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Abstract 
Conditional Value-at-Risk (CVaR) is one of the commonly used risk meas-
ures. The paper shows that the optimal estimator of CVaR is strong consis-
tency if the first-order moment of the population exists. We subsequently 
carry out numerical simulations to test the conclusion. We use the results to 
make an empirical analysis of Shenzhen A shares. 
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1. Introduction 

Because of inherent market instability, the ability to assess risk is very important 
so as to hedge against catastrophic loss. Therefore, some scholars have put for-
ward the theory of value at risk (VaR) and conditional value at risk (CVaR) 
theory as a form of risk mitigation. 

To mitigate this risk, Markowitz [1] developed “expected returns-variance of 
returns” rule and illustrated geometrically relations between beliefs and choice 
of portfolio according to the rule. We find that is necessary to avoid investing in 
securities with high covariances among themselves, but we cannot calculate how 
much a set of investments might lose. In order to solve this problem, Guldi-
mann, the head of JP Morgan global research department in 1993, pioneered the 
use of VaR in a report issued by the group of 30. VaR theory has been gradually 
improved and widely applied in various fields of risk management, such as fi-
nancial regulation, insurance industry and securities analysis. However, VaR has 
various undesirable conceptual and mathematical properties. Artzner et al. [2] 
[3] introduced a set of axioms for the proper construction of risk measures, in-
cluding coherent measures of risk. The risk measure satisfies the transfer inva-
riance, subadditivity, positive homogeneity and monotonicity. Therefore, cohe-

How to cite this paper: Li, X.L. (2018) 
Strong Consistency of CVaR Optimal Es-
timator. Open Journal of Statistics, 8, 
416-426. 
https://doi.org/10.4236/ojs.2018.83027 
 
Received: May 5, 2018 
Accepted: May 25, 2018 
Published: May 28, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2018.83027
http://www.scirp.org
https://doi.org/10.4236/ojs.2018.83027
http://creativecommons.org/licenses/by/4.0/


X. L. Li 
 

 

DOI: 10.4236/ojs.2018.83027 417 Open Journal of Statistics 
 

rent measures of risk can be an effective tool for portfolio management. Then 
Rockafellar and Uryasev [4] put forward CVaR and found that CVaR can be 
more consisted measure of risk than VaR. In fact, CVaR can be thought of as the 
conditional expectation of losses that exceed the VaR (the definition of CVaR 
will appear in 2.1). Plung [5] proves that CVaR is a coherent risk measure and 
shows that CVaR is more effective than VaR in the risk management of the fi-
nancial portfolios. Subsequently, CVaR theory is constantly improved and ap-
plied to real estate portfolio investment, supply chain management and so on. In 
order to seek to “cautious” predictions, Trindade et al. [6] proved the strong 
consistency of the CVaR optimization estimator and obtained the corresponding 
asymptotic distribution, under the condition that the second-order moment of 
population is limited. In this paper, we optimize the moment conditions of the 
above problems, and prove the strong consistency of CVaR optimal estimators 
under the condition that the first-order moment is finite. 

The paper is organized as follows. In Section 2, we prove the strong consis-
tency of CVaR optimal estimator under the finite first-order moment; we use R 
to simulate the correctness of the above conclusion in Section 3; in Section 4, we 
use the results to make an empirical analysis of Shenzhen A shares (A-shares 
trade on the two Chinese stock exchanges, the Shanghai Stock Exchange and the 
Shenzhen Stock Exchange. A-shares are shares of mainland China-based com-
panies, and these shares were historically only available for purchase by main-
land citizens because foreign investment was restricted). 

2. Theoretical Analyses 
2.1. Risk Measurement: VaR and CVaR 

Let Z be a random variable that represents a loss (or cost), ( ) ( )F z P Z z= ≤  is 
the distribution function of Z. For ( )0,1α ∈  , the α-quantile of Z is defined as 

( ) ( ){ }1 : inf :
z R

F z F zα α−

∈
= ≥ . 

In the context of monetary cost (loss), the α-quantile ( )1F α−  is a measure of 
risk commonly used in the finance industry, known as VaR and denoted

( ) ( )1VaR Z Fα α−= . At this point, if VaR stands for the maximum loss, it can 
be exceeded only in ( )1 100%α−  of cases. And then CVaR, denoted by

( )CVaR Zα , can be thought of as the conditional expectation of losses that ex-
ceed the ( )VaR Zα  level. In case Z has a continuous distribution, ( )CVaR Zα  
is given by the expectation of the right ( )1 α−  tail of the cost distribution, that 
is 

( ) ( )CVaR | VaRZ E Z Z Zα α= ≥   . 

Föllmer and Schied [7] simplify this model to be expressed as 

( ) ( )11
CVaR VaR d

1
Z Zα γα

γ
α

=
− ∫ , 

where is [ ] { }max 0,x x+ = , x R∈ . 
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2.2. Strong Consistency of CVaR 

Let Z is a random variable, { }, 1nZ n ≥  is a Simple random from Z. Based on 
the definition of CVaR optimization proposed by Plung [5], Trindade et al. [6] 
introduced the following CVaR optimization estimator, i.e., 

( )1ˆ inf
1n nt R

t tθ θ
α∈

 = + 
− 

, 

where is ( ) [ ]1
1

n
n iit n Z tθ +−

=
= −∑ . In addition, we define that 

( ) [ ]* 1CVaR inf
1t R

Z t E Z tαθ
α

+

∈

 = = + − 
− 

, ( ) [ ]t E Z tθ += − . 

It is obvious that ( )n tθ  and ( )tθ  are monotonically decreasing and Lip-
schitz continuous. If s t−∞ < < < +∞ , that is 

( ) ( ) [ ] [ ]( )
1

10
n

n n i i
i

s t Z s Z t t s
n

θ θ + +

=

≤ − = − − − ≤ −∑ , 

( ) ( ) [ ] [ ]( )0 s t E Z s Z t t sθ θ + +≤ − = − − − ≤ − . 

Lemma 2.1. If E Z < +∞  and a b−∞ < < < +∞ , then 

[ ]
( ) ( )

,
lim sup 0 a.s.nn t a b

t tθ θ
→+∞ ∈

− =  

Proof: For k R∀ ∈ , the intervals [ ],a b  are divided into k parts equally, 
where is ( )jt j b a k a= − + , 0,1,2, ,j k=  . ( )n tθ  and ( )tθ  are monoton-
ically decreasing and Lipschitz continuity, and ( )1j jt t b a k−− = − . 

[ ]
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1

1

1 1

1, ,

1 ,

1 , ,

1 11

sup max sup

max sup

max sup sup

max

j j

j j

j j j j

n nj kt a b t t t

n n j n j j jj k t t t

n n j j n j jj k t t t t t t

n j n j j jj k

t t t t

t t t t t t

t t t t t t

t t t t

θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ

−

−

− −

≤ ≤∈  ∈ 

≤ ≤  ∈ 

≤ ≤    ∈ ∈   

− −≤ ≤

− = −

= − − + − +

  ≤ − + − + − 
  

≤ − + − + ( ) ( ){ }
( ) ( ) ( )

1

2
max

n j j

n j jj k

t t

b a
t t

k

θ θ

θ θ
≤ ≤

−

−
≤ + −

 

Applying the strong law of large number [8], it is easy to show that 

( ) ( )lim 0 a.s.n j jn
t tθ θ

→+∞
− =  

for 1 j k≤ ≤ . We can get 

( ) ( )
1

lim max 0 a.s.n j jn j k
t tθ θ

→+∞ ≤ ≤
− =  

Therefore let n → +∞  and then let k → +∞ , the conclusion can be get. 
Lemma 2.2. If E Z < +∞  and 0b > , then 

( ) ( ) { }lim sup 2 a.s.n Z bn t b
t t E Z Iθ θ >→+∞ >
− ≤  

Proof: ( )n tθ  and ( )tθ  is monotonically decreasing, we can get 
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( ) ( ) ( ) ( )

[ ] [ ]

[ ] [ ]

( ) { } ( ) { }

{ } { }

1

1

1

1

sup sup sup

1sup sup

1 sup sup

1

1

i

i

n n
t b t b t b

n

i
t b t bi

n

i
t b t bi
n

i Z bZ b
i
n

i Z bZ b
i

t t t t

Z t E Z t
n

Z t E Z t
n

Z b I E Z b I
n

Z I E Z I
n

θ θ θ θ
> > >

+ +

> >=

+ +

> >=

>>
=

>>
=

− ≤ +

= − + −

= − + −

= − + −

≤ +

∑

∑

∑

∑

 

Applying the strong law of large number, it is easy to show that  

{ } { }
1

1lim a.s.
i

n

i Z bZ bn i
Z I E Z I

n >>→∞ =

=∑  

So we can get the conclusion. 
Lemma 2.3. If E Z < +∞  and 0a < , then 

( ) ( ) { }lim sup 2 a.s.n Z an t a
t t E Z Iθ θ <→+∞ <
− ≤  

Proof:  

( ) ( )

[ ] [ ]

( ) { } ( ) { }

( ) { }( ) ( ) { }( )

1

1

1

sup

1sup

1sup

1sup 1 1

i

i

n
t a

n

i
t a i

n

i Z tZ t
t a i

n

i Z tZ t
t a i

t t

Z t E Z t
n

Z t I E Z t I
n

Z t I E Z t I
n

θ θ
<

+ +

< =

≥≥
< =

<<
< =

−

= − − −

= − − −

= − − − − −

∑

∑

∑

 

( ) { } ( ) { }

{ } { }

{ } { }

{ } { }

1 1

1 1

1 1

1 1

1 1sup

1 1sup sup

1 1sup sup

1 1

i

i

i

i

n n

i i Z tZ t
t a i i

n n

i i Z tZ t
t a t ai i

n n

i i Z tZ t
t a t ai i

n n

i i Z tZ a
i i

Z EZ Z t I E Z t I
n n

Z EZ Z t I E Z t I
n n

Z EZ Z I E Z I
n n

Z EZ Z I E Z I
n n

<<
< = =

<<
< <= =

<<
< <= =

<<
= =

= − − − + −

≤ − + − + −

≤ − + +

= − + +

∑ ∑

∑ ∑

∑ ∑

∑ ∑

 

Applying the strong law of large number, it is easy to show that 

1

1
 a.s.

n

i
i

n Z EZ−

=

→∑ , 

{ } { }
1

1  a.s.
i

n
i Z aZ ain Z I E Z I−

<<=
→∑  

So we can get the conclusion. 
Proposition 2.1 If E Z < +∞ , then 

( ) ( )lim sup 0 a.s.nn t R
t tθ θ

→+∞ ∈
− =  

Proof: Given a and b satisfied 0a b−∞ < < < < +∞ , we can get 
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( ) ( ) ( ) ( )
[ ]

( ) ( ) ( ) ( )
,

sup max sup , sup ,supn n n n
t R t a t a b t b

t t t t t t t tθ θ θ θ θ θ θ θ
∈ < ∈ >

 
− = − − − 

 
. 

By applying Lemma 1, Lemma 2 and Lemma 3, we can get 

( ) ( ) { } { }{ }lim sup max 2 ,0,2n Z a Z bn t R
t t E Z I E Z Iθ θ < >→∞ ∈
− ≤ . 

And let a →−∞  and b →+∞ , we can get the conclusion. 
Lemma 2.4. If [ ]E Z + < +∞ , then 

( ) ( )* 2ˆ sup
1n n

t R
t tθ θ θ θ

α ∈
− ≤ −

−
. 

Proof: 

( ) { } ( ) { }

( ) [ ] [ ] { }

[ ] ( ) [ ] { }

( ) [ ]

* *

*

*

* * *
ˆ ˆ

ˆ
1

ˆ
1

ˆ ˆ ˆ

1 1inf inf
1 1

1 1inf inf
1 1

1inf
1

n n

n

n

n n n

n

it R t Ri

n

it R t R i

it R i

I I

t Z t t E Z t I
n

t E Z t t Z t I
n

t Z t
n

θ θ θ θ

θ θ

θ θ

θ θ θ θ θ θ

α α

α α

α

> <

+ +

>∈ ∈=

++

<∈ ∈ =

+

∈

− = − + −

     = + − − + −     − −    
    + + − − + −     − −     

= + −
−

∑

∑

[ ] { }

[ ] ( ) [ ] { }

*

*

ˆ
1

ˆ
1

1 2

1inf
1

1 1inf inf
1 1

:

n

n

n

t R

n

it R t R i

n n

t E Z t I

t E Z t t Z t I
n

I I

θ θ

θ θ

α

α α

+

>∈=

++

<∈ ∈ =

   − + −  
−   

    + + − − + −  
− −    

= +

∑

∑

 

First, we can get 

( ) [ ] [ ]

( ) [ ] [ ]

[ ]

( ) [ ] [ ]

[ ]

1
1

1

1

1 1inf inf
1 1

1 1inf
1 1

1 1[ ] inf
1 1

1 1inf
1 1

1 1inf
1 1

n

n it R t Ri

n

it R i

t R

n

it R i

t R

I t Z t t E Z t
n

t Z t t E Z t
n

t E Z t t E Z t

Z t E Z t
n

t E Z t t

α α

α α

α α

α α

α α

+ +

∈ ∈=

+ +

∈ =

++

∈

+ +

∈ =

+

∈

 ≤ + − − + − 
− − 

 ≤ + − − + − − − 

   + + − − + −  − −   

= − − −
− −

 + + − − + − − 

∑

∑

∑

[ ]E Z t + − 
 

 

  

( ) [ ] [ ]

[ ] [ ]

( ) [ ] [ ] ( ) ( )

1

1

1 1sup
1 1

1 1inf inf
1 1

1 1 1sup sup .
1 1 1

n

i
t R i

t R t R

n

i n
t R t Ri

Z t E Z t
n

t E Z t t E Z t

Z t E Z t t t
n

α α

α α

θ θ
α α α

+ +

∈ =

+ +

∈ ∈

+ +

∈ ∈=

≤ − − −
− −

 + + − − + − 
− − 

= − − − = −
− − −

∑

∑

 

And then, we can get 
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[ ] ( ) [ ]

[ ] ( ) [ ]

( ) [ ] ( ) [ ]

[ ] ( ) [ ]

( )

2
1

1

1 1

1

1 1inf inf
1 1

1 1inf
1 1

1 1inf
1 1

1 1inf
1 1

1
1

n

n it R t R i

n

it R i

n n

i it Ri i

n

it R i

I t E Z t t Z t
n

t E Z t t Z t
n

t Z t t Z t
n n

E Z t Z t
n

t Z
n

α α

α α

α α

α α

α

++

∈ ∈ =

++

∈ =

+ +

∈= =

++

∈ =

  ≤ + − − + − 
− −  

 
≤ + − − + −  − − 

    + + − − + −    − −    

= − − −
− −

+ +
−

∑

∑

∑ ∑

∑

[ ] ( ) [ ]
1 1

1inf
1

n n

i it Ri i
t t Z t

n α
+ +

∈= =

    − − + −     −    
∑ ∑

 

   

[ ] ( ) [ ]

( ) [ ] ( ) [ ]

( ) [ ] [ ]

( ) ( )

1

1 1

1

1 1sup
1 1

1 1inf inf
1 1

1 1sup
1 1

1 sup .
1

n

i
t R i

n n

i it R t Ri i

n

i
t R i

n
t R

E Z t Z t
n

t Z t t Z t
n n

Z t E Z t
n

t t

α α

α α

α α

θ θ
α

++

∈ =

+ +

∈ ∈= =

+ +

∈ =

∈

≤ − − −
− −

  + + − − + − 
− −  

= − − −
− −

= −
−

∑

∑ ∑

∑

 

Hence, it is easy to show ( ) ( ) ( )1 2 2sup 1n n n
t R

I I t tθ θ α
∈

+ ≤ − − . And we can 

obtain this conclusion. 
Theorem 2.1. If E Z < +∞ , then *

n̂θ θ→  a.s.  
Proof: By applying Lemma 2.4 and Propostion 2.1, it is obvious that theorem 

is right. 

3. Numerical Simulation  

We carry out numerical simulations by using the standard t-distribution with 2 
degrees of freedom (denoted ( )2t ), because the first-order moment of the dis-
tribution exists, and the second-order moment does not exist. Let ( )2Z t  and 
{ }, 1nz n ≥  be observations of Z. Andreev et al. [9] have mentioned that the true 
value of CVaR is 

( )
( ) ( )

1 22 21CVaR 2 1 1
2 22 1

f q q q
F qα α

−
   

= + = +   − −   
 

where is that q is the a-quantile of ( )F x . In addition, Min et al. [10] get the 
value of CVaR optimal estimator, that is 

( ) [ ] ( )11 1

1 1ˆ inf min
1 1

n n

n i j i jt R j ni i
t z t z z z

n n
θ

α α
++

∈ ≤ ≤= =

       = + − = + −    − −      
∑ ∑  

Next, we use R and the above two equations to calculate the true value of 
CVaR to compare it with the value of the optimized estimator. 

Figure 1 is the line graph of CVaR estimations when the maximum sample  
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Figure 1. Simulation results when α takes different values. 
 
size is 20000N = , α is 0.001, 0.005, 0.01, 0.025, 0.05 respectively and the simu-
lated step length is 100. In Figure 1, the blue horizontal line represents the true 
value of CVaR, and the points represent the estimated value of CVaR. So we can 
get the conclusion that when the sample size is the same, the smaller the value α 
is, the faster the convergence speed will be, the better the effect will be. For the α, 
the CVaR estimations fluctuate on its true value; the fluctuation is smaller with 
the increase of sample size. It is easy to see that is less than 0.02 between the 
CVaR estimate and its real value when the number of sample n satisfies 

10000n ≥ . In order to improve the accuracy of simulation, we continue to ex-
pand the sample size and get Table 1 eventually. 

There are real valuations and estimations (obtained by numerical simulation) 
of CVaR under different α and n. From this table, we can see that difference be-
tween CVaR real valuations and estimations is 0.0312, 0.025, 0.0254, 0.0255, 
0.0249 respectively when 10000n =  and α =0.001, 0.005, 0.01, 0.025, 0.05; but 
when 200000n = , that difference is −0.0024, −0.0034, −0.0038, −0.0045, 
−0.0047 respectively. 

Therefore we can get the conclusion that the larger the value is, the closer the 
estimation is to the real value. So we test the conclusion that the CVaR estimator 
has strong consistency. 

4. Empirical Analysis 
4.1. Data Description 

In this Section, we use the results to make an empirical analysis of Shenzhen A 
shares, which included SWYA and Vanke A (two typical shares). We select a 
data range from November 27, 2006 to November 27, 2016 by R. Let the daily 
opening price of a single stock be OP , and the daily closing one be CP . We cal-
culate the daily logarithmic yield of the stock V, i.e., ln lnC OV P P= − . In addi-
tion, let L be the daily logarithmic loss rate of the stock. ( )CVaR Vα  is CVaR of 
the stock’s daily logarithmic yield rate at α level ; correspondingly, ( )1CVaR Lα−  
is the CVaR of the stock’s logarithmic loss rate at 1 α−  level. 
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Table 1. CVaR estimations and real values.  

n 
α 

0.001 0.005 0.01 0.025 0.05 

10,000 0.0759 0.1258 0.1675 0.2520 0.3493 

20,000 0.0466 0.0993 0.1416 0.2274 0.3272 

30,000 0.0584 0.1088 0.1501 0.2355 0.3339 

40,000 0.0399 0.0962 0.1384 0.2226 0.3202 

50,000 0.0234 0.0805 0.1230 0.2078 0.3051 

60,000 0.0721 0.1265 0.1676 0.2503 0.3475 

70,000 0.0273 0.0830 0.1257 0.2110 0.3099 

80,000 0.0291 0.0878 0.1303 0.2141 0.3123 

90,000 0.0525 0.1084 0.1503 0.2341 0.3321 

100,000 0.0555 0.1106 0.1524 0.2375 0.3358 

120,000 0.0489 0.1026 0.1445 0.2290 0.3265 

140000 0.0439 0.0995 0.1413 0.2257 0.3241 

160000 0.0332 0.0911 0.1339 0.2181 0.3163 

180000 0.0504 0.1048 0.1463 0.2312 0.3293 

200000 0.0423 0.0969 0.1383 0.2220 0.3197 

Real valuation 0.0447 0.1003 0.1421 0.2265 0.3244 

 
The CVaR estimations of daily yield are calculated by 

( ) ( )1 1
CVaR min

1

n i j
jj n i

V V
V V

nα α

+

≤ ≤ =

  −  = + 
−  

∑ . 

Plung [5] suggest  

( ) ( ) ( ) ( )11 CVaR CVaREV V Lα αα α −= − − . 

4.2. Empirical Analysis 

In this Section, we analyze the data of Vanke A and SWYA deeply. Figure 2 is 
the sequence diagram of 2589 daily logarithmic yield rate of Vanke A.  

In this figure, the circle represents the real logarithmic yield of Vanke A, and 
the blue horizontal line represents the average logarithmic yield of the corres-
ponding day. We can get the conclusion that real logarithmic yield of Vanke A 
always fluctuate around the average ones from this figure. 

In addition, we can apply this property to invest. For example, we take Vanke 
A and SWYA two stocks as an example to analyze. We get ( )1CVaR Lα−  esti-
mations of SWYA and Vanke A in Table 2 and Table 3. And we can get the av-
erage yield that SWYA 0.0027 and 0.0030 (Vanke A is 0.00209, 0.00207) respec-
tively during nearly 10 years and nearly 5 years in Table 4. Therefore, we can 
make a suitable portfolio based on our preference. 
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Figure 2. Daily logarithmic yield rate of Vanke A. 

 
Table 2. ( )1CVaR Lα−  estimation of Vanke A. 

time/year 
α 

0.001 0.005 0.01 0.025 0.05 

10 0.1224 0.0986 0.0894 0.0762 0.0654 

5 0.0924 0.0795 0.0699 0.0562 0.0487 

 
Table 3. ( )1CVaR Lα−  estimation of SWYA. 

time/year 
α 

0.001 0.005 0.01 0.025 0.05 

10 0.1601 0.1152 0.1018 0.0860 0.0769 

5 0.1891 0.1306 0.1150 0.0951 0.0823 

 
Table 4. ( )1CVaR Lα−  estimation of SWYA. 

Time/year SWYA Vanke A 

10 0.0027 0.00209 

5 0.0030 0.00207 

5. Conclusion 

In this article, we have proved that the optimal estimator of CVaR is strong con-
sistency if the first-order moment of the population exists, subsequently carrying 
out numerical simulations to test the conclusion. Further, we will study the 
complete convergence and convergence rate of optimal estimator of CVaR. 
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