
American Journal of Operations Research, 2018, 8, 133-166
http://www.scirp.org/journal/ajor

ISSN Online: 2160-8849
ISSN Print: 2160-8830

DOI: 10.4236/ajor.2018.83010 May 25, 2018 133 American Journal of Operations Research

Solving the Traveling Salesman Problem Using
Hydrological Cycle Algorithm

Ahmad Wedyan*, Jacqueline Whalley, Ajit Narayanan

School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

Abstract
In this paper, a recently developed nature-inspired optimization algorithm
called the hydrological cycle algorithm (HCA) is evaluated on the traveling
salesman problem (TSP). The HCA is based on the continuous movement of
water drops in the natural hydrological cycle. The HCA performance is tested
on various geometric structures and standard benchmarks instances. The
HCA has successfully solved TSPs and obtained the optimal solution for 20 of
24 benchmarked instances, and near-optimal for the rest. The obtained results
illustrate the efficiency of using HCA for solving discrete domain optimiza-
tion problems. The solution quality and number of iterations were compared
with those of other metaheuristic algorithms. The comparisons demonstrate
the effectiveness of the HCA.

Keywords
Water-Based Optimization Algorithms, Nature-Inspired Computing, Discrete
Optimization Problems, NP-Hard Problems

1. Introduction

Nature provides inspiration that can be used for computational processes. Many
nature-inspired algorithms have emerged for solving optimization problems.
The HCA is one of the newly proposed algorithms in the field of the swarm in-
telligence. The HCA is a water-based algorithm that simulates water movement
through the hydrological cycle. The HCA uses a collection of artificial water
drops that pass through various hydrological water cycle stages in order to gen-
erate solutions. The algorithm has been divided into four main stages: flow,
evaporation, condensation, and precipitation. Each stage has a counterpart in
the natural hydrological cycle and has a role in constructing the solution. More-
over, these stages work to complement each other and occur sequentially. The

How to cite this paper: Wedyan, A.,
Whalley, J. and Narayanan, A. (2018) Solv-
ing the Traveling Salesman Problem Using
Hydrological Cycle Algorithm. American
Journal of Operations Research, 8, 133-166.
https://doi.org/10.4236/ajor.2018.83010

Received: February 22, 2018
Accepted: May 22, 2018
Published: May 25, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/ajor
https://doi.org/10.4236/ajor.2018.83010
http://www.scirp.org
https://doi.org/10.4236/ajor.2018.83010
http://creativecommons.org/licenses/by/4.0/

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 134 American Journal of Operations Research

result of one stage is input to the next stage. Temperature is the main factor
driving the water cycle through all stages. The algorithm starts with a low tem-
perature and gradually increases until the cycle begins, then the temperature
drops, as is natural in the real hydrological cycle.

Water-based algorithms are considered to be a subclass of nature-inspired al-
gorithms that are based on certain factors or processes related to the activities
and natural movements of water. Therefore, they share certain aspects of their
conceptual framework. Each algorithm has a set of parameters and operations
that form a procedure used to find a solution in an iterative process. However,
they differ in their mathematical models and stages. These algorithms are fre-
quently and widely used in solving many optimization problems.

Although there are already several water-based algorithms, none of them takes
into account the full water cycle and the activities associated with water move-
ment. The partial simulation of a natural process may limit the algorithm per-
formance, especially in terms of exploration and exploitation capabilities which
can lead to problems such as stagnation, increased computational effort, or pre-
mature convergence. Adding extra stages to an algorithm should only be done
when there are clear advantages in doing so. One of the aims of this paper is to
provide evidence that, for solving the TSP, including all stages of the water cycle
has benefits over including only some stages.

The intelligent water drops (IWD) algorithm is a water-based algorithm pro-
posed by Shah-Hosseini [1]. The IWD was inspired by the natural flow behavior
of water in a river and by what happens in the journey from water drops to the
riverbed. The IWD algorithm has some weaknesses that affected its perfor-
mance. The water drops update their velocity after they move from one place to
another. However, this increase in the velocity is very small (imperceptible) and
affects the searching capability. The update also does not consider that water
drop velocity might also decrease. Soil can be only removed (no deposition me-
chanism), and that may lead to premature convergence or being trapped in local
optima. In IWD only indirect communication is considered as represented by
soil erosion. Finally, the IWD does not use evaporation, condensation, or preci-
pitation. These additional stages can improve the performance of water drop al-
gorithms and play an important role in the construction of better solutions.

The water cycle algorithm (WCA) is another water-based algorithm, proposed
by Eskandar et al. [2]. The WCA is based on flow of river and stream water to-
wards the sea. In WCA, entities are represented by a set of streams. These
streams keep moving from one point to another, which simulates the flow
process of the water cycle. The evaporation process occurs when the positions of
the streams/rivers are very close to that of the sea. The WCA omits some impor-
tant factors in the natural water cycle. In WCA, no consideration is made for soil
removal from the paths, which is considered a critical operation in the formation
of streams and rivers. There is no consideration also for the condensation stage
in WCA, which is one of the crucial stages in the water cycle. On the other hand,
the WCA and PSO algorithms share similar structures but use different nomen-

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 135 American Journal of Operations Research

clatures for their components.
A major problem in some of these algorithms is the process of choosing the

next point to visit. They use one heuristic for controlling the movement of the
entities in the search space. In particular, this can be observed when most algo-
rithm entities keep choosing the same nodes repeatedly because there is no other
factor affecting their decisions. For instance, the IWD algorithm uses only the
soil as heuristic for guiding the entities through the search space. For this reason,
the IWD suffers from inability to make a different selection among a set of nodes
that have similar probabilities [3]. One of the more common ways to address
this problem is to include another heuristic that can affect the calculation of the
probabilities. In HCA, the probability of selecting the next node is an association
between two natural factors: the soil and the depth of the path, which enables the
construction of a variety of solutions.

Furthermore, some existing particle swarm algorithms rely on either direct or
indirect communication for sharing information among the entities. Enabling
both direct and indirect communication leads to better results and may reduce
the iterations to reach the global optimum solution. Otherwise, the entities are
likely to fall into the local optimum solution or produce the same solutions in
each iteration (stagnation), and this leads to a degradation of the overall perfor-
mance of the algorithm.

These aspects have been considered when designing the HCA by taking into
account the limitations and weaknesses of previous water-based algorithms. This
refinement involved enabling direct and indirect communication among the
water drops. Such information sharing improved the overall performance and
solution quality of the algorithm. Indirect communication was achieved in the
flow stage by depositing and removing soil on/from paths and using path-depth
heuristics. Direct communication was implemented via the condensation stage
and was shown to promote the exploitation of good solutions. Furthermore, the
condensation is a problem-dependent stage that can be customized according to
the problem specifications and constraints. The cyclic nature of the HCA also
provided a self-organizing and a feedback mechanism that enhanced the overall
performance. The search capability of the HCA was enhanced by including the
depth factor, velocity fluctuation, soil removal and deposition processes. The
HCA provides a better balance between exploration and exploitation processes
by considering these features. This confirmed that changing certain design as-
pects can significantly improve the algorithm’s performance. The HCA was suc-
cessfully applied and evaluated on continuous optimization problems [4].

This paper aims to present a new approach for solving TSP using HCA. This
application also helps to evaluate the performance of the HCA on a discrete do-
main problem. Although many approaches can solve the TSP with high quality,
the TSP remains an effective way of testing a new algorithm on discrete prob-
lems. Therefore, the main goal of this application is to measure the algorithm’s
ability to optimize (or nearly optimize) the solution for a simple discrete

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 136 American Journal of Operations Research

NP-hard problem. Through the success of this application, we can define the
strength of HCA and whether it is able to deal with other NP-hard problems.

The rest of this paper is organized as follows. Section 2 provides an overview
of some algorithms have been used to solve TSPs. Section 3 reviews the TSP and
its formulation. Section 4 presents the configuration of HCA and explains its
application to the TSP. Section 5 demonstrates the feasibility of solving TSP in-
stances by HCA and compares the results with those of other algorithms. Dis-
cussion and conclusions are presented in Section 6.

2. Literature Review

In general, small TSPs are most easily solved by trying all possibilities (i.e. ex-
haustive searching). This can be achieved by brute-force and branch-and-bound.
These methods generate all possibilities and choose the least-cost solution at
various choice points. Although these techniques will guarantee the optimal so-
lution, they become impractical and expensive (i.e. require unreasonable time)
when solving large TSP instances. A simple alternative is a greedy heuristic algo-
rithm, which solves the TSP using a heuristic function. Such algorithms cannot
guarantee the optimal solution, as they do not perform an exhaustive search.
However, they perform sufficiently many evaluations to find the optimal/near
optimal solution. Many greedy algorithms have been developed for TSPs, such
as the nearest-neighbor (NN), insertion heuristics, and dynamic programming
(DP) techniques. Metaheuristic algorithms can also provide high-quality solu-
tions to large TSP instances.

The TSP has been extensively solved by different metaheuristic algorithms
owing to its practical applications. The IWD algorithm was tested on the TSP
[1]. Experiments confirmed that the IWD algorithm can solve this problem and
obtains good results in some instances. Later, Msallam and Hamdan [5] pre-
sented an improved adaptive IWD algorithm. The adaptive part changes the ini-
tial value of the soil and the velocity of the water drops during the execution.
The change is made when the quality of the results no longer improves, or after a
certain number of iterations. Moreover, the initial-value change was based on
the obtained fitness value of each water drop. Msallam and Hamdan used some
of the modifications proposed in Shah-Hosseini [6]; that is, the amount of soil
along each edge is reinitialized to a common value after a specified number of
iteration, except for the edges that belong to the best solution, which lose less
soil. These modifications diversify the exploration of the solution space and help
the algorithm to escape from local optima. When tested on the TSP, the new
adaptive IWD algorithm outperformed the original IWD.

Wu, Liao, and Wang [7] tested the water wave optimization (WWO) algo-
rithm on the TSP. In WWO, each wave generates a solution and its fitness is
measured by the total cost of the tour. For the TSP, the WWO operators were
adapted to handle problems with a discrete domain. The propagation operator
mutated the tours with a probability equal to the wavelength. Therefore, a bad

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 137 American Journal of Operations Research

solution (i.e., a long-wavelength solution) was more likely to be mutated. The
refraction operator enhanced the tour by choosing a random subsequence of ci-
ties from the best solution found so far and replacing it with a subsequence of
the original tour. The breaking operation generated a number of new waves by
performing swap operations between two previous waves. The algorithm was
tested on seven benchmark instances of different sizes. In comparison studies,
the WWO algorithm competed well against the genetic algorithm and other op-
timization algorithms, and solved the TSP with good results, but with slightly
longer computational time than the genetic algorithm.

The water flow-like algorithm (WFA) is also used to solve the TSP [8]. Initial-
ly, a set of solutions to the water-flow is generated using a nearest-neighbor heu-
ristic. In successive iterations, they are moved by insertions and 2-Opt proce-
dures. The evaporation and precipitation operations are unchanged from the
original WFA. These processes repeat until the stopping criteria are met.

In solving the TSP using river formation dynamics (RFD), Rabanal,
Rodríguez, and Rubio [9] represented the problem as a landscape with all cities
initially at the same altitude. They adjusted the representation by cloning the
start-point city, allowing water to return to that city. Water movement is af-
fected by the altitude differences among the cities and the path distances. The
solutions (tours) are represented as sequences of cities sorted by decreasing alti-
tude. To prevent the water drops from immediately eroding the landscape after
each movement, the algorithm is modified to erode all cities when the drop
reaches the destination city. This modification prevents quick reinforcement and
avoids premature convergence. When tested on a number of TSP instances, the
algorithm obtained a better solution than ant colony optimization, but required
a longer computational time. The authors concluded that the RFD algorithm is a
good choice if the solution quality is more important than the computational
time.

Zhan, Lin, Zhang, and Zhong [10] solved the TSP by simulated annealing
(SA) and a list-based technique. The main objective was to simplify the tuning of
the temperature value. The list-based technique stores a priority queue of values
that control the temperature decrease. In each iteration, the list is adapted based
on the solution search space. The maximum value in the list is assigned the
highest probability of becoming a candidate temperature. The SA employs lo-
cal-neighbor search operators such as 2-Opt, 3-Opt, insert, inverse, and swap.
The effectiveness of this algorithm has been measured in variously sized bench-
mark instances. The obtained results were competitive with those of other algo-
rithms.

Geng, Chen, Yang, Shi, and Zhao [11] solved the TSP by adaptive SA com-
bined with a greedy search. The greedy search was intended to improve the con-
vergence rate. The SA implemented three types of mutations with different
probabilities: vertex insertion, block insertion, and block reversion. The algo-
rithm was tested on sixty benchmark instances. The computational results con-

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 138 American Journal of Operations Research

firmed the higher effectiveness of the SA algorithm (in terms of CPU time and
accuracy) than other algorithms.

Genetic algorithm (GA) has also been applied to TSPs in different configura-
tions [12] [13]. Larranaga, Kuijpers, Murga, Inza, and Dizdarevic [14] reviewed
the different representations and operators of GAs in TSP applications. Other
papers have surveyed the application of different GA versions to the TSP [15]
[16] [17] [18].

Ant colony optimization (ACO) has been applied to the TSP ([19] [20]) on
symmetric and asymmetric graphs [21]. For solving TSPs, Hlaing and Khine
[22] initialized the ant locations by a distribution approach that avoids search
stagnation, and places each ant at one city. The ACO is improved by a local op-
timization heuristic that chooses the next-closest city and by an information en-
tropy that adjusts the parameters. When tested on a number of benchmark in-
stances, the improved ACO delivered promising results; especially, the im-
provements increased the convergence rate over the original ACO.

Zhong, Zhang, and Chen [23] developed a modified discrete particle swarm
optimization (PSO), called C3DPSO, for TSPs. C3 refers to a mutation factor
that balances the exploitation and exploration in the update equation, buffers the
algorithm against being trapped in local optima, and avoids premature conver-
gence. The solution of each particle is represented as a set of consecutive edges,
requiring modifications in the update equations. The C3DPSO was tested on six
benchmark instances with fewer than 100 cities. The proposed algorithm yielded
more precise solutions within less computational time than the original PSO al-
gorithm. In [24], a new concept based on mobile operators and its sequence is
used to update the positions of particles in PSO, and it has been tested on TSP.

Wang, Huang, Zhou, and Pang [25] solved the TSP by a PSO with various
types of swap operations, which assist the algorithm in finding the best solu-
tions. The swap operation exchanges the positions of two cities, or the sequence
of cities between two routes. When tested on a 14-node problem, the algorithm
searched only a small part of the search space due to its high convergence rate.
In the TSP solution of Shi, Liang, Lee, Lu, and Wang [26], an uncertain search-
ing technique is associated with the particle movements in PSO. The conver-
gence speed is increased by a crossover operation that eliminates intersections in
the tours. The update equations of the original PSO are modified to suit the TSP
problem. The proposed algorithm was extended to TSPs by employing a genera-
lized chromosome. On various benchmark instances, the proposed algorithm
proved more efficient than other algorithms.

Other algorithms like the bat algorithm has also used to solve several TSPs
[27] [28]. A review of Tabu Search applications on the TSP and its variations can
be found in [29].

3. Problem Formulation

The TSP is a well-known classical combinatorial optimization problem in which
a salesperson must visit every designated city exactly once, and return to the

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 139 American Journal of Operations Research

starting point, via the shortest possible route. Such a path is known as a Hamil-
tonian cycle [30]. For centuries, the TSP has attracted researchers’ attention ow-
ing to the simplicity of its formulation and constraints. However, despite being
easy to describe and understand, the TSP is difficult to solve [31]. Because a vast
amount of information has been amassed on the TSP and the behaviors of TSP
algorithms are easily observed, the TSP is now recognized as a standard ben-
chmarking problem for evaluating new algorithms and comparing their perfor-
mances with those of established algorithms. Many real-life problems and appli-
cations can also be formulated as TSPs, and some optimization problems with
different structures can be reduced or transformed to variations of TSPs, such as
the job scheduling problem, the knapsack problem, DNA sequencing, integrated
circuit (i.e., VLSI circuits) design, drilling problem, and the satisfiability prob-
lem. Finally, a TSP can be classified as a combinatorial optimization problem, as
it requires finding the best solution from a finite set of feasible solutions.

Typically, a TSP is represented as a complete undirected weighted graph,
where each node is connected to all other nodes. The graph G = (V, E) consists
of a set of V nodes (i.e. cities) connected by a set of E edges (i.e. roads), where
the edges are associated (assigned) with various weights. The weight is a non-
negative number reflecting the distance, the travel cost, or time of traveling that
edge. Given the node coordinates (locations), the Euclidean distance between
two nodes i and j can be calculated as follows:

() () ()2 2
, i j i jDistance i j x x y y= − + − (1)

The TSP can be a symmetric or asymmetric weighted problem. In the symme-
tric problem, the path from node A to node B has the same weight as the path
from node B to node A. In contrast, paths in the asymmetric problem may be
unidirectional or carry different weights in each direction. Mathematically, the
TSP can be formulated as Equation (2) [31], where Dij represents the distance
between nodes i and j.

1
Minimise , 3

N

ij ij
i

D X N
=

≥∑ (2)

subject to

{ }0,1 , , 1, , ,ijX i j N i j∈ = ≠ (3)

In Equation (3), the decision variables Xij are set to 1 if the connecting edge is
part of the solution, and 0 otherwise:

()
()

1, if , Solution

0, if , Solutionij

i j
X

i j

∈= 
∉

 (4)

The TSP is considered as an NP-hard problem, meaning that its complexity
increases non-linearly with increasing number of cities. Therefore, the number
of possible solutions rises rapidly as the number of cities increases. Practically,
the TSP finds the best order of the visited nodes at the lowest cost, which can be
interpreted as a permutation problem. The number of possible solutions for an

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 140 American Journal of Operations Research

n-city problem is given by:

()1 !
Number of solutions , where 3

2
n

n
−

= ≥ (5)

Equation (5) calculates the number of possible ways of arranging n cities into
an ordered sequence (with no repeats). As the starting node is unimportant,
there are (n − 1)! rather than n! possible solutions. The result is divided by two
because the reverse routes are ignored. Figure 1 shows a simple TSP with five
nodes.

In this example, one of the best solutions is (2 → 1 → 5 → 4 → 3 → 2) with a cost
of 190. Another repeated solution with the same cost but a different starting
node is (1 → 5 → 4 → 3 → 2 → 1).

4. The HCA-TSP Approach and Procedure

Typically, the input of the HCA algorithm is represented as a graph. To solve the
TSP, the input to the HCA will be a fully connected graph that represents the
problem solution space. The graph has a set of nodes (cities) and set of undi-
rected edges (roads) between the nodes. The characteristics associated with each
edge are the initial amount of soil and edge depth. The HCA uses a set of artifi-
cial water drops to generate solutions, where each water drop has three proper-
ties: velocity, amount of carried soil, and solution quality. The procedure of
HCA is specified in the following steps:

1) Initialization of the variables and read the problem data.
2) Distribution of the water drops on the nodes of the graph at random.
3) Repeat steps 4) to 7) until termination conditions are met.
4) The flow stage (repeat sub-steps a) - d) until temperature reaches a specific

value).
A water drop iteratively constructs a solution for the problem by continuously

moving between the nodes.
a) Choosing next node
The movements are affected by the amount of soil and the path depths. The

probability of choosing node j from node i is calculated using Equation (6).

()
()() ()()

() ()() ()()()
2

2

, ,

, ,
WD

i

k vc WD

f Soil i j g Depth i j
P j

f Soil i k g Depth i k
∉

×
=

×∑
 (6)

where ()WD
iP j is the probability of choosing node j from node i, and vc is the

Figure 1. TSP instance with five nodes.

3

2 4

1 5

31

40

46

61
33 49

42

48

29

37

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 141 American Journal of Operations Research

visited list of each water drop. The f(Soil(i, j)) is equal to the inverse of the soil
between i and j, and is calculated using Equation (7).

()() ()
1,

,
f Soil i j

Soil i jε
=

+
 (7)

ε = 0.01 is a small value that is used to prevent division by zero. The second
factor of the transition rule is the inverse of depth, which is calculated based on
Equation (8).

()() ()
1,

,
g Depth i j

Depth i j
= (8)

Depth (i, j) is the depth between two nodes i and j, and calculated by dividing
the length of the path by the amount of soil. The depth of the path needs to be
updated when the amount of soil existing on the path changes. The depth is up-
dated as follows:

() ()
()

,
,

,
Length i j

Depth i j
Soil i j

= (9)

After selecting the next node, the water drop moves to the selected node and
marks it as visited.

b) Update velocity
The velocity of a water drop might be increased or decreased while it is mov-

ing. Mathematically, the velocity of a water drop at time (t + 1) is calculated us-
ing Equation (10).

() ()
2 21

100
, ,

WD WD WD
WD WD t t t

t t WD WD

V V VV K V
Soil i j Depth i jSoil

α
ψ+

    = × + + + +         
 (10)

where 1
WD

tV + is the current water drop velocity, and K is a uniformly distributed
random number between [0, 1] that refers to the roughness coefficient. Alpha
(α) is a relative influence coefficient that emphasizes this term in the velocity
update equation and helps the water drops to emphasize and favor the path with
fewer soils over the other factors. The expression is designed to prevent one wa-
ter drop from dominating the other drops. That is, a high-velocity water drop is
able to remove more soil than slower ones. Consequently, the water drops are
more likely to follow the carved paths, which may guide the swarm towards local
optimal solution.

c) Update soil
Next, the amount of soil existing on the path and the depth of that path are

updated. A water drop can remove (or add) soil from (or to) a path while mov-
ing based on its velocity. This is expressed by Equation (11).

()
() () () ()()

() () () ()

2

2

1, , if Erosion
,

,
1, , else Deposition

,

WD WDS
VPN Soil i j Soil i j V Avg all

Depth i j
Soil i j

PN Soil i j Soil i j
Depth i j

∆


∗ − − ≥  
= 
 ∗ + +  


∆

 (11)

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 142 American Journal of Operations Research

PN represents a coefficient (i.e., sediment transport rate, or gradation coeffi-
cient) that may affect the reduction in the amount of soil. The increasing soil
amount on some paths favors the exploration of other paths during the search
process and avoids entrapment in local optimal solutions. The rate of change in
the amount of soil existing between node i and node j depends on the time
needed to cross that path, which is calculated using Equation (12).

()
,

1, WD
i j

Soil i j
time

∆ = (12)

such that,

()
,

1

,WD
i j WD

t

Distance i j
time

V +

= (13)

In HCA, the amount of soil the water drop carries reflects its solution quality.
Therefore, the water drop with a better solution will carry more soil, which can
be expressed by Equation (14).

(),WD WD
WD

Soil i j
Soil Soil

ψ
∆

= + (14)

One iteration is considered complete when all water drops have generated so-
lutions based on the problem constraints (i.e., when each water drop has visited
each node). A solution represents the order of visiting all the nodes and return-
ing to the starting node. The qualities of the evaluated solutions are used to up-
date the temperature.

d) Update temperature
The new temperature value depends on the solution quality generated by the

water drops in the previous iterations. The temperature will be increased as fol-
lows:

() ()1Temp t Temp t Temp+ = + ∆ (15)

where,

()

()

0

otherwise
10

Temp t
D

DTemp
Temp t

β ∆
∆

∆

  
∗ >  

  = 



 (16)

and where coefficient β is determined based on the problem. The difference
(D∆) is calculated using Equation (17).

D MaxValue MinValue−∆ = (17)

Such that,

()
()

max Solutions Quality

min Solutions Quality

MaxValue WDs

MinValue WDs

=   
=   

 (18)

According to Equation (17), increase in temperature will be affected by the
difference between the best solution (MinValue) and the worst solution (Max-
Value). At the end of each iteration, the HCA checks whether the temperature is

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 143 American Journal of Operations Research

high enough to evaporate the water drops. Thus, the flow stage may run several
times before the evaporation stage starts. When the temperature increases and
reaches a specified value, the evaporation stage is invoked.

5) The evaporation stage:
A certain number of water drops evaporates based on the evaporation rate.

The evaporation rate is determined by generating a random number between
one and the total number of water drops (see Equation 19).

()Evaporation rate Random_Integer 1, N= (19)

The evaporated water drops are selected by the roulette wheel technique. The
evaporation process is an approach to avoid stagnation or local-optimal solu-
tions.

6) The condensation stage:
The condensation stage is executed as a result of the evaporation process,

which is a problem-dependent process and can be customized to improve the
solution quality by performing certain tasks (i.e., local improvement method).
The condensation stage collides and merges the evaporated water drops, elimi-
nating the weak drops and favoring the best drop (i.e., the collector), see Equa-
tion (20).

() ()
()

1 2
1 2

1 2

Bounce , , Similarity 50%
,

Merge , , Similarity 50%
WD WD

OP WD WD
WD WD

<=  ≥
 (20)

Finding the similarity between the solutions is problem-dependent, and
measures how much two solutions are close to each other. For the TSP, the si-
milarities between the solutions of the water drops are measured by the Ham-
ming distance [32]. When two water drops collide and merge, one water drop
will (i.e., the collector) become more powerful by eliminating the other one and
acquires its characteristics (i.e., its velocity). The merging operation is useful to
eliminate one of the water drops as they have similar solutions. On the other
hand, when two water drops collide and bounce off, they will directly share in-
formation with each other about the goodness of each node, and how much a
node contributes to their solutions. The bounce-off operation generates infor-
mation that is used later to refine the water drops’ solution quality in the next
cycle by emphasis on the best nodes. The information is available and accessible
to all water drops and helps them to choose a node that has a better contribution
from all the possible nodes at the flow stage. For the TSP, the evaporated water
drops share their information regarding the most promising nodes sequence.
Within this exchange, the water drops will favor those nodes in the next cycle.
Finally, the condensation stage is used to update the global-best solution found
up to that point. With regard to temperature, determining the appropriate tem-
perature values is through trial and error, and appropriate values for this prob-
lem were identified through experimentation. The values (Table 1) have been
determined after some preliminary experiments with the TSP problem. The lo-
wering and rising of the temperature not only control the cycle but also help to
prevent the water drops from sticking with the same solution every iteration.

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 144 American Journal of Operations Research

Table 1. HCA parameters and their values.

Parameter name Parameter value

Number of water drops Equal to number of nodes

Maximum number of iterations Triple the number of nodes

Initial soil on each edge 10,000

Initial velocity 100

Initial depth Edge length/soil on that edge

Initial carrying soil 1

Velocity updating α = 2

Soil updating PN = 0.99

Initial temperature 50, β = 10

Maximum temperature 100

7) The precipitation stage:
This precipitation is considered as a termination stage, as the algorithm has to

check whether the termination condition is met. If the condition has been met,
the algorithm stops with the last global-best solution. Otherwise, this stage is re-
sponsible for reinitializing all the dynamic variables, such as the amount of the
soil on each edge, depth of paths, the velocity of each water drop, and the
amount of soil it holds. The re-initialization of the parameters happens after
certain iterations and helps the algorithm to avoid being trapped in local optima,
which may affect the algorithm’s performance in the next cycle. Moreover, this
stage is considered as a reinforcement stage, which is used to place emphasis on
the collector drop. This is achieved by reducing the amount of soil on the edges
that belong to the best water drop solution, see Equation (21).

() () (), 0.9 , , , WDSoil i j soil i j i j Best= ∗ ∀ ∈ (21)

The idea behind that is to favor these edges over the other edges in the next
cycle. These stages are repeated until the maximum number of iterations is
reached. The HCA goes through a number of cycles and iterations to find a solu-
tion to a problem. Figure 2 explains the steps in solving the TSP by HCA.

4.1. Solution Representation

In this paper, the TSP is assumed to be symmetric, and acting on a fully con-
nected graph. The candidate TSP solutions are stored in a matrix, where each
row represents a different solution generated by a water drop. Therefore, a water
drop solution consists of the order of the visited nodes (with no repeat visits).
The length of each row (i.e. the number of columns) is denoted by n and deter-
mined by the total number of nodes (see Equation 22).

1

2

3

1 2
1 2

Solutions 1 2

1 2n

WD n
WD n
WD n

WD n

 
 
 
 =
 
 
  







    



 (22)

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 145 American Journal of Operations Research

Figure 2. TSP solution procedure of HCA.

4.2. Local Improvement Operation

The quality of generated tours can be improved by many operations, such as
k-Opt (where k = 2, 3, or 4) [33] [34]. These operations enhance the perfor-
mance of the algorithm and minimize the number of iterations to reach the op-
timal solution. In the present problem, we apply the 2-Opt operation on the se-
lected water drops that will evaporate at the condensation stage. The 2-Opt op-
eration swaps the order of two edges at one part of the tour and keeps the tour
connected. The swapping results in a new tour, which is accepted if it minimizes
the total cost [35]. This operation is repeated until a stopping criterion is met,
such as no further improvements after a certain number of exchanges, or when
the maximum number of exchanges is reached. Figure 3 demonstrates the oper-
ation of 2-Opt. In this example, the algorithm selects edges (2, 7) and (3, 8), and
consecutively creates new edges (2, 3) and (7, 8). The order of the nodes between
the two edges must also be reversed.

5. Experimental Results and Analysis

The HCA was tested and evaluated on two groups of TSP instances; structural
and benchmark. The runtime and solution quality of the benchmark results were
compared with those of other algorithms.

The HCA parameter values used for TSP are listed in Table 1. The parameters
values are set after conducting some preliminary experiments.

The depth values had a very small value. Therefore, it has been normalized to
be within [1 - 100]. The amount of soil has been restricted to be within a maxi-
mum and minimum value for avoiding negative values. The maximum value is
regarded as the initial value, while the minimum value is fixed to equal one. The
algorithm was implemented using MATLAB. All the experiments were con-
ducted on a computer with Intel Core i5-4570 (3.20 GHz) CPU and 16 GB RAM,

Distribute WDs on the
cities Generate solutions

Evaluate solutions
Check for improvement
(update local solution)
Update Temperature

Identify evaporation rate
Choose WDs using

Roulette wheel selection

2-Opt operation
Information sharing
Update global-best

solution

Generate new WDs
Identify Collector WD

Global soil update
Re-initialise parameters

Check termination condition

 Runoff Iteration +1

Evaporation C
yc

le
 +

1

Precipitation Condensation

A complete graph G (V, E)
Number of cities n
Cities coordinates

Calculate cost between the
cities

Output: A Hamiltonian cycle

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 146 American Journal of Operations Research

Figure 3. Example of removing an intersection by 2-Opt.

under Microsoft Windows 7 Enterprise as an operating system.

5.1. Structural TSP Instances

To assess the validity of the generated output, we designed and generated syn-
thetic TSP structures with different geometric shapes (circle, square, and trian-
gle). These TSP structures are easier to evaluate than randomized instances.
Several instances with different numbers of nodes were generated for each
structure, and were input to the HCA algorithm with and without the 2-Opt op-
eration. The percentage difference (i.e., the deviation percentage) between the
obtained and the optimal value was calculated as follows:

()Obtained Value Optimal Value
Difference 100%

Optimal Value
−

= × (23)

In the circular structure, the circle circumference was divided into various
numbers of nodes. Note that the number of nodes influences the inter-nodal
distance, with fewer nodes increasing the distance between nodes. The node
number was varied as 25, 50, 75, 100, 125, and 150. By dividing the circumfe-
rence of the circle into a specific number of nodes, the first and last nodes will
have the same coordinate. The shortest path length was calculated by the circle
circumference formula (2 × π × r). The circle was centered at (1, 1) and its di-
ameter was set to 2 (i.e., r = 1). Consequently, its circumference was 6.28. The
obtained results are reported in Table 2.

As shown in Table 2, the HCA found the shortest path in each instance of this
structure, both with and without the 2-Opt operation. The circle instances are
relatively easy to solve because the distance decreases with increasing number of
nodes. Thus, the soil amount will be reduced more quickly on shorter edges than
on longer edges, steering the algorithm towards the shorter edges. Figure 4
shows the output of the HCA on circular TSPs with different numbers of nodes.

Next, the TSP was solved on a square structure. Here, the nodes were evenly
spaced in an N × N grid. The shortest tour distance was the product of the
number of nodes and the distance between the nodes (assumed as one unit). For
example, in the 16-point (8 × 8) grid, the shortest path was (1 × 16 = 16). For an
odd number of nodes, the cost of traveling to the last node was based on the
length of the hypotenuse (1.41 in the present examples). Ten instances with dif-
ferent numbers of nodes were generated, and solved by the HCA with and
without the 2-Opt operation. The results are listed in Table 3.

As shown in Table 3, the HCA obtained the optimal results (the shortest
path) both with and without the 2-Opt operation. The exception was
“Square_144”, whose solution deviated very slightly from the optimal. The

1
8

2 3

7

4

6
5 1

8

2 3

7

4

6
5

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 147 American Journal of Operations Research

(a) (b)

(c) (d)

(e) (f)

Figure 4. TSP solutions on circular grids. (a) Circle_25, Cost = 6.28; (b) Circle_50, Cost =
6.28; (c) Circle_75, Cost = 6.28; (d) Circle_100, Cost = 6.28; (e) Circle_125, Cost = 6.28; (f)
Circle_150, Cost = 6.28.

outputs of HCA with 2-Opt on square grids of different sizes are shown in Fig-
ure 5.

Finally, the TSP was solved on an equilateral triangular grid. The number of
nodes was varied as 9, 25, 49, 81, 121, and 169. Table 4 lists the obtained results
with and without the 2-Opt operation.

0 0 2 0 4 0 6 0 8 1 1 2 1 4 1 6 1 8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Circle25.tsp , Cost: 6.2653

 3

 2

1 25

 24

 23

 22

 21

 20
 19

 18

 17

 16

 15

 14

 13

 12

 11

 10

 9

 8
 7

 6

 5

 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Circle50.tsp , Cost: 6.2789

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34
 35

 36 37 38 39
 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 501

 2

 3

 4

 5

 6

 7

 8

 9

 10
 11

 12 13 14 15
 16

 17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

1

2

4

6

8

2
Circle75.tsp , Cost: 6.2813

 27
 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48
 49

 50
 51

 52
 53 54 55 56 57 58 59 60

 61
 62

 63
 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 751

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11
 12

 13
 14

 15
 16 17 18 19 20 21 22 23

 24
 25

 26

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Circle100.tsp , Cost: 6.2821

 65
 64

 63
 62

 61
 60

 59
 58

 57

 56

 55

 54

 53

 52

 51

 50

 49

 48

 47

 46

 45

 44

 43
 42

 41
 40

 39
 38

 37
 36

 35
 34

 33
 32

 31 30 29 28 27 26 25 24 23 22 21 20
 19

 18
 17

 16
 15

 14
 13

 12
 11

 10
 9

 8

 7

 6

 5

 4

 3

 2

1 100

 99

 98

 97

 96

 95

 94

 93

 92
 91

 90
 89

 88
 87

 86
 85

 84
 83

 82
 81 80 79 78 77 76 75 74 73 72 71 70 69

 68
 67

 66

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

.2

.4

.6

.8

1

.2

.4

.6

.8

2
Circle125.tsp , Cost: 6.2825

 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 104

 105
 106

 107
 108

 109
 110

 111
 112

 113
 114

 115
 116

 117
 118
 119
 120
 121
 122
 123
 124
 1251
 2
 3
 4

 5
 6

 7
 8

 9
 10

 11
 12

 13
 14

 15
 16

 17
 18

 19
 20

 21
 22

 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
 42

 43
 44

 45
 46

 47
 48

 49
 50

 51
 52

 53
 54

 55
 56

 57
 58

 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70

 71
 72

 73
 74

 75
 76

 77
 78

 79
 80

 81
 82

 83
 84

 85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X-axis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Circle150.tsp , Cost: 6.2827

 1501
 2
 3
 4
 5
 6

 7
 8

 9
 10

 11
 12

 13
 14

 15
 16

 17
 18

 19
 20

 21
 22

 23
 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

 53
 54

 55
 56

 57
 58

 59
 60

 61
 62

 63
 64

 65
 66

 67
 68

 69
 70

 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85

 86
 87

 88
 89

 90
 91

 92
 93

 94
 95

 96
 97

 98
 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

 128
 129

 130
 131

 132
 133

 134
 135

 136
 137

 138
 139

 140
 141
 142
 143
 144
 145
 146
 147
 148
 149

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 148 American Journal of Operations Research

Table 2. TSP results on a circular structure.

Instance
Name

Optimal
Solution

With 2-Opt Without 2-Opt

Result Avg. Difference Result Avg. Difference

Circle_25 6.28 6.28 0.72 0% 6.28 0.65 0%

Circle_50 6.28 6.28 4.48 0% 6.28 4.47 0%

Circle_75 6.28 6.28 15.43 0% 6.28 15.13 0%

Circle_100 6.28 6.28 38.60 0% 6.28 37.23 0%

Circle_125 6.28 6.28 80.49 0% 6.28 74.50 0%

Circle_150 6.28 6.28 146.68 0% 6.28 136.99 0%

Table 3. TSP results on a square structure.

Instance Name
Optimal
Solution

With 2-Opt Without 2-Opt

Result Avg. Difference Result Avg. Difference

Square_9 9.41 9.41 0.10 0% 9.41 0.01 0%

Square_16 16 16 0.22 0% 16 0.22 0%

Square_25 25.41 25.41 0.65 0% 25.41 0.64 0%

Square_36 36 36 1.74 0% 36 1.72 0%

Square_49 49.41 49.41 4.35 0% 49.41 4.33 0%

Square_64 64 64 9.90 0% 64 9.55 0%

Square_81 81.41 81.41 20.53 0% 81.41 19.58 0%

Square_100 100 100 39.55 0% 100 39.44 0%

Square_121 121.41 121.41 74.054 0% 121.41 72.38 0%

Square_144 144 144 130.93 0% 146.89 125.18 0.02%

Table 4. TSP results on a triangular structure.

Instance Name
Optimal
Solution

With 2-Opt Without 2-Opt

Result Avg. Difference Result Avg. Difference

Square_9 9.41 9.41 0.10 0% 9.41 0.01 0%

Square_16 16 16 0.22 0% 16 0.22 0%

Square_25 25.41 25.41 0.65 0% 25.41 0.64 0%

Square_36 36 36 1.74 0% 36 1.72 0%

Square_49 49.41 49.41 4.35 0% 49.41 4.33 0%

Square_64 64 64 9.90 0% 64 9.55 0%

Square_81 81.41 81.41 20.53 0% 81.41 19.58 0%

Square_100 100 100 39.55 0% 100 39.44 0%

Square_121 121.41 121.41 74.054 0% 121.41 72.38 0%

Square_144 144 144 130.93 0% 146.89 125.18 0.02%

The HCA with and without 2-Opt operation produced almost similar results,

except for the triangles with 121 and 169 nodes where using 2-Opt gave better

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 149 American Journal of Operations Research

(a) (b)

(c) (d)

(e) (f)

(g) (h)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y
-a

xi
s

Square9.tsp , Cost: 9.4142

1 4 7

 8

 9 6 3

 2 5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3
Square16.tsp , Cost: 16

 4 8

 7 11

 12 16

 15

 14

 13 9

 10 6

 51

 2

 3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
Square25.tsp , Cost: 25.4142

 10 5

 4

 3

 2

1 6

 7

 8 13

 14 19

 18

 17 12

 11 16 21

 22

 23

 24

 25 20 15

 9

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Y
-a

xi
s

Square36.tsp , Cost: 36

 14

 15 9

 8

 71

 2

 3

 4

 5

 6 12

 11

 10 16

 17

 18 24 30 36

 35

 34

 33 27

 28

 29 23

 22

 21

 20 26 32

 31 25 19 13

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Y
-a

xi
s

Square49.tsp , Cost: 49.4142

 13

 14 7

 6

 5

 4

 3 10

 11

 12 19

 18

 17 24

 23 16 9 2

1 8 15 22 29 36 43

 44

 45 38

 37 30

 31

 32 25

 26 33

 34 41

 40

 39 46

 47

 48

 49 42 35 28

 27 20

 21

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Y
-a

xi
s

Square64.tsp , Cost: 64

 44 52

 53

 54

 55 47 39

 40 48 56 64

 63

 62

 61

 60

 59

 58

 57 49 41 33

 34 42 50

 51 43 35 27

 26

 25 17 91

 2

 3 11

 10 18

 19

 20 12 4

 5 13 21

 22 14 6

 7

 8 16

 15 23

 24 32

 31

 30 38 46

 45 37 29

 28 36

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Y
-a

xi
s

Square81.tsp , Cost: 81.4142

 35 44

 43

 42 51

 52 61

 60 69

 70

 71 62 53

 54 63 72 81

 80

 79

 78

 77

 76 67

 68 59

 58

 57 66 75

 74

 73 64

 65 56

 55 46 37 28 19

 20 11

 101

 2

 3

 4

 5

 6

 7 16

 15

 14

 13

 12 21 30

 29 38 47

 48 39

 40 49

 50 41 32

 31 22

 23

 24 33

 34 25

 26 17 8

 9 18 27 36 45

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Square100.tsp , Cost: 100

 28 18

 19

 20 10

 9

 8

 7 17

 16 6

 5 15 25

 24 14 4

 3 13 23

 22 12 2

1 11 21 31

 32 42

 41 51 61 71

 72 82

 81 91

 92

 93

 94

 95

 96

 97

 98

 99

 100 90 80

 79 89

 88 78 68

 69

 70 60 50

 49 59

 58 48

 47

 46 56

 57 67

 66

 65

 64 74

 75

 76

 77 87

 86

 85

 84

 83 73 63

 62 52

 53

 54

 55 45

 44

 43 33

 34

 35

 36 26

 27 37

 38

 39

 40 30

 29

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 150 American Journal of Operations Research

(i) (j)

Figure 5. TSP solutions on square grids. (a) Cost = 9.41; (b) Cost = 16; (c) Cost = 25.41; (d) Cost = 36; (e)
Cost = 49.41; (f) Cost = 64; (g) Cost = 81.41; (h) Cost = 100; (i) Cost = 121.41; (j) Cost = 144.

results. The TSP is more difficult on the triangular structure than on the other
structures, because many hypotenuses connect the nodes to different layers. The
outputs of the HCA using 2-Opt on triangular grids with different node num-
bers are reported in Figure 6.

The average execution times for solving all the TSP structural instances by
HCA are presented by Figure 7. The execution time of the HCA increases with
increasing number of nodes because of the information sharing process. With
increasing number of nodes the solution space increases exponentially, a defin-
ing characteristic of NP-hard problems which also affects execution time. The
execution time also largely depends on the implementation of the algorithm, and
on the compilers, machines specifications, and operating systems used.

Figure 7 shows that the 2-Opt operation has little effect on the execution time
in small instances (problems with a low node count), but noticeably increases
the execution time in larger problems. However, 2-Opt was found to improve
the quality of the solution for structures with a high number of nodes.

5.2. Benchmark TSP Instances

Next, the HCA was applied to a number of standard benchmark instances from
the TSPLIB library [36]. The selected instances have different structures with
different numbers of cities. Some of these instances are geographical and based
on real city maps; others are based on VLSI applications, drilling, and printed
circuit boards. The edge-weights (distances) between the nodes were calculated
by the Euclidean distance (Equation (1)), and rounded to integers. The TSP file
format is detailed in Reinelt [37]. On the benchmark problems, the HCA was
combined with the 2-Opt operation, which was found to improve the solution
quality in structural instances with large numbers of nodes. The results are pre-
sented in Table 5. In this table, the number in each instance name denotes the
number of cities, and the difference column denotes the percentage difference

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Y
ax

is

Square121.tsp , Cost: 121.4142

 23 34 45

 46

 47

 48 59

 58 69

 70 81 92

 91 80

 79 68 57

 56 67 78 89

 90 101

 100 111

 112

 113 102

 103 114

 115 104 93

 94 105 116

 117

 118

 119

 120

 121 110

 109

 108 97 86

 87 98

 99 88 77 66 55 44 33 22 11

 10 21 32 43 54 65 76

 75 64 53

 52 63 74 85 96 107

 106 95 84

 83

 82 71 60

 61 72

 73 62 51 40

 41

 42 31

 30 19

 20 9

 8

 7

 6

 5 16

 15 4

 3

 2

1 12

 13

 14 25

 26

 27

 17

 18 29

 28 39 50

 49 38

 37

 36

 35 24

0 2 4 6 8 10
0

2

4

6

8

10

12

Y
-a

xi
s

Square144.tsp , Cost: 144

 10

 9

 8

 7

 6 18 30

 29

 28

 27

 26 14

 15

 16

 17 5

 4

 3

 2

1 13 25 37 49 61

 62 50 38

 39 51

 52 40

 41

 42

 43 55

 56 44 32

 31 19

 20

 21 33 45

 46 34 22

 23 35 47 59

 58

 57 69 81 93 105

 104 92 80 68

 67

 66 54

 53 65

 64

 63 75 87 99

 98 86 74

 73 85 97 109 121 133

 134

 135

 136

 137 125

 124

 123

 122 110

 111

 112 100 88 76

 77

 78

 79 91 103

 102 90

 89 101 113

 114 126 138

 139 127 115

 116

 117 129

 128 140

 141

 142

 143

 144 132

 131

 130 118

 119

 120 108 96 84

 83 95 107

 106 94 82 70

 71

 72 60 48 36 24 12

 11

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 151 American Journal of Operations Research

(a) (b) (c)

(d) (e) (f)

Figure 6. TSP solutions on equilateral triangular grids. (a) Cost = 10.24; (b) Cost = 27.07; (c) Cost = 51.899; (d) Cost = 84.727; (e)
Cost = 125.556; (f) Cost = 174.38.

Figure 7. Relationship between HCA execution time and instance size of TSP on circular,
square and triangular grids.

from the optimal solution using Equation (7).

Table 5 shows that the HCA achieved a high performance when solving TSP.
The HCA found the optimal solution in 20 out of 24 instances, and the differ-
ences in the other instances were minor. According to the P-value, there is no
significant difference between the results. Table 6 reports the minimum, aver-
age, and maximum values of the cost, time and iteration number among 10 HCA
executions for each instance.

0 0 5 1 1 5 2 2 5 3 3 5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Triangle9.tsp , Cost: 10.2426

 4 5

 8 7

 9

 6

1 2 3
0 1 2 3 4 5 6 7 8

0

0.5

1

.5

2

2.5

3

3.5

4

Triangle25.tsp , Cost: 27.0711

 17

 11 12

 18

 22 23

 25

 24

 21

 15 16

 9 8 7 6

 14

 20 19

 13

 5 4 3 21

 10

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Y
-a

xi
s

Triangle49.tsp , Cost: 51.8995

 45 44 43

 37 38

 30 29 28

 18 19 20 21

 31

 39 40

 32 33

 24

 13 12 11

 23 22

 10 9 8 7 6 5 4 3 21

 14 15 16 17

 27 26 25

 34 35 36

 42 41

 46

 49

 47 48

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

Y
-a

xi
s

Triangle81.tsp , Cost: 84.7279

 74 73

 67 66

 58 57

 47 46

 34 33

 19 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 32 31

 45

 56

 44

 30 29

 43 42

 28 27 26 25 24 23 22 21 20

 35 36 37

 49 48

 59

 50

 38 39

 51

 61 60

 68 69 70

 62 63

 52

 40 41

 53 54 55

 65 64

 72 71

 77 76

 80

 75

 79

 81

 78

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Triangle121.tsp , Cost: 125.5563

 81 80

 66 67

 51 50 49 48 47

 63 62

 46

 28 29 30 31

 11 10 9 8 7 6 5 4 3 21

 22 23 24

 42 41

 58

 73

 59

 43

 25 26 27

 45 44

 60 61

 75 74

 86 87

 97 98

 106 107

 113 114

 108

 100

 90 89

 99

 88

 76 77 78

 64 65

 79

 91

 101

 109

 115

 119 118

 121

 120

 117 116

 110

 102

 92 93 94

 103

 111 112

 104 105

 95 96

 84 85

 71 72

 57

 39 40

 21 20 19 18 17 16

 36 37 38

 56 55 54 53

 35

 15 14 13 12

 32 33 34

 52

 68 69 70

 83 82

0 5 10 15 20
0

2

4

6

8

10

12

Triangle169.tsp , Cost: 174.3848

 163

 157 158

 150 151

 141 140

 128

 114 113

 97

 79 78

 58 59 60

 80

 98 99

 81

 61 62

 82 83

 63 64 65

 43 42 41 40 39 38 37 36 35

 11 12 13 14 15 16 17 18 19 20 21 22

 46

 23 24 25

 48 47

 69 68

 88 87

 67

 45 44

 66

 86

 105 104

 120 119

 133 132

 144 143

 131

 117 118

 103

 85 84

 102 101 100

 116 115

 129 130

 142

 153 152

 160 159

 165 164

 168 167

 169

 166

 161

 154 155

 147

 138 137 136

 146 145

 135 134

 121

 106 107 108

 122 123 124 125

 111 110 109

 93 92 91

 73 72

 90 89

 71 70

 50 49

 27 26

1 2 3 4 5 6 7

 31 30 29 28

 51 52 53 54

 74 75

 55

 33 32

 8 9 10

 34

 56 57

 77 76

 94 95 96

 112

 126 127

 139

 149 148

 156

 162

0

50

100

150

200

250

0 50 100 150 200

A
ve

ra
ge

 ti
m

e
(S

ec
)

Number of nodes

Exection time for HCA

With 2-Opt
Without 2-Opt

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 152 American Journal of Operations Research

Table 5. HCA results on benchmark TSP instances.

No. Instance name Node number Optimal result HCA Difference %

1 berlin52 52 7542 7542 0

2 ch130 130 6110 6110 0

3 ch150 150 6528 6528 0

7 d198 198 15,780 15,780 0

4 eil51 51 426 426 0

5 eil76 76 538 538 0

6 eil101 101 629 629 0

8 kroA100 100 21,282 21,282 0

9 kroA150 150 26,524 26,614 0.00339

10 kroA200 200 29,368 29,368 0

11 kroB100 100 22,141 22,141 0

12 kroB150 150 26,130 26,132 0.00008

13 kroB200 200 29,437 29,455 0.00061

14 kroC100 100 20,749 20,749 0

15 kroD100 100 21,294 21,294 0

16 kroE100 100 22,068 22,068 0

17 lin105 105 14,379 14,379 0

18 pr76 76 108,159 108,159 0

19 pr107 107 44,303 44,303 0

20 pr124 124 59,030 59,030 0

21 pr136 136 96,772 96,861 0.00092

22 rat195 195 2323 2323 0

23 st70 70 675 675 0

24 ts225 225 126,643 126,643 0

Average 29534.6 29542.9

T-test (P-value) 0.12174

The results in Table 6 demonstrate the efficiency and effectiveness of the
HCA algorithm. In particular, the average result and optimal solution are very
close in all instances. The maximum difference was 0.00823% on the kroA150
benchmark, and zero on the pr124 benchmark. Moreover, the HCA optimized
the solution on most benchmarks within a few iterations. This early convergence
is attributed to information sharing among the water drops, and the use of the
2-Opt operation in the condensation stage. The solutions to the benchmark in-
stances are displayed in the Figure S1 (Appendix).

The minimal cost in HCA was compared with the reported results of other
water-based algorithms, namely, the intelligent water drops (IWD) algorithm
and its modifications, water wave optimization (WWO), the water flow-like

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 153 American Journal of Operations Research

Table 6. Minimum, average, and maximum HCA results on benchmark TSP instances.

Instance name Cost Time(s) #Iteration Instance name Cost Time(s) Iteration

berlin52

Min 7542 5.15 5

kroB200

Min 29,455 455.53 35

Avg. 7565.3 5.36 37.9 Avg. 29519.9 464.62 200.6

Max 7758 5.78 55 Max 29,612 474.95 305

ch130

Min 6110 93.08 53

kroC100

Min 20,749 39.54 11

Avg. 6128.9 95.79 168.2 Avg. 20,751 39.74 71

Max 6177 101.61 359 Max 20,769 39.96 303

ch150

Min 6528 149.98 17

kroD100

Min 21,294 40.10 5

Avg. 6550.8 157.55 154.4 Avg. 21416.4 40.43 151.4

Max 6570 162.05 347 Max 21,772 40.79 299

d198

Min 15780 415.00 47

kroE100

Min 22,068 40.27 23

Avg. 15785.3 422.04 209.6 Avg. 22152.9 40.63 107

Max 15,794 432.66 593 Max 22,389 41.07 203

eil51

Min 426 4.70 11

lin105

Min 14,379 46.59 11

Avg. 426.85 4.73 47.2 Avg. 14385.6 47.25 111.8

Max 430 4.79 86 Max 14,412 47.75 263

eil76

Min 538 16.19 11

pr76

Min 108,159 16.47 5

Avg. 538.5 16.34 47.8 Avg. 108163.3 16.58 32

Max 539 16.45 137 Max 108,202 16.84 215

eil101

Min 629 41.37 34

pr107

Min 44,303 48.25 5

Avg. 632 41.60 99.9 Avg. 44367.5 48.84 80

Max 638 41.85 274 Max 44,438 49.35 293

kroA100

Min 21,282 40.39 23

pr124

Min 59,030 78.60 5

Avg. 21308.1 40.70 112.4 Avg. 59,030 79.19 47

Max 21,369 41.03 275 Max 59,030 79.96 101

kroA150

Min 26,614 161.42 11

pr136

Min 96,861 109.96 41

Avg. 26742.2 162.67 204.2 Avg. 96985.1 110.93 204.2

Max 26,917 163.69 371 Max 97,235 113.14 371

kroA200

Min 29,368 461.13 29

rat195

Min 2323 385.41 29

Avg. 29396.3 469.99 150.2 Avg. 2334.6 390.44 314.6

Max 29,518 479.46 299 Max 2343 396.57 557

kroB100

Min 22,141 39.72 5

st70

Min 675 12.42 11

Avg. 22,222 40.00 19.4 Avg. 676.5 12.59 77.2

Max 22,258 40.38 101 Max 681 12.71 182

kroB150

Min 26,132 157.96 83

ts225

Min 126,643 626.73 125

Avg. 26216.2 161.33 217.4 Avg. 126788.1 636.24 336.2

Max 26,329 165.14 419 Max 126,962 643.72 647

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 154 American Journal of Operations Research

algorithm (WFA), and river formation dynamics (RFD). The comparisons are
summarized in Table 7. The results of the original and a modified IWD (col-
umns 4 and 5, respectively) were taken from [1] and from [38], respectively. The
results of another modified IWD, called the exponential ranking selection IWD
(ERS-IWD; column 6), were extracted from [3]. The results of columns 7 and 8
were taken from [5], who implemented the IWD and their proposed adaptive
IWD on TSP instances. The WWO results (column 9) were taken from [7]. The
WFA and RFD results (columns 10 and 11) were borrowed from [8] and from
[9], respectively. The best results are marked in bold font.

The numbers of instances solved by these algorithms are insufficient for cal-
culating an accurate P-value statistic. Moreover, some of these algorithms per-
form as well as HCA in certain instances. However, as confirmed in Table 7,
HCA outperforms the original IWD algorithm and its various modifications.
One plausible reason for the poor performance of the IWD algorithm is the
premature convergence and stagnation in local optimal solutions. In contrast,
HCA can escape from local optima by exploiting the depths of the paths along
with the soil amount. These actions diversify the solutions. The most competi-
tive opponent to HCA was WFA, which also optimized the solutions in the
tested instances. In contrast, the WWO performed poorly because this algorithm

Table 7. Best results of HCA, the original IWD, modified IWDs, WWO, WFA, and RFD.

Instance name
Optimal

result
HCA

Original IWD
(4)

IWD
(5)

ERS-IWD
(6)

Adaptive IWD
WWO

(9)
WFA
(10)

RFD
(11) IWD

(7)
AIWD

(8)

berlin52 7542 7542 - 7542 - - - - - -

ch130 6110 6110 - - 6316 - - 6338 6110 -

ch150 6528 6528 - - - - - 7014 6528 -

eil51 426 426 471 426 429 434 426 427 426 441.9

eil76 538 538 559 540 545 552 538 557 538 -

eil101 629 629 - 639 654 - - - 629 -

kroA100 21,282 21,282 23,156 21,429 21,959 23,183 21,304 21,668 21,282 -

kroA150 26,524 26,614 - - - - - - 26,524 -

kroA200 29,368 29,368 - - 31,680 - - 31,064 29,368 -

kroC100 20,749 20,749 - 20,816 - - - - - -

lin105 14,379 14,379 - 14,393 14,696 - - - - -

pr76 108,159 108,159 - 109,608 - - - - - -

rat195 2323 2323 - - - 2461 2338 -

st70 675 675 - 676 - 710 675 - - -

ts225 126,643 126,643 - - - 275791 127325 - - -

Average 24791.7 24797.7 8062 19563.2 10,897 50521.8 25434.3 11178 11426 441.9

P-values vs HCA 0.4025 0.2701 0.1598 0.3219 0.1878 0.1302 0.2813 -

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 155 American Journal of Operations Research

was originally designed for continuous-domain problems, and its operations
need adjustment for combinatorial problems. Moreover, the WWO adopts a re-
ducing population-size strategy, which degrades its performance in some prob-
lems. Finally, the WWO suffers from slow convergence because it depends only
on the altitude of the nodes.

The performances of HCA, IWD, adaptive IWD (AIWD) and modified IWD
(MIWD) are further compared in Table 8. The best and average results of IWD
and AIWD were taken from [5], while those of MIWD were taken from [6].

This comparison aims to compare the robustness of HCA and other algo-
rithms. Despite there being no significant differences between the results (best,
average), the average results are closer to the optimal in HCA than in the other
algorithms, suggesting the superior robustness of HCA. Table 9 compares the
runtimes of the HCA, IWD and AIWD. The best and average execution times
and iteration numbers of the IWD algorithms were taken from [5].

According to Table 9, HCA reaches the best solution after fewer iterations
than IWD and AIWD. This result confirms the superior efficiency of HCA.
Moreover, adding the other stages of the water cycle did not affect the average
execution time of HCA. Figure 8 plots the average execution times of the three
algorithms implemented on five benchmark problems.

Optimal-solution searching by HCA was compared with those of other
well-known algorithms, namely, an ACO algorithm combined with fast opposite
gradient search (FOGS-ACO) [39], a genetic simulated annealing ant colony
system with PSO (GSAACS-PSO) [40], an improved discrete bat algorithm
(IBA) [27], set-based PSO (S-CLPSO) [41], a modified discrete PSO with a newly
introduced mutation factor C3 (C3D-PSO); results taken from [23], an adaptive
simulated annealing algorithm with greedy search (ASA-GS) [11], the firefly al-
gorithm (FA) [42], a hybrid ACO enhanced with dual NN (ACOMAC-DNN)
[43], a discrete PSO (DPSO) [26], a self-organizing neural network using the
immune system (ABNET-TSP) [44], and an improved discrete cuckoo search
algorithm (IDCS) [45]. Table 10 summarizes the comparison results.

Table 8. Best and average results of HCA, IWD, AIWD, and MIWD.

Instance
Name

HCA IWD AIWD MIWD

Best Avg. Best Avg. Best Avg. Best Avg.

Eil51 426 426.85 434 443.2 426 428.4 428.98 432.62

St70 675 676.5 710 724.93 675 682.5 677.1 684.08

Eil76 538 538.5 552 564.43 538 542.86 549.96 558.23

KroA100 21282 21308.1 23183 23548.37 21,304 21586.73 21407.57 21904.03

rat195 2323 2334.6 2461 2480.6 2338 2347.8 - -

ts225 126643 126788.1 755791 276140.75 127,325 128323.5 - -

Average 29912.8 29947.6 130521.8 50650.4 25434.3 25652.0 5765.9 5894.7

T-test (P-values) vs HCA 0.3722 0.3656 0.3570 0.2867 0.3209 0.3611

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 156 American Journal of Operations Research

Table 9. Average execution times and best and average iteration numbers in HCA, IWD, and Adaptive IWD.

Instance name
HCA IWD Adaptive IWD

Avg. Time (s) Iteration [Best, Avg.] Avg. Time (s) Iteration [Best, Avg.] Avg. Time (s) Iteration [Best, Avg.]

eil51 4.73 [57, 47.2] 154.537 [1509, 3000] 180.648 [190, 3000]

st70 12.59 [83, 77.2] 434.193 [960, 3,500] 453.631 [1769, 3500]

eil76 16.34 [46, 47.8] 567.208 [2147, 3,500] 571.251 [752, 3500]

kroA100 40.7 [89, 112.4] 1364.979 [3698, 3750] 1365.752 [2397, 3750]

rat195 390.44 [401, 314.6] 2023.162 [604, 5000] 2335.9392 [4995, -]

ts225 636.24 [365, 336.2] 3969.892 [1, 5000] 4162.92 [3850, 5000]

Average 142.1 1419.0 1511.7

T-test (P-value) for Avg. Time 0.1162 0.1200

Table 10. Best results obtained by HCA and other optimization algorithms.

Instance
name

Optimal
result

HCA

FO
G

S-A
C

O

G
SA

A
C

S-PSO

IBA
S-C

LPSO

C
3D

-PSO

A
SA

-G
S

FA

A
C

O
M

A
C

-D
N

N

DPSO

A
BN

ET-TSP

IDCS

berlin52 7542 7542 7546.6 7542 7542 7542 7544.7 7544.36 - 7542 7542 7542

ch130 6110 6110 - 6141 - - 6110.7 - - - 6145 6110

ch150 6528 6528 - 6528 - - 6530.9 - - - 6602 6528

eil51 426 426 426 427 426 426 426 428.87 428.87 430.01 427 427 426

eil76 538 538 546.83 538 539 538 538 544.37 552.61 546 541 538

eil101 629 629 633.40 630 634 629 640.21 - 638 629

d198 15,780 15,780 - - 15,809 15830.6 15,955.6 - 15,781

kroA100 21,282 21,282 22,414 21,282 21,282 21,282 21,282 21285.4 21285.4 21,408.2 - 21,333 21,282

kroA150 26,524 26,614 - 26,524 - 26,537 26524.9 - - 26,678 26,524

kroA200 29,368 29,368 29,717 29383 - 29,399 29411.5 - - 29,600 29,382

kroB100 22,141 22,141 - 22141 22,140* - 22139.1 22139.1 - - 22,343 22,141

kroB150 26,130 26,132 - 26130 - - 26140.7 - - - 26,264 26,130

kroB200 29,437 29,455 - 29541 - - 29504.2 - - - 29,637 29,448

kroC100 20,749 20,749 - 20,749 20,749 20824.6 20750.8 - - - 20,915 20,749

kroD100 21,294 21,294 - 21,309 21,294 21405.6 21294.3 - - - 21,374 21,294

kroE100 22,068 22,068 - 22,068 22,068 - 22106.3 - - - 22,395 22,068

lin105 14,379 14,379 - 14,379 - 14379 14383 14383 - - 14,379 14,379

pr76 108,159 108,159 108,864 - - 108159 108159 - 108280 - 108,159

pr107 44,303 44,303 - - 44,303 44301.7* 44346 - - - 44,303

pr124 59,030 59,030 - - 59,030 59030.7 59030 - - - 59,030

pr136 96,772 96,861 - - 97,547 96966.3 97182.7 - - - 96,790

rat195 2323 2323 - - - 2345.2 - - - 2324

st70 675 675 678.93 - 675 675 675 677.11 677.11 - 675 - 675

ts225 126,643 126,643 - - - - 126646 - - - - 126,643

Average 29534.6 29542.9 21353.3 16062.2 24479.2 20585.0 5730 29,554 29,669 9587 23,494 16,051 29536.5

P-values versus HCA 0.1120 0.6755 0.3327 0.3088 - 0.1129 0.2684 0.1536 0.3360 0.0014 0.1890

* Incorrect.

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 157 American Journal of Operations Research

Figure 8. Average execution times of HCA, IWD, and Adaptive IWD.

Although the complexity of the TSP increases with increasing number of ci-

ties, the HCA outperformed the other algorithms in most instances. The
P-values indicate there are no significant differences between HCA and other
algorithms, except between HCA and ABNET-TSP, where the HCA was better.
The HCA competed with other algorithms such as the IDCS algorithm; indeed,
the results of HCA and IDCS were not noticeably different even for large prob-
lems. The high performance of HCA was again attributed to the effective design
of the HCA and that included an information sharing process among the water
drops. This process helps the HCA exploit the promising solutions and increases
the speed of algorithm convergence. The additional stages of the HCA assist
with exploring different solutions (enhancing the search capability), and prevent
trapping in local optima.

5.3. HCA Convergence Evaluation

This section analyses the performance of the HCA and its convergence rate. As
previously stated, the maximum iteration number was set to three times the
number of nodes in the instance. Figure 9 shows the convergence of the algo-
rithm on the berlin52 instance. The cost along the Y-axis denotes the total route
length.

According to Figure 9, the solution was optimized after 65 iterations. The
berlin52 benchmark is relatively easy to solve because the node distribution re-
duces the possibility of falling into local optima. The local and global solutions
are the best solution at the end of each iteration and the best solution among all
iterations, respectively. Note that the algorithm converges towards the optimal
solution. In addition, the HCA generated different solutions in every iteration
and the search process was prevented from stagnating by the depth factor and
the information sharing among the water drops. The depth factor increases the
chance of selecting previously unexplored or little-used paths. Figure 10 shows
the convergence of the algorithm on the eil51 instance. The solution was

0

500

1000

1500

2000

2500

3000

3500

4000

4500

eil51 st70 eil76 kroA100 rat195 ts225
A

ve
ra

ge
 ti

m
e

(s
)

Instance name

Execution time

HCA

IWD

AIWD

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 158 American Journal of Operations Research

Figure 9. Local (blue) and global (red) best solutions on berlin52.

Figure 10. Local (blue) and global (red) best solutions on eil51.

optimized at the 64th iteration.

Figure 11 illustrates the convergence behavior of the HCA on the eil67 in-
stance. Here, the solution was optimized at iteration 171.

Figure 12 illustrates the convergence behavior of the HCA on the eil101 in-
stance. The optimal solution was found at iteration 99. Moreover, the smooth
convergence rate confirms the good balance between the exploration and ex-
ploitation processes.

Figure 13 shows the convergence of the global best solution on the st70 in-
stance. The solution was optimized at iteration 125.

In summary, the convergence rate of the HCA proves the effectiveness of the
algorithm design. Furthermore, the algorithm searches the optimal solution un-
til the final iterations, without stagnation in local optima. It also converges ra-
pidly on easy instances.

0 20 40 60 80 100 120 140 160

Number of iteration

7400

7600

7800

8000

8200

8400

8600

8800

9000

9200

9400

C
os

t

Local best

Global best

0 20 40 60 80 100 120 140 160

Number of iteration

420

440

460

480

500

520

540

C
os

t

Local best

Global best

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 159 American Journal of Operations Research

Figure 11. Local (blue) and global (red) best solutions on eil76.

Figure 12. A graph for local vs. global solution on eil101.

Figure 13. Global best solution on st70.

0 50 100 150 200 250

Number of iteration

520

540

560

580

600

620

640

C
os

t

Local best

Global best

0 50 100 150 200 250 300 350

Number of iteration

620

640

660

680

700

720

740

760

C
os

t

Local best

Global best

0 50 100 150 200 250

Number of iteration

660

680

700

720

740

760

780

800

C
os

t

Global best

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 160 American Journal of Operations Research

6. Conclusions

In this paper, HCA was applied on an archetypal NP-hard problem (the TSP).
Initially, the performance of the algorithm was tested on simple geometric
structures which are easy to design and understand. Parameter tuning was also
performed on these structures. The obtained results indicate the flexibility and
capability of the algorithm in solving such problems. Moreover, the algorithm
provided different same-cost solutions to the same problem. This validates the
effective design of the exploration and exploitation processes of the algorithm.
The geometric TSP instances are useful for evaluating other new algorithms due
to their simple design, and different shapes can be designed by the same prin-
ciple.

Next, the algorithm was tested on various standard benchmarks taken from
the literature. The algorithm provided high-quality solutions and outperformed
other metaheuristic algorithms in seeking the minimum path. Also, the HCA
found the optimal solution within a few iterations. The HCA showed its ability
to escape from local optima and find the global solution. The strong optimiza-
tion capability of the HCA is conferred by the efficient design of the exploration
and exploitation processes. Moreover, by utilizing both direct and indirect
communication to share information among the water drops, the algorithm
steers towards better solutions within a small number of iterations and helps to
diversify the search space. Significance figures show that, at the very least, HCA
is no worse than other algorithms. The added advantage of HCA is that all stages
of the hydrological water cycle are included, leading to an overall conceptual
framework under which other water-based algorithms can be placed. In addi-
tion, the inclusion of all stages allows both direct and indirect communication to
take place among particles, leading to enhanced swarm intelligence.

In summary, the HCA demonstrated strong performance in structural and
benchmark TSP instances. It obtained the optimal solution in most instances,
confirming the effectiveness of the algorithm framework. Therefore, the HCA
structure is a feasible approach for solving TSPs. The HCA tends to fully explore
the graph, providing diverse solutions at fast convergence speeds. Also, as con-
firmed by the convergence behavior of the algorithm, the HCA successfully
avoids potential stagnation in local optima.

The HCA performance could additionally be investigated on asymmetric TSP
instances. Although the HCA optimizes the TSP solution within a reasonable
timeframe, further enhancements would reduce its execution time on large in-
stances. Furthermore, the HCA can be used for solving other NP-hard optimiza-
tion problems.

References
[1] Shah-Hosseini, H. (2007) Problem Solving by Intelligent Water Drops. 2007 IEEE

Congress on Evolutionary Computation, 1, 3226-3231.
https://doi.org/10.1109/CEC.2007.4424885

https://doi.org/10.4236/ajor.2018.83010
https://doi.org/10.1109/CEC.2007.4424885

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 161 American Journal of Operations Research

[2] Eskandar, H., Sadollah, A., Bahreininejad, A. and Hamdi, M. (2012) Water Cycle
Algorithm—A Novel Metaheuristic Optimization Method for Solving Constrained
Engineering Optimization Problems. Computers & Structures, 110-111, 151-166.
https://doi.org/10.1016/j.compstruc.2012.07.010

[3] Alijla, B.O., Wong, L.-P., Lim, C.P., Khader, A.T. and Al-Betar, M.A. (2014) A
Modified Intelligent Water Drops Algorithm and Its Application to Optimization
Problems. Expert Systems with Applications, 41, 6555-6569.
https://doi.org/10.1016/j.eswa.2014.05.010

[4] Wedyan, A., Whalley, J. and Narayanan, A. (2017) Hydrological Cycle Algorithm
for Continuous Optimization Problems. Journal of Optimization, 2017, Article ID:
3828420. https://doi.org/10.1155/2017/3828420

[5] Msallam, M.M. and Hamdan, M. (2011) Improved Intelligent Water Drops Algo-
rithm Using Adaptive Schema. International Journal of Bio-Inspired Computing, 3,
103. https://doi.org/10.1504/IJBIC.2011.039909

[6] Shah-Hosseini, H. (2009) The Intelligent Water Drops Algorithm: A Na-
ture-Inspired Swarm-Based Optimization Algorithm. International Journal of
Bio-Inspired Computing, 1, 71-79. https://doi.org/10.1504/IJBIC.2009.022775

[7] Wu, X.-B., Liao, J. and Wang, Z.-C. (2015) Water Wave Optimization for the Trav-
eling Salesman Problem. 11th International Conference of Intelligent Computing
Theories and Methodologies, Fuzhou, 20-23 August 2015, 137-146.
https://doi.org/10.1007/978-3-319-22180-9_14

[8] Srour, A., Othman, Z.A. and Hamdan, A.R. (2014) A Water Flow-Like Algorithm
for the Travelling Salesman Problem. Advances in Electrical and Computer Engi-
neering, 2014, 1-14. https://doi.org/10.1155/2014/436312

[9] Rabanal, P., Rodríguez, I. and Rubio, F. (2009) Applying River Formation Dynamics
to Solve NP-Complete Problems. In: Chiong, R., Ed., Nature-Inspired Algorithms
for Optimisation, Springer, Berlin Heidelberg, 333-368.
https://doi.org/10.1007/978-3-642-00267-0_12

[10] Zhan, S., Lin, J., Zhang, Z. and Zhong, Y. (2016) List-Based Simulated Annealing
Algorithm for Traveling Salesman Problem. Computational Intelligence and Neu-
roscience, 2016, 1-12. https://doi.org/10.1155/2016/1712630

[11] Geng, X., Chen, Z., Yang, W., Shi, D. and Zhao, K. (2011) Solving the Traveling Sa-
lesman Problem Based on an Adaptive Simulated Annealing Algorithm with Greedy
Search. Applied Soft Computing, 11, 3680-3689.
https://doi.org/10.1016/j.asoc.2011.01.039

[12] Braun, H. (1991) On Solving Travelling Salesman Problems by Genetic Algorithms.
In: Parallel Problem Solving from Nature, Springer-Verlag, Berlin/Heidelberg,
129-133. https://doi.org/10.1007/BFb0029743

[13] Grefenstette, J., Gopal, R., Rosmaita, B. and Van Gucht, D. (1985) Genetic Algo-
rithms for the Traveling Salesman Problem. Proceedings of the First International
Conference on Genetic Algorithms, Pittsburgh, July 1985, 160-168.

[14] Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I. and Dizdarevic, S. (1999) Ge-
netic Algorithms for the Travelling Salesman Problem: A Review of Representations
and Operators. Artificial Intelligence Review, 13, 129-170.
https://doi.org/10.1023/A:1006529012972

[15] Moorthy, S.K. (2012) Evolving Optimal Solutions by Nature Inspired Algorithms.
PhD Thesis, University of Pune, Pune.

[16] Potvin, J.-Y. (1996) Genetic Algorithms for the Traveling Salesman Problem. An-
nals of Operations Research, 63, 337-370. https://doi.org/10.1007/BF02125403

https://doi.org/10.4236/ajor.2018.83010
https://doi.org/10.1016/j.compstruc.2012.07.010
https://doi.org/10.1016/j.eswa.2014.05.010
https://doi.org/10.1155/2017/3828420
https://doi.org/10.1504/IJBIC.2011.039909
https://doi.org/10.1504/IJBIC.2009.022775
https://doi.org/10.1007/978-3-319-22180-9_14
https://doi.org/10.1155/2014/436312
https://doi.org/10.1007/978-3-642-00267-0_12
https://doi.org/10.1155/2016/1712630
https://doi.org/10.1016/j.asoc.2011.01.039
https://doi.org/10.1007/BFb0029743
https://doi.org/10.1023/A:1006529012972
https://doi.org/10.1007/BF02125403

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 162 American Journal of Operations Research

[17] Rao, A. and Hedge, S. (2015) Literature Survey on Travelling Salesman Problem
Using Genetic Algorithms. International Journal of Advanced Research in Educa-
tion Technology, 2, 42.

[18] Vaishnav, P., Choudhary, N. and Jain, K. (2017) Traveling Salesman Problem Using
Genetic Algorithm: A Survey. International Journal of Scientific Research in Com-
puter Science, Engineering and Information Technology, 2, 105-108.

[19] Dorigo, M. and Gambardella, L.M. (1997) Ant Colonies for the Travelling Salesman
Problem. BioSystems, 43, 73-81. https://doi.org/10.1016/S0303-2647(97)01708-5

[20] Stutzle, T. and Hoos, H.H. (1997) MAX-MIN Ant System and Local Search for the
Traveling Salesman Problem. Proceedings of 1997 IEEE International Conference
on Evolutionary Computation, Indianapolis, 13-16 April 1997, 309-314.
https://doi.org/10.1109/ICEC.1997.592327

[21] Gambardella, L.M. and Dorigo, M. (1996) Solving Symmetric and Asymmetric TSPs
by Ant Colonies. Proceedings of IEEE International Conference on Evolutionary
Computation, Nagoya, 20-22 May 1996, 622-627.
https://doi.org/10.1109/ICEC.1996.542672

[22] Hlaing, Z.C.S.S. and Khine, M.A. (2011) An Ant Colony Optimization Algorithm
for Solving Traveling Salesman Problem. International Conference on Information
Communication and Management, 16, 54-59.

[23] Zhong, W., Zhang, J. and Chen, W. (2007) A Novel Discrete Particle Swarm Opti-
mization to Solve Traveling Salesman Problem. 2007 IEEE Congress on Evolutio-
nary Computation, Singapore, 25-28 September 2007, 3283-3287.
https://doi.org/10.1109/CEC.2007.4424894

[24] Wang, X., Mu, A. and Zhu, S. (2013) ISPO: A New Way to Solve Traveling Sales-
man Problem. Intelligent Control and Automation, 4, 122-125.
https://doi.org/10.4236/ica.2013.42017

[25] Wang, K.-P., Huang, L., Zhou, C.-G. and Pang, W. (2003) Particle swarm optimiza-
tion for traveling salesman problem. Proceedings of the 2003 International Confe-
rence on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003, 1583-1585.
https://doi.org/10.1109/ICMLC.2003.1259748

[26] Shi, X.H., Liang, Y.C., Lee, H.P., Lu, C. and Wang, Q.X. (2007) Particle Swarm Op-
timization-Based Algorithms for TSP and Generalized TSP. Information Processing
Letters, 103, 169-176. https://doi.org/10.1016/j.ipl.2007.03.010

[27] Osaba, E., Yang, X.-S., Diaz, F., López-Garcia, P. and Carballedo, R. (2016) An Im-
proved Discrete Bat Algorithm for Symmetric and Asymmetric Traveling Salesman
Problems. Engineering Applications of Artificial Intelligence, 48, 59-71.
https://doi.org/10.1016/j.engappai.2015.10.006

[28] Saji, Y., Riffi, M.E. and Ahiod, B. (2014) Discrete Bat-Inspired Algorithm for Tra-
velling Salesman Problem. 2014 Second World Conference on Complex Systems,
Agadir, 10-12 November 2014, 28-31. https://doi.org/10.1109/ICoCS.2014.7060983

[29] Basu, S. (2012) Tabu Search Implementation on Traveling Salesman Problem and
Its Variations: A Literature Survey. American Journal of Operations Research, 2,
163-173. https://doi.org/10.4236/ajor.2012.22019

[30] Held, M., Hoffman, A.J., Johnson, E.L. and Wolfe, P. (1984) Aspects of the Travel-
ing Salesman Problem. IBM Journal of Research and Development, 28, 476-486.
https://doi.org/10.1147/rd.284.0476

[31] Hoffman, K.L. and Padberg, M. (2013) Traveling Salesman Problem. In: Encyclope-
dia of Operations Research and Management Science, Kluwer Academic Publishers,

https://doi.org/10.4236/ajor.2018.83010
https://doi.org/10.1016/S0303-2647(97)01708-5
https://doi.org/10.1109/ICEC.1997.592327
https://doi.org/10.1109/ICEC.1996.542672
https://doi.org/10.1109/CEC.2007.4424894
https://doi.org/10.4236/ica.2013.42017
https://doi.org/10.1109/ICMLC.2003.1259748
https://doi.org/10.1016/j.ipl.2007.03.010
https://doi.org/10.1016/j.engappai.2015.10.006
https://doi.org/10.1109/ICoCS.2014.7060983
https://doi.org/10.4236/ajor.2012.22019
https://doi.org/10.1147/rd.284.0476

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 163 American Journal of Operations Research

Dordrecht, 849-853. https://doi.org/10.1007/978-1-4419-1153-7_1068

[32] Li, M., Chen, X., Li, X., Ma, B. and Vitanyi, P.M.B. (2004) The Similarity Metric.
IEEE Transactions on Information Theory, 50, 3250-3264.
https://doi.org/10.1109/TIT.2004.838101

[33] Helsgaun, K. (2000) An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic. European Journal of Operational Research, 126, 106-130.
https://doi.org/10.1016/S0377-2217(99)00284-2

[34] Helsgaun, K. (2006) An Effective Implementation of K-opt Moves for the
Lin-Kernighan TSP Heuristic. Roskilde University, Roskilde, 109.

[35] Rocki, K. and Suda, R. (2012) Accelerating 2-opt and 3-opt Local Search Using GPU
in the Travelling Salesman Problem. 2012 12th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, Ottawa, 13-16 May 2012, 705-706.
https://doi.org/10.1109/CCGrid.2012.133

[36] Reinelt, G. (1995) TSPLIB.
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

[37] Reinelt, G. (1991) TSPLIB—A Traveling Salesman Problem Library. ORSA Journal
on Computing, 3, 376-384. https://doi.org/10.1287/ijoc.3.4.376

[38] Gülcü, S.D., Gülcü, Ş., Kahramanli, H., Campus, A.K. and Selçuklu, K. (2013) Solu-
tion of Travelling Salesman Problem Using Intelligent Water Drops Algorithm.
Proceedings of the 2nd International Conference on Information Technology and
Computer Networks, Montreal, 27-28August 2016.

[39] Saenphon, T., Phimoltares, S. and Lursinsap, C. (2014) Combining New Fast Oppo-
site Gradient Search with Ant Colony Optimization for Solving Travelling Salesman
Problem. Engineering Applications of Artificial Intelligence, 35, 324-334.
https://doi.org/10.1016/j.engappai.2014.06.026

[40] Chen, S.-M. and Chien, C.-Y. (2011) Solving the Traveling Salesman Problem Based
on the Genetic Simulated Annealing Ant Colony System with Particle Swarm Op-
timization Techniques. Expert Systems with Applications, 38, 14439-14450.
https://doi.org/10.1016/j.eswa.2011.04.163

[41] Chen, W.-N., Zhang, J., Chung, H.S.-H., Zhong, W.-L., Wu, W.-G. and Shi, Y.
(2010) A Novel Set-Based Particle Swarm Optimization Method for Discrete Opti-
mization Problems. IEEE Transactions on Evolutionary Computation, 14, 278-300.
https://doi.org/10.1109/TEVC.2009.2030331

[42] Wang, M., Fu, Q., Tong, N., Li, M. and Zhao, Y. (2016) An Improved Firefly Algo-
rithm for Traveling Salesman Problems. Proceedings of the 2015 4th National Con-
ference on Electrical, Electronics and Computer Engineering, Xi’an, 12-13 Decem-
ber 2015.

[43] Tsai, C.-F., Tsai, C.-W. and Tseng, C.-C. (2004) A New Hybrid Heuristic Approach
for Solving Large Traveling Salesman Problem. Information Sciences, 166, 67-81.
https://doi.org/10.1016/j.ins.2003.11.008

[44] Masutti, T.A.S. and de Castro, L.N. (2009) A Self-Organizing Neural Network Using
Ideas from the Immune System to Solve the Traveling Salesman Problem. Informa-
tion Sciences, 179, 1454-1468. https://doi.org/10.1016/j.ins.2008.12.016

[45] Ouaarab, A., Ahiod, B. and Yang, X.-S. (2014) Discrete Cuckoo Search Algorithm
for the Travelling Salesman Problem. Neural Computing and Applications, 24,
1659-1669. https://doi.org/10.1007/s00521-013-1402-2

https://doi.org/10.4236/ajor.2018.83010
https://doi.org/10.1007/978-1-4419-1153-7_1068
https://doi.org/10.1109/TIT.2004.838101
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1109/CCGrid.2012.133
https://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1016/j.engappai.2014.06.026
https://doi.org/10.1016/j.eswa.2011.04.163
https://doi.org/10.1109/TEVC.2009.2030331
https://doi.org/10.1016/j.ins.2003.11.008
https://doi.org/10.1016/j.ins.2008.12.016
https://doi.org/10.1007/s00521-013-1402-2

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 164 American Journal of Operations Research

Appendix

This appendix provides the outputs of HCA when applied on the benchmark in-
stances.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

berlin52.tsp , Cost: 7542

 51

 33

 43

 10

 9

 8

 41

 19

 45

 32

 49

1 22

 31

 18

 3

 17

 21

 42
 7

 2

 30

 23

 20 50

 29

 16

 46
 44

 34
 35
 36

 39
 40

 37

 38

 48
 24

 5
 15

 6
 4

 25 12

 28

 27

 26

 47

 13

 14

 52

 11

0 100 200 300 400 500 600 700

ch130.tsp , Cost: 6110

 55

 122

 96

 13

 67

 14 10

 102 6

 91

 72

 49 58

 120 53

 106
 38

 92

 73

 99 74 75

 52

 65

 56

 9
 57 82 101

 123 111

 119

 84 36

 32 113

 25
 48

 63

 68

 98
 110

 89

 94

 77

 103

 81
 12 87

 79 95

 116 24
 29

 15

 100

 19
 27

 31
 17

 34 43

 104

 127

 107

 70

 97 7

 26

 88

 86 69
 64

 124
 129

 61
 109

 76

 11 5

 45
 16

 128
 105

 62

 28

 115

 112

 117

 39 41
1

 71

 130

 50

 2

 54
 35

 4

 20
 118

 80 46

 18

 8 108

 114
 3

 83
 30

 59

 90
 125

 85

 66

 78

 121 126

 21
 33

 23
 47 40

 22 37
 93

 44

 42

 51
 60

0 100 200 300 400 500 600 700

ch150.tsp , Cost: 6528

 135 70

 108

 102

 114

 99

 19

 2

 37 6

 28
 9

 42

 120
 47

 139

 40

 53

 118 24 12

 116

 101

 41
 57

 39

 127
 69 36

 61

 11

 148 130

 17
 66

 60

 140

 117

 129

 27
 31

 123
 74

 13

 106

 91 119
 68

 128

 45 71

 44 64

 112

 136

 145

 144
 147 49

 72

 80 14

 122

 77

 133

 15
 78

 21

 150
 115

 4
 104

 22 125

 149

 62

 3

 113 10

 94

 88

 121

 79 59
 16

 111
 105

 33

 126

 52

 93

 124

 35 96

 89

 8

 7

 84

 30

 63
 48

 73

 76

 34

 87
1 98

 103

 82
 95

 107 5
 100

 143

 97

 146

 26

 75

 18

 142
 85

 65

 132
 137

 50

 55

 58

 141
 83

 56

 90

 46 92
 54

 138

 134

 131

 32

 23 38

 67

 43

 109

 51

 20

 25 110

 81

 29

 86

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

00

00

00

00

00

00

d198.tsp , Cost: 15780

 184
 180
 178

 175

 174 173

 176

 177
 181
 183 182

 168 167

 108
 109 110 111

 107 106
 112 113 114

 105

 92 91
 80 79

 63
 49

 48

 35
 39
 47

 51 50

 64
 78 77 76

 81

 65

 52
 46

 53
 62

 75
 82

 74
 66
 61
 54
 45

 38
 31 32

 37 36
 33 34

 28
 30

 29

 23 22

 27 26
 25

 24
 21

 20 19 18 17 16

 15
 14 40

1

 2

 7 6

 3 4

 5

 8 9 10 11 12 13

 41

 42 43
 57
 58
 69
 71

 85
 86

 100 99
 87
 84
 73 72

 68
 59
 56

 44
 55
 60
 67 70

 83
 88
 98 97

 89 90
 96 95

 101
 94 93

 102
 103 104

 115
 122 121

 116 117 118 119 120

 123

 139

 154 155 156 157 158 159

 138

 124
 169
 125 126

 131 130
 133 132

 134
 140
 142
 147
 148
 153

 160 161 162
 152
 149
 146
 143
 141
 135 136

 129

 127
 170

 128

 137
 144

 145
 150 151

 163 164 165 166

 172

 171

 190

 189 188

 191

 187

 192 193

 186

 196

 197 198

 195
 194
 179

 185

eil51.tsp , Cost: 426

 42

 44
 15

 45 33

 39

 10

 49

 9

 30

 34

 50

 16
 21

 29
 2

 20

 35

 36

 3

 28

 31
 26

 8

 22

1

 32

 11

 38

 5

 37
 17

 4

 18
 47 12

 46
 51

 27
 6

 48

 23

 7
 43

 24

 14

 25

 13

 41

 19

 40

eil76.tsp , Cost: 538

 75

 4

 68
 6

 51

 17

 40
 12

 58 72 39
 9

 32

 44

 3

 16

 63
 33

 73

1

 62

 22

 64

 42

 43

 41

 56

 23

 49

 24

 18 50

 25

 55

 31

 10 38

 65

 11

 66

 59

 14 53

 7 35

 8

 19

 54

 13

 57

 15

 5

 37
 20

 70

 60
 71

 69

 36

 47

 21

 61

 28

 74

 2 30

 48

 29

 45

 27

 52

 34

 46 67

 26

 76

eil101.tsp , Cost: 629

 27

 69

1

 50

 76
 77

 3

 79

 78

 34
 81

 33

 51

 9

 35

 65

 71

 66

 20

 30

 70

 31 88

 7

 82

 48

 19

 11

 62

 10

 32

 90

 63

 64

 49

 36

 47

 46

 8

 45

 17
 84

 5

 60

 83

 18

 52

 89

 6

 96
 99

 59

 92

 93

 98
 37

 100
 91

 85

 61

 16

 86

 38

 44

 14

 42

 43

 15

 57

 2
 87

 97

 95

 94

 13
 58

 40

 21

 73
 72

 74

 22

 41

 75
 56

 23 67

 39

 4 25

 55

 54

 24

 29

 68

 80

 12

 26

 28

 53

 101

0

0

0

0

0

0

0

0

0

0

0

kroA100.tsp , Cost: 21282

 96 78
 52

 5

 37

 33

 76

 13

 95

 82

 85

 68

 73

 50

 44

 2
 54

 40

 64

 69

 81
 25

 87

 51

 61
 58

 67

 28
 93

 47

1

 63

 6 49

 90

 19

 75

 92

 8

 42

 89

 31
 80

 56

 97

 4

 65

 26

 66

 70

 22

 94

 16
 88

 53

 79

 18

 24

 38

 99

 36

 84

 10

 72

 21

 74

 59

 17 15

 11

 32

 45

 91 98

 23

 77

 60 62

 35

 86 27

 12
 20

 57
 9

 7

 55 83

 34
 29

 46

 43

 3

 14

 71

 41

 100

 48

 30

 39

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 165 American Journal of Operations Research

(i) (j)

(k) (l)

(m) (n)

(o) (p)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0

0

0

0

0

0

0

0

0

0

kroA150.tsp , Cost: 26614

 3
 46

 29

 132

 112

 107 30 121

 101

 39

 96 78
 52

 5

 37

 147

 103

 146

 33

 76

 13

 95 126

 82

 116

 50

 44
 114

 144

 2
 54

 40

 64

 69
 73

 68

 85

 135
 140

 145 87

 51 125

 25
 81

 61
 58

 108

 67
 105

 142

 148

 133

 138
 89

 31
 80

 122
 42

 8

 92

 139

 56

 143

 119

 118
 124 26

 129

 66

 65

 4

 97

 75

 19

 53
 134

 88
 16

 70

 22

 94
 137

 79

 18

 24

 38

 104
 111

 102

 99

 36

 84

 10

 106 90

 49 6

 63

1

 130

 28
 93

 131

 47
 113

 72

 21

 74

 127 59 141

 17 15

 11

 32

 109

 45

 91 98

 23

 110 77

 60 62 150

 35

 86 27

 12
 20

 57 7

 9
 117

 34

 83 55

 149

 120 115

 123 43

 128

 136 41

 71

 100

 48

 14

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

000

200

400

600

800

000

kroA200.tsp , Cost: 29368

 167

 30
 68

 169

 35

 2

 181

 125

 161

 151

 187

 157 107

 109

 6

 54

 75

 183
 155

 8

 22 134
 129

 146
 103

 143

 17
 25

 90
 34

 58
 141

 171

 200
 98 114

 88

 148

 28 39

 38

 71

 130

 72

 83
 62

 185

 168 50
 139

 86

 196

 56
 152

 178

 5

 105
 43

 137

 133

 176

 113

 195

 182

 94

 95

 91

 150

 173

 23

 144

 70

 76

 102

 164

 140

 21

 154

 89

 41

 59

 3
 73

 189

 131
 180

 142
 69

 108

 14

 192

 60

 101
 4

 163 93

 106 149

 190

 49

 18
 110

 29 184

 37

 179

 153 66

 119

 19

 99

 92

 10 175

 36
 57

 74

 100
 156

 33
 45

 197

 81

 97

 104

 165

 166

 96

 126
 87

 52 11

 84

 48

 170

 122 116

 188 44

 63
 194

 51

 16

 118

 124

 138
 9

 78 82

 7

 199

 26

 61

 136

 32 24
 159

 174

 121

 172 46

 12
 147

 40

 132

 111

 117 115

 531

 85

 145

 191

 27

 198

 123
 15

 13

 79

 160 162

 64
 20

 55

 42

 135

 186 127

 112
 120

 47
 31

 67
 177

 65

 80

 77 158
 193

 128

0 500 1000 1500 2000 2500 3000 3500 4000
0

00

00

00

00

00

00

00

00

00

00

kroB100.tsp , Cost: 22141

 6

 4

 83

 64

 14

 42

 2

 16 50

 43

 89

 87

 66

 74

 60

 57

 94

 35

 61

 27

 71 12

1

 95

 98

 32

 59
 76

 29

 8
 99

 97

 91
 28

 3

 11
 93

 85

 73

 53

 70 39

 40

 67
 5

 62

 69

 26

 100

 56

 81

 79

 47

 65

 37

 72
 38

 20

 80

 75

 30

 49
 86

 68

 10

 21

 90

 46
 25
 9 34

 7
 84

 58

 52

 54

 88

 23

 22

 55

 77

 24
 18 45

 36

 96

 92

 19

 44

 41

 17

 78

 13

 63

 31

 48

 51

 82

 33

 15

0 500 1000 1500 2000 2500 3000 3500 4000
0

0

0

0

0

kroB150.tsp , Cost: 26132

 30
 68

 2

 35

 23

 102

 70
 111 76
 121

 139
 131

 129

 94 123
 91

 95

 50
 133

 86
 43

 5

 119

 56

 101

 28 39

 38

 71 124 72

 126

 83
 62

 138

 113

 108

 114
 145

 109

 98

 148
 88

 58

 34
 90

 25
 17

 106

 8

 112

 22

 75 134

 54

 6
 149

 104

 80

 77
 115

 107

 130

 65

 147

 31
 47

 67

 55

 42 64
 20

 110

 79

 13

 15

 27

 85

1 53

 40

 12

 49

 18

 29

 142

 46

 125

 137

 24

 117

 32

 132

 61

 26

 7

 82 78

 9

 37

 120

 16

 135

 146

 127 51

 63

 44

 66

 48

 103 128

 84

 11 52

 150

 87

 96

 144

 97

 136

 81

 45
 33 100

 74

 57
 36

 14

 141 99

 10

 92

 19

 105

 93

 143

 4

 116

 60

 140

 69

 3
 73

 118

 59

 41

 89

 122

 21

0 500 1000 1500 2000 2500 3000 3500 4000
0

0

0

0

0

0

0

0

0

0

0

kroB200.tsp , Cost: 29455

 45

 36

 17 192

 41

 148

 102

 44

 130

 200
 19 151

 92

 119
 96

 137

 135

 162

 18
 24 153

 160

 144

 55

 104

 193
 22

 23

 88
 171

 143

 177 154 191

 139

 173

 115

 54 163

 116

 52

 58

 84
 7

 169

 72

 37

 184

 141

 47 179

 81

 113

 79

 188

 65 124 127

 80

 20

 38

 152
 108

 166

 138 86
 49

 134 181

 30

 75

 69
 150

 101

 56

 100

 26

 62
 132 5

 197 67

 194

 117

 190

 40

 39

 198

 70
 149

 170

 53

 189

 111

 68

 10

 123

 142
 73

 85

 122

 93
 11

 3

 158

 28
 129 91

 97
 76

 99
 8

 29

 136

 59
 175

 167

 32

 107

 71

 161

 12

 174

 98

 95

1

 90

 21

 146

 46
 25
 9 34

 57

 94 180 176

 27

 61

 35

 172
 157

 131

 178

 199

 145
 66

 133

 168
 114

 87
 165 74

 60

 186

 196

 89

 43

 164

 50

 159

 185

 118

 106
 140

 183

 103

 77
 105

 16

 2

 109

 110

 42
 120 125

 14

 64

 82

 121

 147 33

 182

 83

 4

 6
 15

 112
 128

 51

 156

 195

 48

 31

 63

 126 187

 13
 155

 78

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

000

200

400

600

800

000

kroC100.tsp , Cost: 20749

 95

 94
 91

 76

 70

 23

 21

 89

 41

 59

 73
 3

 69

 60

 4

 93

 99

 19

 92

 10 14

 36
 57

 74

 100 33
 45

 81

 97
 96

 87

 52 11

 84

 48

 66

 44

 63

 51

 16

 37

 9

 78 82

 7

 26

 61

 32 24

 46

 29

 18

 49

 12

 40

 531

 85

 27

 15

 13

 79

 64
 20

 42

 55

 67

 47
 31

 65

 80

 77

 30
 68

 35

 2

 54

 6

 75

 22

 8

 17
 25

 90
 34

 58

 98

 88

 28 39

 38

 71

 56

 43

 5

 86

 72

 83
 62

 50

0 500 1000 1500 2000 2500 3000 3500 4000

kroD100.tsp , Cost: 21294

 67 36
 29

 58

 22

 70

 49

 98

 97
 32

 94

 17

 90

 11

 89

 42

 23

 46

 52
 8

 66

 38

 81 34

 50

1

 13 79

 88

 27 24
 41

 84

 69

 15

 73

 39

 71

 4

 93

 44

 60

 53

 5

 62
 37

 19

 51

 35 30

 100

 2

 48

 92

 55

 87 26

 95

 56

 28
 12

 47

 21

 10

 9

 20 25

 82

 18

 6

 40
 83

 3

 59

 85

 64

 43

 77
 91 54

 63

 16

 96

 86

 65

 14
 68

 33

 45

 99

 78

 31

 57
 72

 80 76

 61 74

 7

 75

0 500 1000 1500 2000 2500 3000 3500 4000
0

0

0

0

0

kroE100.tsp , Cost: 22068

 8

 65

 97

 25

 54 45
 99

 17 84

 40
 35

 88

 63

 58

 32

 12

 76

 7
 21

 74

1

 83

 73

 16

 71
 61

 14

 52

 44

 72

 89
 81

 79
 26

 46

 3

 47

 69

 51

 98

 59

 95

 36

 28

 23

 64

 62

 56

 15 20

 49

 50

 60

 10

 80

 57

 9

 31

 66

 30 93

 91

 55

 13

 75

 41

 87

 67

 27

 92

 82

 4

 2

 11

 96

 85

 77
 37

 70

 6

 34

 53 78

 100

 29

 24
 18

 94
 19

 86

 43

 39

 22 33

 38
 68

 48

 90

 42
 5

https://doi.org/10.4236/ajor.2018.83010

A. Wedyan et al.

DOI: 10.4236/ajor.2018.83010 166 American Journal of Operations Research

(q) (r)

(s) (t)

(u) (v)

(w) (x)

Figure S1. HCA outputs on benchmark instances. (a) berlin52, Cost = 7542; (b) ch130, Cost
= 6110; (c) ch150, Cost = 6528; (d) d198, Cost = 15780; (e) eil51, Cost = 426; (f) eil76, Cost =
538; (g) eil101, Cost = 629; (h) kroA100, Cost = 21282; (i) kroA150, Cost = 26614; (j)
kroA200, Cost = 29368; (k) kroB100, Cost = 22141; (l) kroB150, Cost = 26132; (m) kroB200,
Cost = 29455; (n) kroC100, Cost = 20749; (o) kroD100, Cost = 21294; (p) kroE100, Cost =
22068; (q) lin105, Cost = 14379; (r) pr76, Cost = 108159; (s) pr107, Cost = 44303; (t) pr124,
Cost = 59030; (u) pr136, Cost = 96861; (v) rat195, Cost = 2323; (w) st70, Cost = 675; (x)
ts225, Cost = 126643.

lin105.tsp , Cost: 14379

 93

 89

 90

 98

 99

 100

 95

 94

 88

 87

 66

 65

 61

 60

 39

 38

 35

 34

 14

 13 4

 5

 9

 8

 3

1 2 6 7 10 11

 15

 103

 21 22 29

 30

 31
 32

 33

 28 23 20

 12

 19 24 27

 16

 17

 18 25 26
 36

 37 42

 41
 43 46 52 53 58

 57 54 51 47 44

 104

 40

 49

 45 48 50 55 56

 59

 105

 62

 63 70

 69
 74 75 81

 73 76 80

 86

 79 77 72

 64

 67
 68

 71 78 82
 83

 84

 85

 91 92 96 97 101 102

pr76.tsp , Cost: 108159

 22

 21 25

 24

 46

 45

 44 48

 47

 69

 68

 70

 67

 50 49

 51
 66

 65

 71

 72

 73

 64
 63

 62 61

 41 60
 59

 58 57

 56 55

 52
 53

 54 42

 43
 28

 27 26

 20

 19 31

 30
 29

 32 33

 35 34

 40

 39 38

 36
 37 18

 17

 16 15

 74

 14
 13

 12 11

 10 9

 8

 7
 6 5

 4 3

 2

 75

 76

1

 23

pr107.tsp , Cost: 44303

 68

 65

 67 66

 64

 63

 21

 4 3 6 5

 7

 9 10
 8

 11 12

 13

 16 15 18

 14

 17

 20

 23 24 21

 19

 22

 25

 28 27 30

 26

 29

 32

 35 36 33

 31

 34

 37

 40 39 42

 38

 41

 44

 47 48
 43

 45 46

 49

 52 51 54 53

 50

 55 106 107

 105 104

 56 101

 99
 102 103

 100

 98

 95

 97 96 57

 94

 58

 89

 91 92 93

 90

 88

 85

 87 86 59

 84

 60

 79

 81 82 83

 80

 78

 75

 77 76 61

 74

 62 73

 70
 71 72

 69

pr124.tsp , Cost: 59030

 52 53
 88

 89

 104

 105
 106
 107
 108
 109
 110
 111
 112
 113
 114

 103

 102
 90

 87
 86

 85

 91
 101

 115
 116
 117
 118
 119
 120
 121
 122
 123
 124

 100 99 98 97 96 95 94 93 92 80 79 78 77 76 75 74 73 72 71 70 69 68 64 63

 81

 82

 84
 83

 67

 65
 66

 62 33 34 30 31 32 6

 5

 4

 3

 2

1
 8

 7 27 28 29 35 36

 59 61 60

 58

 57 56 55
 37 38

 26

 24 25

 22 23 39 40

 21
 20

 41
 42
 43
 44

 54 45
 19
 18

 17 16 9

 10

 11

 12

 13

 14 15

 51

 50

 49

 48

 47

 46

pr136.tsp , Cost: 96861

 119

 132 131

 136

 130

 120
 118

 109 110

 129

 135

 121
 117

 105

 122

 111

 128 127

 134

 126 125

 133

 124
 115

 103

 114 113

 123
 116

 112

 104

 101

 92 91

 102

 90
 81

 69

 80 79

 82
 89

 93 94

 88

 77 78

 70

 67

 58 57

 68

 56
 47

 35

 46 45

 48
 55

 59 60

 49

 43 44

 36

 33

 24 23

 34

 22
 13

 4

 12 11

 3

 10

 14
 21

 25 26

 9

 15

 32

 20
 16

 2

 8

 27 28

 19
 17

 7

1

 6 5

 18

 30 29

 31

 38

 41 42

 37

 50
 54

 66

 61 62

 53
 51

 40 39

 52

 64 63

 65

 72

 75 76

 71

 83
 87

 100

 95 96

 86
 84

 74 73

 85

 98 97

 99

 106

 108 107

rat195.tsp , Cost: 2323

 112
 111

 98
 99

 100 101
 102 103

 104

 91
 90

 89 88

 87

 86
 85

 72 73
 74 75

 76 77

 78

 65 64
 63

 62

 61
 60

 59

 45
 46 47 48

 49

 50 51
 52

 39 38

 37
 36 35

 22

 23
 24

 25
 26

 13 12
 11 10 9 8

 7
 6 5 4 3

 21

 15 14

 27 28
 29

 16 17 18

 19

 20 21

 34

 33

 32
 31

 30

 44
 43 42 41 40

 53

 54 55

 56
 57

 58

 71

 70
 69

 68 67
 66

 79 80

 81

 82
 83 84

 97

 96
 95 94

 93
 92

 105

 106

 107

 108

 109
 110

 122
 121

 120

 119 118

 131

 132
 133

 134

 147 148 149
 150

 151
 152

 153

 166
 165 164 163

 162
 161

 175 174 173 172

 159

 160

 146

 145 144

 158
 157

 170

 171

 183

 184

 185
 186

 187

 188

 189 190

 176 177 178

 179

 192

 191 193
 194

 195

 182 181

 180

 167

 168

 169

 156
 155

 154

 141

 140
 139 138 137 136

 135

 123 124 125
 126

 127

 128 129

 142
 143

 130

 117 116 115

 114 113

10 20 30 40 50 60 70 80 90 100

st70.tsp , Cost: 675

 54

 62

 33

 21 34

 12

 60

 52

 10 5

 53

 6

 41

 43
 17

 9

 40

 61

 39

 45

 25

 46

 27

 68
 44

 30
 20

 14

 28

 49
 55

 26
 8

 3

 32

 42

 18

 4

 2

 7 19

 24

 15

 57

 63

 66

 22

 59

 38

 31
 69 35

 70

 13
 29

 36

1

 23

 16

 47

 37
 58

 50 51
 56

 65

 64

 11

 67
 48

0.4 0.6 0.8 1 1.2 1.4 1.6
0.4

0.6

0.8

1

1.2

1.4

1.6
10 4 ts225.tsp , Cost: 126643

 77

 76 201 202 203 204 205 101

 102

 103

 104

 105

 106

 210 107

 108

 109

 110

 111

 112

 113

 114

 115

 215 214 213 212 211

 87

 86

 85

 84

 83

 206 207 208 209

 78

 79

 80

 81

 82 185 184 183 182 181

 58

 59

 60

 61

 62

 63 186 187 188 189 190 88

 89

 90

 91

 92

 93

 94 216 217 218 219 220

 116

 117

 118

 119

 120

 121

 122

 123

 124

 125 225 224 223 222 221 100 200 199

 99

 98

 97

 96

 95

 195 194 193 192 191

 68

 67

 66

 65

 64

 165 164 163 162 161

 39

 40

 41

 42

 43

 145 144 143 142

 48

 47

 46

 45

 44 166 167 168 169 170 69

 70

 71

 72

 73

 74

 198 197 196 75 175 174 173 172 171 50

 49

 150 149 148 147 146 25

 24

 23

 22

 21

 20

 19 141

 18

 17

 16

 15

 14

 13

 12

 11

 136 137 138 139 140 38

 37

 36

 35

 34

 33

 135 134 133 132 131

 10

 9

 8

 7

 6

 5

 4

 3

 2

1 126 127 128 129 130 26 151 152

 27

 28

 29

 30

 31

 32 156 157 158 159 160 57

 56

 55

 54

 53

 52

 153 154 155 51 176 177 178 179 180

https://doi.org/10.4236/ajor.2018.83010

	Solving the Traveling Salesman Problem Using Hydrological Cycle Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Problem Formulation
	4. The HCA-TSP Approach and Procedure
	4.1. Solution Representation
	4.2. Local Improvement Operation

	5. Experimental Results and Analysis
	5.1. Structural TSP Instances
	5.2. Benchmark TSP Instances
	5.3. HCA Convergence Evaluation

	6. Conclusions
	References
	Appendix

