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Abstract 
A Botnet is a network of compromised devices that are controlled by mali-
cious “botmaster” in order to perform various tasks, such as executing DoS 
attack, sending SPAM and obtaining personal data etc. As botmasters gener-
ate network traffic while communicating with their bots, analyzing network 
traffic to detect Botnet traffic can be a promising feature of Intrusion Detec-
tion System. Although such system has been applying various machine learn-
ing techniques, comparison of machine algorithms including their ensembles 
on botnet detection has not been figured out. In this study, not only the three 
most popular classification machine learning algorithms—Naive Bayes, Deci-
sion tree, and Neural network are evaluated, but also the ensemble methods 
known to strengthen classifier are tested to see if they indeed provide en-
hanced predictions on Botnet detection. This evaluation is conducted with the 
CTU-13 public dataset, measuring the training time of each classifier and its F 
measure and MCC score. 
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1. Introduction 

As a network of compromised devices called bots, a botnet executes malicious 
tasks under the control of the attacker, a botmaster. A botnet has been a threat to 
cybersecurity [1] [2]. According to Ref. [3], the primary goals of botnets are as 
follows: 
• Information dispersion: sending SPAM, executing Denial of Service (DoS) 

attack, distributing false information from illegal sources. 
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• Information harvesting: obtaining identity, password and financial data. 
• Information processing: processing data to crack the password for access to 

additional hosts. 
A botnet has been grown as a menace since the first botnet. EggDrop was re-

ported in 1993 [1]. For example, [4] it was reported that the Necurs botnet was 
one of the most active distributors of malware in 2016. More than 2.3 million 
spam emails carrying JavaScript downloaders, VBS, and WSF attachments were 
sent out by Necurs in just one day on November 24, 2016. 

The Mirai botnet, according to the same report [4], drove the largest DDoS 
attack ever recorded in 2016 on the French hosting company OVH peaking at 
1Tbps mostly targeting IoT devices, such as home routers and IP cameras. As 
Gartner predicted that there would be more than 20 billion IoT devices by 2020 
[5], it is important that botnets like Mirai should be addressed. 

The speed of growth of botnet threat is also rapid. According to the report 
from Spamhaus [6], the number of IP addresses that was figured out as a Con-
trol and Command (C & C) server hosted by Amazon in 2017 increased 6 times 
against that of 2016.  

A botnet usually has distinguishable architecture features [7]. A botmaster 
usually sets up a Control and Command server to easily communicate with his 
bots. For this type of centralized architecture, IRC protocol has been the most 
popular, but HTTP or POP3 have been used as well. The centralized botnets like 
Rxbot, Festi, and Bobax using IRC, HTTP, TCP can be depicted as Figure 1. On 
the other hand, a botnet can feature a Peer-to-peer architecture. In a P2P botnet, 
a bot can bypass connections to other bots in case there are firewalls in some of 
the connections. The decentralized botnets like TDL-4 utilizing P2P protocol 
can be depicted in Figure 2. 

To detect botnet, approaches focusing on anomalies in bot(net)s’ network be-
havior with or without temporal behavior have been proposed. Most of the pre-
vious studies adopted machine learning technologies along with heuristic rules 
[1] [2]. Even though the previously proposed detection systems utilized both 
supervised and unsupervised machine learning algorithms, the ensemble me-
thods have not been discussed yet. 

In this paper, focusing on the ensemble methods, supervised machine learning 
algorithms popularly used in previous studies were evaluated with their ensem-
bles. As the ensemble methods were designed to strengthen weak classifiers, it 
would be meaningful to figure it out if the ensemble methods are indeed benefi-
cial when it comes to botnet detection.  

In the following chapter, popular classification algorithms that have been used 
in serval botnet detection proposals and the ensemble technology are explained. 

2. Related Works 
2.1. Machine Learning for Botnet Detection 

In the previous studies where they used supervised machine learning algorithms,  
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(a)                                      (b) 

Figure 1. Examples of botnet architecture. (a) Centralized C & C architecture; (b) 
Decentralized P2P C & C architecture. 
 

 
Figure 2. Amount of data on each botnet scenario [17]. 

 
three algorithms—Naive Bayes, decision tree, and (artificial) neural networks 
were popularly adopted [8] [9] [10] [11]. 

2.1.1. Naive Bayes 
Naive Bayes algorithm is a simple and intuitive classification technique based on 
the Bayes theorem assuming each feature contributes independently to the 
probability of an event [12]. Specifically in machine learning, Naive Bayes clas-
sifier calculates all the probability for all classes for a target feature and selects 
one with the highest probability. Furthermore, Gaussian Naive Bayes (GNB) as-
sumes that the values associated with each class of each feature follow a Gaussian 
distribution. Although those assumptions do not happen often in real life, Naive 
Bayes shows relatively better results than other models like logistic regression. 
Also, it can generate models very quickly with very little computation overhead . 
It is therefore a popular choice for SPAM filters and other real-time anomaly 
detection algorithms [13].  

Id Duration(hrs) # Packets # NetFlows Size Bot # Bots
1 6.15 71,971,482 2,824,637 52GB Neris 1
2 4.21 71,851,300 1,808,123 60GB Neris 1
3 66.85 167,730,395 4,710,639 121GB Rbot 1
4 4.21 62,089,135 1,121,077 53GB Rbot 1
5 11.63 4,481,167 129,833 37.6GB Virut 1
6 2.18 38,764,,357 558,920 30GB Menti 1
7 0.38 7,467,139 114,078 5.8GB Sogou 1
8 19.5 155,207,799 2,954,231 123GB Murlo 1
9 5.18 115,415,321 2,753,885 94GB Neris 10

10 4.75 90,389,782 1,309,792 73GB Rbot 10
11 0.26 6,337,202 107,252 5.2GB Rbot 3
12 1.21 13,212,268 325,472 8.3GB NSIS.ay 3
13 16.26 50,888,256 1,925,150 34GB Virut 1
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2.1.2. Artificial Neural Networks 
Neural networks, analogous to the human brain, refer to large connections of 
simple units called neurons. Consisting of three layers—input layer, hidden 
layer(s) and output layer, Neural network takes each record to pass its features 
onto input layer, and then the model makes decisions calculating weights of 
hidden neurons to get the single highest value at the output layer. A 
feed-forward neural network where the output of one layer is used as input to 
the next layer does iterate for the same data to compare the output to true value 
so that it adjusts the weights in the hidden neurons with its error term. Recur-
rent neural networks, however, adopts feedback loops between neurons that re-
semble human brains [14]. 

2.1.3. Decision Tree 
As another popular classification method, decision tree generates a tree-like 
model of decisions based on decision rules inferred from the data. The goal is to 
create a model that predicts the value of a target variable based on several input 
variables. In classification decision tree, dependent variables can be categorical. 
Unlikely other machine learning algorithms, a decision tree is easy to interpret 
with tree visualized. 

2.2. Ensemble Methods 

Ensemble methods make a set of classifiers into an ensemble by combining the 
prediction from each classifier either with weight or not. It is regarded as one of 
the possibilities to improve the accuracy. Typically, there are three types of en-
semble methods as introduced below [15]. 
• Voting: as the simplest way to form an ensemble, voting classifier consists of 

multiple models of diverse types. In the training step, all the models are 
trained separately with whole training data and it averages the posterior 
probabilities that are calculated by each model in the recognition step. 

• Bagging: it, also called bootstrap aggregation, manipulates the training data 
to generate multiple models. Instead of training the model with the whole 
training data, bagging randomly samples the training set from the total 
training data to make sub-models. 

• Boosting: it also samples out the training data like bagging does but main-
tains a set of weights on the data. Especially, AdaBoost where the weighted 
errors of each model update weights on the training data gives more weight 
on the data with lower accuracy and less weight on the data with higher. 

Along with the concept of bagging, random forest is an ensemble of multiple 
decision trees. By randomly selecting features from the data, it generates deci-
sion trees and then for unseen data, the class that the majority of decision trees 
predict is selected as the prediction for the input. Random forest is known as a 
way of avoiding overfitting that can happen in a single decision tree [16]. 

Although ensemble methods are an effective way of reducing variances when 
it comes to prediction model, it is obvious that they come with more computa-
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tion. Thus, a poor model can enhance its accuracy as the cost of the extra com-
putation. For this reason, the ensemble methods are often used with a fast clas-
sifier such as decision tree as the case of random forest. 

3. Methodology 
3.1. Dataset 

Finding an appropriate network traffic dataset for machine learning is often 
challenging. For supervised machine learning, the fact that the data should be 
properly labeled unless the target feature is already in the dataset makes the task 
onerous. Addressing this problem, Sebastian Garcia et al. created the CTU-13 
dataset labeled as botnet, normal and background in the previous research [17]. 
Even though there had been several botnet datasets downloadable, such as, [18], 
[19], [20], [21], they were either not representative of the real-world traffic, or 
not labeled, or not suitable for every detection algorithms that the authors 
wanted to compare [17]. For those reasons, the CTU-13 dataset was generated 
with several fundamental design goals, to have real botnets attacks from several 
types of botnets, to aggregate the packet data to NetFlow flows because of the 
privacy issue, and to have the data labeled, etc. For more details and characteris-
tics are as shown in Figure 2 and Figure 3. In this comparative study, out of 13 
different captures called scenario, the scenario 4, 10 and 11 featuring 1, 10, and 3 
Rbot(s) respectively were used. 

3.2. Data Features 

When the researchers of the CTU-13 creating the dataset, they conducted pre-
processing converting pcap files to NetFlow files. In that stage, they configured 
the data with those following features: start time, end time, duration, protocol, 
source IP address, source port, direction, destination IP address, destination 
port, flags, type of services, number of packets, number of bytes, number of 
flows, and label. 

3.3. Metrics 

To measure the accuracy of a classifier, taking account confusion matrix is the 
most common way. Precision meaning the percentage of correctly predicted 
event from the pool of total predicted event, and recall meaning the percentage 
of correctly predicted event from the pool of actual events respectively are im-
portant. 

3.3.1. F1 Score 
Taking both precision and recall into account, the F1 score gives a more ba-
lanced view compared to using only precision or recall. The F1 score can be be-
tween 0 and 1 where 1 means its best accuracy. 

Precision Recall1 2
Precision Recall

F ×
= ×

+
                   (1) 

https://doi.org/10.4236/jcc.2018.65010


S. Ryu, B. Yang 
 

 

DOI: 10.4236/jcc.2018.65010 124 Journal of Computer and Communications 
 

 
Figure 3. Distribution of labels in the NetFlows for each scenario in the dataset [17]. 

3.3.2. Matthews Correlation Coefficient (MCC) 
Unlike metrics above, MCC which is also known as the phi coefficient is consi-
dered to be less biased because it incorporates True Negative as well. According 
to [22], MCC is more robust to an imbalanced data where classification methods 
tend to biased toward the majority class than the F1 score or accuracy. The range 
of MCC lies between −1 to +1 where +1 means a perfect prediction, 0 no better 
than a random prediction and −1 and inverse prediction. 

( )( )( )( )
TP TN FP FNMCC

TP FP TP FN TN FP TN FN
× − ×

=
+ + + +

         (2) 

To evaluate the classification algorithms along with ensemble methods for the 
CTU-13 dataset, Scikit-learn on a single core of Intel Xeon-E5 with 64GB of 
memory was used. Because some of the features were categorical which Sci-
kit-learn cannot handle properly, data preparation including encoding and 
standardization were conducted.  

4. Results and Discussion 

The evaluation results are described in Table 1 and Table 2. Figure 4 also pro-
vides graphical views to compare the classifiers against each scenario based on 
their time consumption for training and MCC score. 

For every data and algorithms, F1 scores are higher than MCC scores. This is 
because the F1 score does not consider the true negatives. For this reason, MCC 
is preferred for a binary classification. In the following discussion, accuracy re-
fers to MCC score and S denotes scenario of the dataset. 

Among individual algorithms, for S10 and S11, NN and DT show decent ac-
curacies over 0.91 and 0.98, respectively. However, NN takes much longer time, 
about 3 - 4 times longer in S4 and S10. For S4, the accuracy score dramatically 
goes down. The only structural difference between those three datasets is the ra-
tio of botnet traffic. Even though S4 is the largest dataset, it only has one Rbot 
with 0.15% of botnet traffic ratio, which means the data is highly imbalanced or 
skewed. On the other hand, S10 has 8.11% of botnet traffic and S11 has 7.6%.  

This pattern appears the same on the result of voting. This is on the ground 

Scen. Total
Flows

Botnet Flows Normal Flows C&C Flows Background
Flows

1 2,824,636 39,933(1.41%) 30,387(1.07%) 1,026(0.03%) 2,753,290(97.47%)
2 1,808,122 18,839(1.04%) 9.120(0.5%) 2,102(0.11%) 1,778,061(98.33%)
3 4,710,638 26,759(0.56%) 116,887(2,48%) 63(0.001%) 4,566,929(96.94%)
4 1,121,076 1,719(0.15%) 25,268(2.25%) 49(0.004%) 1,094,040(97.58%)
5 129,832 695(0.53%) 4,679(3.6%) 206(1.15%) 124,252(95.7%)
6 558,919 4,431(0.79%) 7,494(1.34%) 199(0.03%) 546,795(97.83%)
7 114,077 37(0.03%) 1,677(1.47%) 26(0.02%) 112,337(98.47%)
8 2,954,230 5,052(0.17%) 72,822(2.46%) 1,074(2.4%) 2,875,282(97.32%)
9 2,753,884 179,880(6.5%) 43,340(1.57%) 5.099(0.18%) 2,525,565(91.7%)

10 1,309,791 106,315(8.11%) 15,847(1.2%) 37(0.002%) 1,187,592(90.67%)
11 107,251 8,161(7,6%) 2,718(2.53%) 3(0.002%) 96,369(89.85%)
12 325,471 2,143(0.65%) 7,628(2.34%) 25(0.007%) 315,675(96.99%)
13 1,925,149 38,791(2.01%) 31,939(1.65%) 1,202(0.06%) 1,853,217(96.26%)
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that voting works by averaging out each outcome from the model. Boosting me-
thod does not significantly help either GNB or DT. The nature of boosting is 
turning weak models, which has slightly better prediction than random, into a 
strong one. In this regard, it obviously does not make DT strong as it already 

 

 
Figure 4. Time and MCC evaluation against each dataset. 
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Table 1. Time consumed for model training (sec). 

Method 
Scenario 4 Scenario 10 Scenario 11 

F1 MCC F1 MCC F1 MCC 

GNB 0.986159 0.135260 0.988762 0.910358 0.992302 0.982357 

NN 0.998489 0.000000 0.992646 0.939776 0.993299 0.984639 

DT 0.999990 0.996779 0.999982 0.999849 0.999971 0.999935 

Voting 0.999117 0.644421 0.994763 0.956586 0.993841 0.985878 

Boosing-GNB 0.967339 0.043543 0.867776 0.162963 0.378982 0.168781 

Boosing-DT 0.999989 0.996285 0.999983 0.999857 0.999963 0.999916 

Bagging-GNB 0.986170 0.135319 0.988758 0.910333 0.992253 0.982245 

Bagging-NN 0.998489 0.000000 0.993613 0.946912 0.993670 0.985486 

Bagging-DT 0.999991 0.996955 0.999981 0.999836 0.999955 0.999897 

RF 0.999997 0.998930 0.999988 0.999896 0.999972 0.999935 

 
Table 2. Evaluation result. 

Method Scenario 4 Scenario 10 Scenario 11 

GNB 2.68 1.59 1.57 

NN 76.24 163.86 21.44 

DT 25.48 35.39 0.62 

Voting 103.05 139.56 18.06 

Boosing-GNB 554.14 222.48 15.2 

Boosing-DT 56.77 83.23 0.77 

Bagging-GNB 62.90 22.13 1.47 

Bagging-NN 437.47 654.84 41.61 

Bagging-DT 175.11 186.07 2.65 

RF 43.17 63.74 1.44 

 
had a good accuracy. The interesting thing comes with boosting-GNB. For S4, 
the MCC scores are near zero which means the prediction is no better than ran-
dom. Also, it shows around 0.16 for S10 and S11, which are opposite results of 
using sole GNB. In the study by Ting and Zheng [23], the similar drop-down 
appeared in a specific dataset, Tic-Tac-Toe. They explained it is because Naive 
Bayes is very stable carrying a strong bias, in the boosting process the 
sub-classifiers may not be diverse enough [23]. But finding the exact reason of 
the drop-down is put to the future work at this moment. 

Bagging each algorithm seems very similar to using a single classifier only for 
each dataset. While training a bagging model, multiple sub-datasets sampled out 
from the original dataset make their own classifier and then predictions from 
those classifiers are voted. This dataset, however, may not take benefit from 
sampling because the data is too imbalanced.  
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While the ensemble methods offered by Scikit-learn are not significantly 
beneficial on each algorithm, random forest appears highly effective in terms of 
both accuracy and training time. As a combination of decision trees, it performs 
implicit feature selection taking feature importance into consideration. Also 
making multiple sub-decision trees with part of features and data rows, it can 
run extremely faster than other methods and even can be easily parallelized. 
Considering parallelization is tough to be implemented in boosting and large 
neural networks, random forest seems like an excellence. 

Compared to the previous research [17] where they measured the F1 score to 
several different botnet detection systems based on rule-based approaches and 
clustering methods, the F1 scores from this research is far above for all of the 
scenarios except S11. According to [16], they used all dataset and separated them 
into the training and test data in a way that the methods can generalize, detect 
new behaviors, and avoid the bias. Thus, the evaluation utilizing the three ma-
chine, learning algorithms and their ensembles offer better detection accuracy 
compared to the previous research. 

5. Conclusion 

In this study, three popular machine learning algorithms—Gaussian Naive 
Bayes, neural networks, decision tree were tested. Furthermore, the ensemble 
methods—voting, adaboosting, and bagging were also compared to figure out if 
ensemble methods would be significantly beneficial for botnet detection. Ran-
dom forest which is a refined ensemble of decision tree was also tested. To detect 
botnet traffic out of all network traffic, decision tree without any ensemble me-
thod or random forest would be the most reliable approaches. It runs much fast-
er than NN alone, with the better accuracy. Even though GNB runs the fastest, 
the accuracy varies on the dataset. Unlike the common expectation, adopting 
ensemble methods on machine learning algorithms for botnet detection in a 
hope of enhancing the accuracy is not preferable because it does not give re-
markably more accurate result while consuming much more time. The question 
that this evaluation gives is that why the accuracy scores drop down when 
boosting is applied to GNB. Even though it was explained in [23], the reason 
why it makes the poor results rather than remain the same could be studied fur-
ther. 
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