x s y t S s t = > − > > −   

[ ] ( )( ) ( )( )( )32 i i j jc E I y t G t I x s F s = > − > −   

[ ] ( )( ) ( )( )( )33 i i j jc E I y t G t I y t G t = > − > −   
Now, note that the above equalities which give the elements of the matrix 

( ),i jCov Y Y  can be reexpressed as the equalities as given by expression (9) in 
Section 3.2. 
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