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Abstract 
The purpose of this paper is to investigate the behavior of a Wiener integral 
along the curve C of the scale factor 0ρ >  for the Wiener integral 

[ ] ( ) ( )
0 0,

d
C T

F x m xρ∫  about the function ( ) ( )( ){ }0
exp , d

T
F x t x t tθ= ∫  defined 

on the Wiener space [ ]0 0,C T , where ( ),t uθ  is a Fourier-Stieltjes transform 
of a complex Borel measure. 
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1. Introduction 

In [1], M. D. Brue introduced the functional transform on the Feynman integral 
(1972). In [2], R. H. Cameron wrote the paper about the translation pathology of 
a Wiener space (1954). In [3] [4] [5], R. H. Cameron and W. T. Martin proved 
some theorems on the transformation and the translation and used the expres-
sion of the change of scale for Wiener integrals (1944-1947). In [6] and [7], R. H. 
Cameron and D. A. Storvick, proved relationships between Wiener integrals and 
analytic Feynman integrals to prove a change of scale formula for Wiener inte-
grals (1987). In [8] and [9], properties among the schrödinger operator and the 
Wiener Integral and the Feynman integral and the Feynman’s operational calcu-
lus were studied. In [10], G. W. Johnson and D. L. Skoug proved a scale-invariant 
measurability on the Wiener space (1979). 
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In [11] and [12], Y. S. Kim proved relationships between Wiener integrals and 
analytic Feynman integrals and proved a change of scale formula for Wiener in-
tegrals about cylinder functions on the abstract Wiener space (1998-2001). In 
[13] [14] [15] [16], Kim proved relationships among the Fourier transform and 
the Fourier Feynman transform and the convolution on the abstract Wiener 
space (2006-2016). 

In this paper, we define the scale factor for the Wiener integral and we inves-
tigate the behavior of Wiener integrals along the curve C of a scale factor  

0ρ >  about complex valued measurable functions ( ) ( )( ){ }0
exp , d

T
F x t x t tθ= ∫  

defined on the Wiener space [ ]0 0,C T , where ( ) { } ( ), exp d tR
t u iuv vθ σ= ∫  is a 

Fourier-Stieltjes transform of a complex Borel measure tσ . And we will find a 
very interesting behavior of a scale factor 0ρ >  for the Wiener integral. 

2. Definitions and Preliminaries 

A collection   of subsets of a set X is said to be a σ-algebra in X if   has the 
following properties: 1) X ∈ , 2) If A∈ , then tA ∈ , (where At is the 
complement of A relative X), 3) If 1 nn

A A∞

=
∈


 and nA ∈  for 1,2,3,n =  , 
then A∈ . If   is a σ-algebra in X, then X is called a measurable space and 
the members of   are called the measurable set in X. If X is a measurable space 
and Y is a topological space and f is a mapping of X into Y, then f is a Lebes-
gue-measurable function, or more briefly, a measurable function, provided that 

( )1f V−  is a measurable set in X for every open set V in Y.  
Let [ ]0 0,C T  denote the space of real-valued continuous functions x on 

[ ]0,T  such that ( )0 0x = . Let   denote the class of all Wiener measurable 
subsets of [ ]0 0,C T  and let m denote Wiener measure and [ ]( )0 0, , ,C T m  
be a Wiener measure space and we denote the Wiener integral of a functional F 
by 

[ ] ( ) ( )
0 0,

d
C T

F x m x∫ . A subset E of [ ]0 0,C T  is said to be scale-invariant 
measurable if Eρ ∈  for each 0ρ > , and a scale-invariant measurable set N 
is said to be scale-invariant null if ( ) 0m Nρ =  for each 0ρ > . A property that 
holds except on a scale-invariant null set is said to hold scale-invariant almost 
everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we write F G≈  
(for more details, see [9]).  

Throughout this paper, let nR  denote the n-dimensional Euclidean space 
and let , +C C , and ~

+C  denote the complex numbers, the complex numbers 
with positive real part, and the non-zero complex numbers with nonnegative 
real part, respectively. 

Definition 2.1. Let F be a complex-valued measurable function on [ ]0 0,C T  
such that the integral  

( ) [ ] ( )
0

1
2

0,
; d

C T
J F F x m xλ λ

− 
=   

 
∫

                 
(1) 

exists for all real 0λ > . If there exists a function ( );J F z∗  analytic on +C  
such that ( ) ( ); ;J F J Fλ λ∗ =  for all real 0λ > , then we define ( );J F z∗  to 
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be the analytic Wiener integral of F over [ ]0 0,C T  with parameter z, and for 
each z +∈C , we write  

( ) ( ); ; .awI F z J F z∗=                       (2) 

Let q be a non-zero real number and let F be a function on [ ]0 0,C T  whose 
analytic Wiener integral exists for each z in +C . If the following limit exists, 
then we call it the analytic Feynman integral of F over [ ]0 0,C T  with parameter 
q, and we write  

( ) ( ); lim ; ,af aw

z iq
I F q I F z

→−
=

                   
(3) 

where z approaches iq−  through +C  and 2 1i = − . 
Now we introduce the following Wiener Integration Formula. 
Theorem 2.2. Let [ ]0 0,C T  be a Wiener space and let 1 20 nt t t T≤ ≤ ≤ ≤ ≤ . 

Then  

[ ] ( ) ( ) ( )( ) ( )

( ) ( )
( )

0
1 20,

1 2
2 1

1
11 1

, , , d

12π exp d ,
2n

nC T

n n j j
j j

jj j j

f x t x t x t m x

u u
t t f u u

t t

−
−

−
== −

 −   = − ⋅ −   −    

∫

∑∏ ∫



 

R

       

(4) 

where : nf →R C  is a Lebesgue measurable function and ( )1 2, , , nu u u u=



 

and 1 2d d d d nu u u u=


 .  
In the next section, we will use the following integration formula:  

{ }
2

2 πexp d exp ,
4
bau ibu u

a a
 

− + = − 
 

∫R
              

(5) 

where a is a complex number with 0Rea > , b is a real number, and 2 1i = − . 

3. Behavior of a Scale Factor for the Wiener Integral 

We investigate the behavior of the scale factor for the function space integral for 
functions  

( ) ( )( ){ }0
exp , d .

T
F x t x t tθ= ∫

                   
(6) 

Definition 3.1. Let [ ]: 0,T R Cθ × →  be defined by  

( ) { } ( ), exp d ,tR
t u iuv vθ σ= ∫                    

(7) 

which is a Fourier-Stieltjes transform of a complex Borel measure ( )t Rσ ∈M  
with tσ < ∞ , where ( )RM  is a set of complex Borel measures defined on 
R. 

Remark. If we define a function on R by ( ) ( ) { } ( ), exp d tR
f u t u iuv vθ σ= = ∫ , 

then the Fourier-Stieltzes transform has some properties that 1) for all u R∈ , 
( ) tf u σ≤  and ( ) ( )f u f u− = , where z  denotes the conjugate complex of 

z∈C . 2) f is uniform continuous in R. To see this, we write for all u and h,  

( ) ( ) ( )( ) ( )e e di u h v iuv
tR

f u h f u vσ++ − = −∫  and  

( ) ( ) ( )e e 1 diuv ihv
tR

f u h f u vσ+ − ≤ −∫ , where the last integrand is bounded  
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by 2 and tends to 0 as 0h →  for each v R∈  and the last integral is bounded 
by 2 tσ . Hence the integral converges to 0 by the bounded convergence theo-
rem. Since it does not involve u R∈ , the convergence is uniform with respect to 
u R∈ . 

Notation. Let ( )n T∆  be defined by  

( ) ( ){ }1 2 1 2 0, , , | 0 , 0.n n nT t t t t t t T t∆ ≡ ≤ ≤ ≤ ≤ ≤ =          (8) 

To expand the main result of this paper and to apply the Wiener integration 
formula and to prove the existence of the Wiener integral of ( )F x  in (6), we 
need to express F(x) as the function of the form ( ) ( ) ( )( )1 2, , , nf x t x t x t . 

Lemma 3.2. Let [ ]0: 0,F C T →C  be defined by (6) and (7). Then we have 
that  

( ) ( ) ( ) ( )
0 1

exp d ,n
n

n

j j nT R
n j

F x i v x t t vµ
∞

∆ ×
= =

 
= ⋅ 

 
∑ ∑∫





            
(9) 

where nµ  is a countably additive Borel measure defined on ( ) n
n T R∆ ×  for 

each 1,2, ,n n=  .  
Proof. Using the series expansion of the exponential function, we have that  

( ) ( )( ){ } ( )( )

( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( ){ } ( ) ( ){ } ( )

( ){ } ( )

1 2

0 0
0

0 1

1 1 2 2 1 2
0

1 1 1 2 2 2
0

1

1exp , d , d
!

1 ! , d
!

, , , d d d

exp d exp d

exp d d d

n

n

n

n

nT T

n

n

j jT
n j

n n nT
n

t tT R R
n

n n t nR

F x t x t t t x t t
n

n t x t t
n

t x t t x t t x t t t t

iv x t v iv x t v

iv x t v t

θ θ

θ

θ θ θ

σ σ

σ

∞

=

∞

∆
= =

∞

∆
=

∞

∆
=

 = =   

 
=  

 

= ⋅

   = ⋅   

 
 

∑∫ ∫

∑ ∏∫

∑∫

∑∫ ∫ ∫

∫



 

 2 d nt t

 

( ) ( ) ( )

( ) ( ) ( )

0 1 1

0 1

exp d d

exp d , ,

n jn

n
n

nn

j j t j jT R
n j j

n

j j nT R
n j

i v x t v t

i v x t t v

σ

µ

∞

∆
= = =

∞

∆ ×
= =

  
= ⋅   

   
 

= ⋅ 
 

∑ ∑ ∏∫ ∫

∑ ∑∫




              

(10) 

where ( ) ( )1d , d d
j

n
n t j jj v tµ σ

=
 =  ∏t v  and ( )

jt Rσ ∈M  is a complex Borel 

measure defined on R and 
jtσ < ∞  for each 1, 2, ,j n=   and  

( ) 1 nnF x µ∞

=
≤ < ∞∑ . 

Remark. For more details about properties of the function ( )F x  in (6) and 
(7), see the chapter 15 of the book [9]. Some properties of the exponential func-
tion of [9] give me a good motivation about this paper. Especially, the third 
equality in (10) follows from the Equation (15.3.17) in [9]. 

Theorem 3.3. For z +∈C  and for each 1, 2, ,j n=   and for functions 
[ ]0: 0,F C T →C  in (6) and for real 0ρ > , the Wiener integral exists and is of 

the form:  
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[ ] ( ) ( ) ( ) ( ) ( )
0

2
2

10,
0 1

d exp d , ,
2n

n

n n

j j k nC T T
n j k j

F x m x t t vρ
ρ µ

∞

−∆ ×
= = =

 
= − − 

 
∑ ∑ ∑∫ ∫ t v

R
  

(11) 

where nµ  is a countably additive complex Borel measure defined on 
( ) n

n T R∆ ×  for each 1, 2,n =   and ( ) ( )1d , d d
j

n
n t j jj v tµ σ

=
 =  ∏t v .  

Proof. By the Wiener integration formula, we have that for real 0ρ > ,  

[ ] ( ) ( )

[ ] ( ) ( ){ } ( ) ( )

( ) ( ) { } ( )

0

0

0,

0,
0 1

1
2

1
01 1

2
1

1 1

d

exp d d d

1 exp d d
2π

1exp d
2

in

n jn

C T

n

j j t jC T T R
n j

n
n

j j t jjR T R
nj j j

n j j

j j j

F x m x

i x t v v t m x

i u v v t
t t

u u
u

t t

ρ

ρ σ

ρ σ

∞

∆
= =

∞

=∆
== −

−

= −

   =       

     =    −   
  −  ⋅ − 

−  

∫

∑ ∏∫ ∫ ∫

∑∏ ∏∫ ∫ ∫

∑







 

( )

( ) ( )

( ) ( )

1
22

1

11 11

1
0 1

1
22

1

0 11 11

1 1exp
22π

exp d d d

1 1exp
22π

n

n j

n n

n n j j

R
jj j jj j

n n
j j t j jjT R

n j

n n j j

T R R
n jj j jj j

u u

t tt t

i u v v t u

u u

t tt t

ρ σ

−

== −−

∞

=∆ ×
= =

∞
−

∆ ×
= == −−

    −   = −   −−     
    ⋅        

   −  = −
  −− 

∑∏ ∫

∑ ∑ ∏∫

∑ ∑∏∫ ∫



( )

( ) ( ) ( )

1

2
2

1
0 1

exp d d ,

exp d , ,
2n

n

j j n
j

n n

j j k nT R
n j k j

i u v u t v

t t v t v

ρ µ

ρ µ

=

∞

−∆ ×
= = =

    
 
   

  ⋅     
 

= − − 
 

∑

∑ ∑ ∑∫



 





         

(12) 

where ( ) ( )1d , d d
j

n
n t j jj v tµ σ

=
 =  ∏t v . The last equality in (12) can be proved 

by the mathematical induction. 
By the above result, we can investigate a very interesting behavior of the 

Wiener integral. 
Definition 3.4. We define the scale factor for the Wiener integral by the 

varying real number 0ρ >  such that  

( ) [ ] ( ) ( )
0 0,

d
C T

G F x m xρ ρ= ∫
                  

(13) 

where :G R C→  is a complex valued function defined on R.  
Property 3.1. Behavior of the scale factor for the Wiener Integral.  
We investigate the interesting behavior of the scale factor for the Wiener 

integral by analyzing the analytic Wiener integral as followings: For real 0ρ > , 

[ ] ( ) ( ) ( ) ( ) ( )
0

2
2

10,
0 1

d exp d , .
2n

n

n n

j j k nC T T
n j k j

F x m x t t v t vρ
ρ µ

∞

−∆ ×
= = =

 
= − − 

 
∑ ∑ ∑∫ ∫





R
 

(14) 
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Example 1. For the scale factor { },1100,110,1,10,100,ρ =  

, we can inves-
tigate the very interesting behavior of the Wiener integral:  

1) 
[ ] ( )

( ) ( ) ( )

0 0,

4 2
1

0 1

1 d
100

1exp 10 d ,
2n

n

C T

n n

j j k nT
n j k j

F x m x

t t v t vµ
∞

−∆ ×
= = =

 
 
 

 
= − × × − 

 

∫

∑ ∑ ∑∫




R
      

(15) 

2) 
[ ] ( )

( ) ( ) ( )

0 0,

2 2
1

0 1

1 d
10

1exp 10 d ,
2n

n

C T

n n

j j k nT
n j k j

F x m x

t t v t vµ
∞

−∆ ×
= = =

 
 
 

 
= − × × − 

 

∫

∑ ∑ ∑∫




R
      

(16) 

3) 
[ ] ( ) ( )

( ) ( ) ( )

0 0,

0 2
1

0 1

d

1exp 10 d ,
2n

n

C T

n n

j j k nT
n j k j

F x m x

t t v t vµ
∞

−∆ ×
= = =

 
= − × × − 

 

∫

∑ ∑ ∑∫




R

      

(17) 

4) 
[ ] ( ) ( )

( ) ( ) ( )

0 0,

2 2
1

0 1

10 d

1exp 10 d ,
2n

n

C T

n n

j j k nT
n j k j

F x m x

t t v t vµ
∞

−
−∆ ×

= = =

 
= − × × − 

 

∫

∑ ∑ ∑∫




R

      

(18) 

5) 
[ ] ( ) ( )

( ) ( ) ( )

0 0,

4 2
1

0 1

100 d

1exp 10 d ,
2n

n

C T

n n

j j k nT
n j k j

F x m x

t t v t vµ
∞

−
−∆ ×

= = =

 
= − × × − 

 

∫

∑ ∑ ∑∫




R

      

(19) 

Remark. <Interpretation of the scale factor for the Wiener integral> 
1) We can investigate the behavior of the Wiener integral as the varying scale 

factor by re-interpreting the analytic Wiener integral! 
2) The exponential term of the Wiener integral is decreasing, whenever the 

scale factor 0ρ >  is increasing. The exponential term of the Wiener integral is 
increasing, whenever the scale factor 0ρ >  is decreasing. 

3) The function 
[ ] ( ) ( )

0 0,
: d

C T
G F x m xρ ρ→ ∫  is a decreasing function of 

0ρ > , because the exponential function e xy −=  is a decreasing function of 
x R∈ . 

That is, the absolute value of the Wiener integral is a decreasing function 
about the scale factor 0ρ >  and  

1) 
[ ] ( ) ( )

0 0,
0

0 d nC T
n

F x m xρ µ
∞

=

≤ ≤∑∫
               

(20) 

2) 
[ ] ( ) ( )

0 0,0 0
lim d nC T

n
F x m x

ρ
ρ µ

∞

→ =

=∑∫
               

(21) 

3) 
[ ] ( ) ( )

0 0,
lim d 0

C T
F x m x

ρ
ρ

→+∞
=∫

                
(22) 

 
Conclusion. What we have done in this research is that we first define the 
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scale factor for the Wiener integral and later, we investigate the very interesting 
behavior of the scale factor for the Wiener integral. From these results, we find a 
new property for the Wiener integral as a function of a scale factor! 

Remark. The solution of the heat equation U HU
t

∂
= −

∂
, ( ) ( )0,U ψ⋅ = ⋅  is  

( ) ( )( ) ( )( ) ( )( )0 d, e e
tV x s stHU t E x tξξ ψ ξ ψ ξ− +− ∫ = = ⋅ +           

(23) 

where ( )2
dL Rψ ∈  and dRξ ∈  and ( )x ⋅  is a Rd-valued continuous function 

defined on [ ]0, t  such that ( )0 0x =  and E denotes the expectation with re-
spect to the Wiener path starting at time 0t =  and H V= −∆ +  is the energy 
operator(or, Hamiltonian) and Δ is a Laplacian and : dV R R→  is a potential. 
This formula is called the Feynman-Kac formula. For more details, see the paper 
[8] and the book [9]. 

Remark. <Gratitude for the Refree> I am very gratitude for the referee to 
comment in details. 
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