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Abstract 
In this paper, a recently developed nature-inspired optimization algorithm 
called the hydrological cycle algorithm (HCA) is evaluated on the traveling 
salesman problem (TSP). The HCA is based on the continuous movement of 
water drops in the natural hydrological cycle. The HCA performance is tested 
on various geometric structures and standard benchmarks instances. The 
HCA has successfully solved TSPs and obtained the optimal solution for 20 of 
24 benchmarked instances, and near-optimal for the rest. The obtained results 
illustrate the efficiency of using HCA for solving discrete domain optimiza-
tion problems. The solution quality and number of iterations were compared 
with those of other metaheuristic algorithms. The comparisons demonstrate 
the effectiveness of the HCA. 
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1. Introduction 

Nature provides inspiration that can be used for computational processes. Many 
nature-inspired algorithms have emerged for solving optimization problems. 
The HCA is one of the newly proposed algorithms in the field of the swarm in-
telligence. The HCA is a water-based algorithm that simulates water movement 
through the hydrological cycle. The HCA uses a collection of artificial water 
drops that pass through various hydrological water cycle stages in order to gen-
erate solutions. The algorithm has been divided into four main stages: flow, 
evaporation, condensation, and precipitation. Each stage has a counterpart in 
the natural hydrological cycle and has a role in constructing the solution. More-
over, these stages work to complement each other and occur sequentially. The 
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result of one stage is input to the next stage. Temperature is the main factor 
driving the water cycle through all stages. The algorithm starts with a low tem-
perature and gradually increases until the cycle begins, then the temperature 
drops, as is natural in the real hydrological cycle. 

Water-based algorithms are considered to be a subclass of nature-inspired al-
gorithms that are based on certain factors or processes related to the activities 
and natural movements of water. Therefore, they share certain aspects of their 
conceptual framework. Each algorithm has a set of parameters and operations 
that form a procedure used to find a solution in an iterative process. However, 
they differ in their mathematical models and stages. These algorithms are fre-
quently and widely used in solving many optimization problems. 

Although there are already several water-based algorithms, none of them takes 
into account the full water cycle and the activities associated with water move-
ment. The partial simulation of a natural process may limit the algorithm per-
formance, especially in terms of exploration and exploitation capabilities which 
can lead to problems such as stagnation, increased computational effort, or pre-
mature convergence. Adding extra stages to an algorithm should only be done 
when there are clear advantages in doing so. One of the aims of this paper is to 
provide evidence that, for solving the TSP, including all stages of the water cycle 
has benefits over including only some stages.  

The intelligent water drops (IWD) algorithm is a water-based algorithm pro-
posed by Shah-Hosseini [1]. The IWD was inspired by the natural flow behavior 
of water in a river and by what happens in the journey from water drops to the 
riverbed. The IWD algorithm has some weaknesses that affected its perfor-
mance. The water drops update their velocity after they move from one place to 
another. However, this increase in the velocity is very small (imperceptible) and 
affects the searching capability. The update also does not consider that water 
drop velocity might also decrease. Soil can be only removed (no deposition me-
chanism), and that may lead to premature convergence or being trapped in local 
optima. In IWD only indirect communication is considered as represented by 
soil erosion. Finally, the IWD does not use evaporation, condensation, or preci-
pitation. These additional stages can improve the performance of water drop al-
gorithms and play an important role in the construction of better solutions. 

The water cycle algorithm (WCA) is another water-based algorithm, proposed 
by Eskandar et al. [2]. The WCA is based on flow of river and stream water to-
wards the sea. In WCA, entities are represented by a set of streams. These 
streams keep moving from one point to another, which simulates the flow 
process of the water cycle. The evaporation process occurs when the positions of 
the streams/rivers are very close to that of the sea. The WCA omits some impor-
tant factors in the natural water cycle. In WCA, no consideration is made for soil 
removal from the paths, which is considered a critical operation in the formation 
of streams and rivers. There is no consideration also for the condensation stage 
in WCA, which is one of the crucial stages in the water cycle. On the other hand, 
the WCA and PSO algorithms share similar structures but use different nomen-
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clatures for their components. 
A major problem in some of these algorithms is the process of choosing the 

next point to visit. They use one heuristic for controlling the movement of the 
entities in the search space. In particular, this can be observed when most algo-
rithm entities keep choosing the same nodes repeatedly because there is no other 
factor affecting their decisions. For instance, the IWD algorithm uses only the 
soil as heuristic for guiding the entities through the search space. For this reason, 
the IWD suffers from inability to make a different selection among a set of nodes 
that have similar probabilities [3]. One of the more common ways to address 
this problem is to include another heuristic that can affect the calculation of the 
probabilities. In HCA, the probability of selecting the next node is an association 
between two natural factors: the soil and the depth of the path, which enables the 
construction of a variety of solutions. 

Furthermore, some existing particle swarm algorithms rely on either direct or 
indirect communication for sharing information among the entities. Enabling 
both direct and indirect communication leads to better results and may reduce 
the iterations to reach the global optimum solution. Otherwise, the entities are 
likely to fall into the local optimum solution or produce the same solutions in 
each iteration (stagnation), and this leads to a degradation of the overall perfor-
mance of the algorithm. 

These aspects have been considered when designing the HCA by taking into 
account the limitations and weaknesses of previous water-based algorithms. This 
refinement involved enabling direct and indirect communication among the 
water drops. Such information sharing improved the overall performance and 
solution quality of the algorithm. Indirect communication was achieved in the 
flow stage by depositing and removing soil on/from paths and using path-depth 
heuristics. Direct communication was implemented via the condensation stage 
and was shown to promote the exploitation of good solutions. Furthermore, the 
condensation is a problem-dependent stage that can be customized according to 
the problem specifications and constraints. The cyclic nature of the HCA also 
provided a self-organizing and a feedback mechanism that enhanced the overall 
performance. The search capability of the HCA was enhanced by including the 
depth factor, velocity fluctuation, soil removal and deposition processes. The 
HCA provides a better balance between exploration and exploitation processes 
by considering these features. This confirmed that changing certain design as-
pects can significantly improve the algorithm’s performance. The HCA was suc-
cessfully applied and evaluated on continuous optimization problems [4]. 

This paper aims to present a new approach for solving TSP using HCA. This 
application also helps to evaluate the performance of the HCA on a discrete do-
main problem. Although many approaches can solve the TSP with high quality, 
the TSP remains an effective way of testing a new algorithm on discrete prob-
lems. Therefore, the main goal of this application is to measure the algorithm’s 
ability to optimize (or nearly optimize) the solution for a simple discrete 
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NP-hard problem. Through the success of this application, we can define the 
strength of HCA and whether it is able to deal with other NP-hard problems. 

The rest of this paper is organized as follows. Section 2 provides an overview 
of some algorithms have been used to solve TSPs. Section 3 reviews the TSP and 
its formulation. Section 4 presents the configuration of HCA and explains its 
application to the TSP. Section 5 demonstrates the feasibility of solving TSP in-
stances by HCA and compares the results with those of other algorithms. Dis-
cussion and conclusions are presented in Section 6. 

2. Literature Review 

In general, small TSPs are most easily solved by trying all possibilities (i.e. ex-
haustive searching). This can be achieved by brute-force and branch-and-bound. 
These methods generate all possibilities and choose the least-cost solution at 
various choice points. Although these techniques will guarantee the optimal so-
lution, they become impractical and expensive (i.e. require unreasonable time) 
when solving large TSP instances. A simple alternative is a greedy heuristic algo-
rithm, which solves the TSP using a heuristic function. Such algorithms cannot 
guarantee the optimal solution, as they do not perform an exhaustive search. 
However, they perform sufficiently many evaluations to find the optimal/near 
optimal solution. Many greedy algorithms have been developed for TSPs, such 
as the nearest-neighbor (NN), insertion heuristics, and dynamic programming 
(DP) techniques. Metaheuristic algorithms can also provide high-quality solu-
tions to large TSP instances. 

The TSP has been extensively solved by different metaheuristic algorithms 
owing to its practical applications. The IWD algorithm was tested on the TSP 
[1]. Experiments confirmed that the IWD algorithm can solve this problem and 
obtains good results in some instances. Later, Msallam and Hamdan [5] pre-
sented an improved adaptive IWD algorithm. The adaptive part changes the ini-
tial value of the soil and the velocity of the water drops during the execution. 
The change is made when the quality of the results no longer improves, or after a 
certain number of iterations. Moreover, the initial-value change was based on 
the obtained fitness value of each water drop. Msallam and Hamdan used some 
of the modifications proposed in Shah-Hosseini [6]; that is, the amount of soil 
along each edge is reinitialized to a common value after a specified number of 
iteration, except for the edges that belong to the best solution, which lose less 
soil. These modifications diversify the exploration of the solution space and help 
the algorithm to escape from local optima. When tested on the TSP, the new 
adaptive IWD algorithm outperformed the original IWD. 

Wu, Liao, and Wang [7] tested the water wave optimization (WWO) algo-
rithm on the TSP. In WWO, each wave generates a solution and its fitness is 
measured by the total cost of the tour. For the TSP, the WWO operators were 
adapted to handle problems with a discrete domain. The propagation operator 
mutated the tours with a probability equal to the wavelength. Therefore, a bad 
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solution (i.e., a long-wavelength solution) was more likely to be mutated. The 
refraction operator enhanced the tour by choosing a random subsequence of ci-
ties from the best solution found so far and replacing it with a subsequence of 
the original tour. The breaking operation generated a number of new waves by 
performing swap operations between two previous waves. The algorithm was 
tested on seven benchmark instances of different sizes. In comparison studies, 
the WWO algorithm competed well against the genetic algorithm and other op-
timization algorithms, and solved the TSP with good results, but with slightly 
longer computational time than the genetic algorithm. 

The water flow-like algorithm (WFA) is also used to solve the TSP [8]. Initial-
ly, a set of solutions to the water-flow is generated using a nearest-neighbor heu-
ristic. In successive iterations, they are moved by insertions and 2-Opt proce-
dures. The evaporation and precipitation operations are unchanged from the 
original WFA. These processes repeat until the stopping criteria are met. 

In solving the TSP using river formation dynamics (RFD), Rabanal, 
Rodríguez, and Rubio [9] represented the problem as a landscape with all cities 
initially at the same altitude. They adjusted the representation by cloning the 
start-point city, allowing water to return to that city. Water movement is af-
fected by the altitude differences among the cities and the path distances. The 
solutions (tours) are represented as sequences of cities sorted by decreasing alti-
tude. To prevent the water drops from immediately eroding the landscape after 
each movement, the algorithm is modified to erode all cities when the drop 
reaches the destination city. This modification prevents quick reinforcement and 
avoids premature convergence. When tested on a number of TSP instances, the 
algorithm obtained a better solution than ant colony optimization, but required 
a longer computational time. The authors concluded that the RFD algorithm is a 
good choice if the solution quality is more important than the computational 
time. 

Zhan, Lin, Zhang, and Zhong [10] solved the TSP by simulated annealing 
(SA) and a list-based technique. The main objective was to simplify the tuning of 
the temperature value. The list-based technique stores a priority queue of values 
that control the temperature decrease. In each iteration, the list is adapted based 
on the solution search space. The maximum value in the list is assigned the 
highest probability of becoming a candidate temperature. The SA employs lo-
cal-neighbor search operators such as 2-Opt, 3-Opt, insert, inverse, and swap. 
The effectiveness of this algorithm has been measured in variously sized bench-
mark instances. The obtained results were competitive with those of other algo-
rithms. 

Geng, Chen, Yang, Shi, and Zhao [11] solved the TSP by adaptive SA com-
bined with a greedy search. The greedy search was intended to improve the con-
vergence rate. The SA implemented three types of mutations with different 
probabilities: vertex insertion, block insertion, and block reversion. The algo-
rithm was tested on sixty benchmark instances. The computational results con-
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firmed the higher effectiveness of the SA algorithm (in terms of CPU time and 
accuracy) than other algorithms. 

Genetic algorithm (GA) has also been applied to TSPs in different configura-
tions [12] [13]. Larranaga, Kuijpers, Murga, Inza, and Dizdarevic [14] reviewed 
the different representations and operators of GAs in TSP applications. Other 
papers have surveyed the application of different GA versions to the TSP [15] 
[16] [17] [18]. 

Ant colony optimization (ACO) has been applied to the TSP ([19] [20]) on 
symmetric and asymmetric graphs [21]. For solving TSPs, Hlaing and Khine 
[22] initialized the ant locations by a distribution approach that avoids search 
stagnation, and places each ant at one city. The ACO is improved by a local op-
timization heuristic that chooses the next-closest city and by an information en-
tropy that adjusts the parameters. When tested on a number of benchmark in-
stances, the improved ACO delivered promising results; especially, the im-
provements increased the convergence rate over the original ACO. 

Zhong, Zhang, and Chen [23] developed a modified discrete particle swarm 
optimization (PSO), called C3DPSO, for TSPs. C3 refers to a mutation factor 
that balances the exploitation and exploration in the update equation, buffers the 
algorithm against being trapped in local optima, and avoids premature conver-
gence. The solution of each particle is represented as a set of consecutive edges, 
requiring modifications in the update equations. The C3DPSO was tested on six 
benchmark instances with fewer than 100 cities. The proposed algorithm yielded 
more precise solutions within less computational time than the original PSO al-
gorithm. In [24], a new concept based on mobile operators and its sequence is 
used to update the positions of particles in PSO, and it has been tested on TSP. 

Wang, Huang, Zhou, and Pang [25] solved the TSP by a PSO with various 
types of swap operations, which assist the algorithm in finding the best solu-
tions. The swap operation exchanges the positions of two cities, or the sequence 
of cities between two routes. When tested on a 14-node problem, the algorithm 
searched only a small part of the search space due to its high convergence rate. 
In the TSP solution of Shi, Liang, Lee, Lu, and Wang [26], an uncertain search-
ing technique is associated with the particle movements in PSO. The conver-
gence speed is increased by a crossover operation that eliminates intersections in 
the tours. The update equations of the original PSO are modified to suit the TSP 
problem. The proposed algorithm was extended to TSPs by employing a genera-
lized chromosome. On various benchmark instances, the proposed algorithm 
proved more efficient than other algorithms. 

Other algorithms like the bat algorithm has also used to solve several TSPs 
[27] [28]. A review of Tabu Search applications on the TSP and its variations can 
be found in [29]. 

3. Problem Formulation 

The TSP is a well-known classical combinatorial optimization problem in which 
a salesperson must visit every designated city exactly once, and return to the 
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starting point, via the shortest possible route. Such a path is known as a Hamil-
tonian cycle [30]. For centuries, the TSP has attracted researchers’ attention ow-
ing to the simplicity of its formulation and constraints. However, despite being 
easy to describe and understand, the TSP is difficult to solve [31]. Because a vast 
amount of information has been amassed on the TSP and the behaviors of TSP 
algorithms are easily observed, the TSP is now recognized as a standard ben-
chmarking problem for evaluating new algorithms and comparing their perfor-
mances with those of established algorithms. Many real-life problems and appli-
cations can also be formulated as TSPs, and some optimization problems with 
different structures can be reduced or transformed to variations of TSPs, such as 
the job scheduling problem, the knapsack problem, DNA sequencing, integrated 
circuit (i.e., VLSI circuits) design, drilling problem, and the satisfiability prob-
lem. Finally, a TSP can be classified as a combinatorial optimization problem, as 
it requires finding the best solution from a finite set of feasible solutions. 

Typically, a TSP is represented as a complete undirected weighted graph, 
where each node is connected to all other nodes. The graph G = (V, E) consists 
of a set of V nodes (i.e. cities) connected by a set of E edges (i.e. roads), where 
the edges are associated (assigned) with various weights. The weight is a non-
negative number reflecting the distance, the travel cost, or time of traveling that 
edge. Given the node coordinates (locations), the Euclidean distance between 
two nodes i and j can be calculated as follows: 

( ) ( ) ( )2 2
, i j i jDistance i j x x y y= − + −                (1) 

The TSP can be a symmetric or asymmetric weighted problem. In the symme-
tric problem, the path from node A to node B has the same weight as the path 
from node B to node A. In contrast, paths in the asymmetric problem may be 
unidirectional or carry different weights in each direction. Mathematically, the 
TSP can be formulated as Equation (2) [31], where Dij represents the distance 
between nodes i and j. 

1
Minimise , 3

N

ij ij
i

D X N
=

≥∑                        (2) 

subject to 

{ }0,1 , , 1, , ,ijX i j N i j∈ = ≠                      (3) 

In Equation (3), the decision variables Xij are set to 1 if the connecting edge is 
part of the solution, and 0 otherwise: 

( )
( )

1,  if , Solution

0,  if , Solutionij

i j
X

i j

∈= 
∉

                     (4) 

The TSP is considered as an NP-hard problem, meaning that its complexity 
increases non-linearly with increasing number of cities. Therefore, the number 
of possible solutions rises rapidly as the number of cities increases. Practically, 
the TSP finds the best order of the visited nodes at the lowest cost, which can be 
interpreted as a permutation problem. The number of possible solutions for an 
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n-city problem is given by: 

( )1 !
Number of solutions , where 3

2
n

n
−

= ≥              (5) 

Equation ( 5) calculates the number of possible ways of arranging n cities into 
an ordered sequence (with no repeats). As the starting node is unimportant, 
there are (n − 1)! rather than n! possible solutions. The result is divided by two 
because the reverse routes are ignored. Figure 1 shows a simple TSP with five 
nodes. 

In this example, one of the best solutions is (2 → 1 → 5 → 4 → 3 → 2) with a cost 
of 190. Another repeated solution with the same cost but a different starting 
node is (1 → 5 → 4 → 3 → 2 → 1). 

4. The HCA-TSP Approach and Procedure 

Typically, the input of the HCA algorithm is represented as a graph. To solve the 
TSP, the input to the HCA will be a fully connected graph that represents the 
problem solution space. The graph has a set of nodes (cities) and set of undi-
rected edges (roads) between the nodes. The characteristics associated with each 
edge are the initial amount of soil and edge depth. The HCA uses a set of artifi-
cial water drops to generate solutions, where each water drop has three proper-
ties: velocity, amount of carried soil, and solution quality. The procedure of 
HCA is specified in the following steps: 

1) Initialization of the variables and read the problem data. 
2) Distribution of the water drops on the nodes of the graph at random. 
3) Repeat steps 4) to 7) until termination conditions are met.  
4) The flow stage (repeat sub-steps a) - d) until temperature reaches a specific 

value). 
A water drop iteratively constructs a solution for the problem by continuously 

moving between the nodes. 
a) Choosing next node 
The movements are affected by the amount of soil and the path depths. The 

probability of choosing node j from node i is calculated using Equation (6). 

( )
( )( ) ( )( )

( ) ( )( ) ( )( )( )
2

2

, ,

, ,
WD

i

k vc WD

f Soil i j g Depth i j
P j

f Soil i k g Depth i k
∉

×
=

×∑
          (6) 

where ( )WD
iP j  is the probability of choosing node j from node i, and vc is the 

 

 
Figure 1. TSP instance with five nodes. 
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visited list of each water drop. The f(Soil(i, j)) is equal to the inverse of the soil 
between i and j, and is calculated using Equation (7). 

( )( ) ( )
1,

,
f Soil i j

Soil i jε
=

+
                     (7) 

ε = 0.01 is a small value that is used to prevent division by zero. The second 
factor of the transition rule is the inverse of depth, which is calculated based on 
Equation (8). 

( )( ) ( )
1,

,
g Depth i j

Depth i j
=                      (8) 

Depth (i, j) is the depth between two nodes i and j, and calculated by dividing 
the length of the path by the amount of soil. The depth of the path needs to be 
updated when the amount of soil existing on the path changes. The depth is up-
dated as follows: 

( ) ( )
( )

,
,

,
Length i j

Depth i j
Soil i j

=                        (9) 

After selecting the next node, the water drop moves to the selected node and 
marks it as visited. 

b) Update velocity 
The velocity of a water drop might be increased or decreased while it is mov-

ing. Mathematically, the velocity of a water drop at time (t + 1) is calculated us-
ing Equation (10).  

( ) ( )
2 21

100
, ,

WD WD WD
WD WD t t t

t t WD WD

V V VV K V
Soil i j Depth i jSoil

α
ψ+

    = × + + + +         
  (10) 

where 1
WD

tV +  is the current water drop velocity, and K is a uniformly distributed 
random number between [0, 1] that refers to the roughness coefficient. Alpha 
(α) is a relative influence coefficient that emphasizes this term in the velocity 
update equation and helps the water drops to emphasize and favor the path with 
fewer soils over the other factors. The expression is designed to prevent one wa-
ter drop from dominating the other drops. That is, a high-velocity water drop is 
able to remove more soil than slower ones. Consequently, the water drops are 
more likely to follow the carved paths, which may guide the swarm towards local 
optimal solution. 

c) Update soil 
Next, the amount of soil existing on the path and the depth of that path are 

updated. A water drop can remove (or add) soil from (or to) a path while mov-
ing based on its velocity. This is expressed by Equation (11). 

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

2

2

1, , if Erosion
,

,
1, , else Deposition

,

WD WDS
VPN Soil i j Soil i j V Avg all

Depth i j
Soil i j

PN Soil i j Soil i j
Depth i j

∆


∗ − − ≥  
= 
 ∗ + +  


∆

 (11) 
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PN represents a coefficient (i.e., sediment transport rate, or gradation coeffi-
cient) that may affect the reduction in the amount of soil. The increasing soil 
amount on some paths favors the exploration of other paths during the search 
process and avoids entrapment in local optimal solutions. The rate of change in 
the amount of soil existing between node i and node j depends on the time 
needed to cross that path, which is calculated using Equation (12). 

( )
,

1, WD
i j

Soil i j
time

∆ =                         (12) 

such that,  

( )
,

1

,WD
i j WD

t

Distance i j
time

V +

=                       (13) 

In HCA, the amount of soil the water drop carries reflects its solution quality. 
Therefore, the water drop with a better solution will carry more soil, which can 
be expressed by Equation (14). 

( ),WD WD
WD

Soil i j
Soil Soil

ψ
∆

= +                     (14) 

One iteration is considered complete when all water drops have generated so-
lutions based on the problem constraints (i.e., when each water drop has visited 
each node). A solution represents the order of visiting all the nodes and return-
ing to the starting node. The qualities of the evaluated solutions are used to up-
date the temperature. 

d) Update temperature 
The new temperature value depends on the solution quality generated by the 

water drops in the previous iterations. The temperature will be increased as fol-
lows: 

( ) ( )1Temp t Temp t Temp+ = + ∆                   (15) 

where, 

( )

( )

0

otherwise
10

Temp t
D

DTemp
Temp t

β ∆
∆

∆

  
∗ >  

  = 



                 (16) 

and where coefficient β is determined based on the problem. The difference 
( D∆ ) is calculated using Equation (17). 

D MaxValue MinValue−∆ =                   (17) 

Such that, 

( )
( )

max Solutions Quality

min Solutions Quality

MaxValue WDs

MinValue WDs

=   
=   

           (18) 

According to Equation ( 17), increase in temperature will be affected by the 
difference between the best solution (MinValue) and the worst solution (Max-
Value). At the end of each iteration, the HCA checks whether the temperature is 

https://doi.org/10.4236/ajor.2018.83010


A. Wedyan et al. 
 

 

DOI: 10.4236/ajor.2018.83010 143 American Journal of Operations Research 
 

high enough to evaporate the water drops. Thus, the flow stage may run several 
times before the evaporation stage starts. When the temperature increases and 
reaches a specified value, the evaporation stage is invoked. 

5) The evaporation stage: 
A certain number of water drops evaporates based on the evaporation rate. 

The evaporation rate is determined by generating a random number between 
one and the total number of water drops (see Equation 19). 

( )Evaporation rate Random_Integer 1, N=           (19) 

The evaporated water drops are selected by the roulette wheel technique. The 
evaporation process is an approach to avoid stagnation or local-optimal solu-
tions. 

6) The condensation stage: 
The condensation stage is executed as a result of the evaporation process, 

which is a problem-dependent process and can be customized to improve the 
solution quality by performing certain tasks (i.e., local improvement method). 
The condensation stage collides and merges the evaporated water drops, elimi-
nating the weak drops and favoring the best drop (i.e., the collector), see Equa-
tion (20). 

( ) ( )
( )

1 2
1 2

1 2

Bounce , ,  Similarity 50%
,

Merge , ,   Similarity 50%
WD WD

OP WD WD
WD WD

<=  ≥
    (20) 

Finding the similarity between the solutions is problem-dependent, and 
measures how much two solutions are close to each other. For the TSP, the si-
milarities between the solutions of the water drops are measured by the Ham-
ming distance [32]. When two water drops collide and merge, one water drop 
will (i.e., the collector) become more powerful by eliminating the other one and 
acquires its characteristics (i.e., its velocity). The merging operation is useful to 
eliminate one of the water drops as they have similar solutions. On the other 
hand, when two water drops collide and bounce off, they will directly share in-
formation with each other about the goodness of each node, and how much a 
node contributes to their solutions. The bounce-off operation generates infor-
mation that is used later to refine the water drops’ solution quality in the next 
cycle by emphasis on the best nodes. The information is available and accessible 
to all water drops and helps them to choose a node that has a better contribution 
from all the possible nodes at the flow stage. For the TSP, the evaporated water 
drops share their information regarding the most promising nodes sequence. 
Within this exchange, the water drops will favor those nodes in the next cycle. 
Finally, the condensation stage is used to update the global-best solution found 
up to that point. With regard to temperature, determining the appropriate tem-
perature values is through trial and error, and appropriate values for this prob-
lem were identified through experimentation. The values (Table 1) have been 
determined after some preliminary experiments with the TSP problem. The lo-
wering and rising of the temperature not only control the cycle but also help to 
prevent the water drops from sticking with the same solution every iteration. 
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Table 1. HCA parameters and their values. 

Parameter name Parameter value 

Number of water drops Equal to number of nodes 

Maximum number of iterations Triple the number of nodes 

Initial soil on each edge 10,000 

Initial velocity 100 

Initial depth Edge length/soil on that edge 

Initial carrying soil 1 

Velocity updating α = 2 

Soil updating PN = 0.99 

Initial temperature 50, β = 10 

Maximum temperature 100 

 
7) The precipitation stage:  
This precipitation is considered as a termination stage, as the algorithm has to 

check whether the termination condition is met. If the condition has been met, 
the algorithm stops with the last global-best solution. Otherwise, this stage is re-
sponsible for reinitializing all the dynamic variables, such as the amount of the 
soil on each edge, depth of paths, the velocity of each water drop, and the 
amount of soil it holds. The re-initialization of the parameters happens after 
certain iterations and helps the algorithm to avoid being trapped in local optima, 
which may affect the algorithm’s performance in the next cycle. Moreover, this 
stage is considered as a reinforcement stage, which is used to place emphasis on 
the collector drop. This is achieved by reducing the amount of soil on the edges 
that belong to the best water drop solution, see Equation (21).  

( ) ( ) ( ), 0.9 , , , WDSoil i j soil i j i j Best= ∗ ∀ ∈           (21) 

The idea behind that is to favor these edges over the other edges in the next 
cycle. These stages are repeated until the maximum number of iterations is 
reached. The HCA goes through a number of cycles and iterations to find a solu-
tion to a problem. Figure 2 explains the steps in solving the TSP by HCA. 

4.1. Solution Representation 

In this paper, the TSP is assumed to be symmetric, and acting on a fully con-
nected graph. The candidate TSP solutions are stored in a matrix, where each 
row represents a different solution generated by a water drop. Therefore, a water 
drop solution consists of the order of the visited nodes (with no repeat visits). 
The length of each row (i.e. the number of columns) is denoted by n and deter-
mined by the total number of nodes (see Equation 22). 

1

2

3

1 2
1 2

Solutions 1 2

1 2n

WD n
WD n
WD n

WD n

 
 
 
 =
 
 
  







    



             (22) 
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Figure 2. TSP solution procedure of HCA. 

4.2. Local Improvement Operation 

The quality of generated tours can be improved by many operations, such as 
k-Opt (where k = 2, 3, or 4) [33] [34]. These operations enhance the perfor-
mance of the algorithm and minimize the number of iterations to reach the op-
timal solution. In the present problem, we apply the 2-Opt operation on the se-
lected water drops that will evaporate at the condensation stage. The 2-Opt op-
eration swaps the order of two edges at one part of the tour and keeps the tour 
connected. The swapping results in a new tour, which is accepted if it minimizes 
the total cost [35]. This operation is repeated until a stopping criterion is met, 
such as no further improvements after a certain number of exchanges, or when 
the maximum number of exchanges is reached. Figure 3 demonstrates the oper-
ation of 2-Opt. In this example, the algorithm selects edges (2, 7) and (3, 8), and 
consecutively creates new edges (2, 3) and (7, 8). The order of the nodes between 
the two edges must also be reversed. 

5. Experimental Results and Analysis 

The HCA was tested and evaluated on two groups of TSP instances; structural 
and benchmark. The runtime and solution quality of the benchmark results were 
compared with those of other algorithms. 

The HCA parameter values used for TSP are listed in Table 1. The parameters 
values are set after conducting some preliminary experiments. 

The depth values had a very small value. Therefore, it has been normalized to 
be within [1 - 100]. The amount of soil has been restricted to be within a maxi-
mum and minimum value for avoiding negative values. The maximum value is 
regarded as the initial value, while the minimum value is fixed to equal one. The 
algorithm was implemented using MATLAB. All the experiments were con-
ducted on a computer with Intel Core i5-4570 (3.20 GHz) CPU and 16 GB RAM,  
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Figure 3. Example of removing an intersection by 2-Opt. 

 
under Microsoft Windows 7 Enterprise as an operating system. 

5.1. Structural TSP Instances 

To assess the validity of the generated output, we designed and generated syn-
thetic TSP structures with different geometric shapes (circle, square, and trian-
gle). These TSP structures are easier to evaluate than randomized instances. 
Several instances with different numbers of nodes were generated for each 
structure, and were input to the HCA algorithm with and without the 2-Opt op-
eration. The percentage difference (i.e., the deviation percentage) between the 
obtained and the optimal value was calculated as follows: 

( )Obtained Value Optimal Value
Difference 100%

Optimal Value
−

= ×        (23) 

In the circular structure, the circle circumference was divided into various 
numbers of nodes. Note that the number of nodes influences the inter-nodal 
distance, with fewer nodes increasing the distance between nodes. The node 
number was varied as 25, 50, 75, 100, 125, and 150. By dividing the circumfe-
rence of the circle into a specific number of nodes, the first and last nodes will 
have the same coordinate. The shortest path length was calculated by the circle 
circumference formula (2 × π × r). The circle was centered at (1, 1) and its di-
ameter was set to 2 (i.e., r = 1). Consequently, its circumference was 6.28. The 
obtained results are reported in Table 2. 

As shown in Table 2, the HCA found the shortest path in each instance of this 
structure, both with and without the 2-Opt operation. The circle instances are 
relatively easy to solve because the distance decreases with increasing number of 
nodes. Thus, the soil amount will be reduced more quickly on shorter edges than 
on longer edges, steering the algorithm towards the shorter edges. Figure 4 
shows the output of the HCA on circular TSPs with different numbers of nodes. 

Next, the TSP was solved on a square structure. Here, the nodes were evenly 
spaced in an N × N grid. The shortest tour distance was the product of the 
number of nodes and the distance between the nodes (assumed as one unit). For 
example, in the 16-point (8 × 8) grid, the shortest path was (1 × 16 = 16). For an 
odd number of nodes, the cost of traveling to the last node was based on the 
length of the hypotenuse (1.41 in the present examples). Ten instances with dif-
ferent numbers of nodes were generated, and solved by the HCA with and 
without the 2-Opt operation. The results are listed in Table 3. 

As shown in Table 3, the HCA obtained the optimal results (the shortest 
path) both with and without the 2-Opt operation. The exception was 
“Square_144”, whose solution deviated very slightly from the optimal. The  

1
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(a)                                          (b) 

 
(c)                                        (d) 

 
(e)                                         (f) 

Figure 4. TSP solutions on circular grids. (a) Circle_25, Cost = 6.28; (b) Circle_50, Cost = 
6.28; (c) Circle_75, Cost = 6.28; (d) Circle_100, Cost = 6.28; (e) Circle_125, Cost = 6.28; (f) 
Circle_150, Cost = 6.28. 

 

outputs of HCA with 2-Opt on square grids of different sizes are shown in Fig-
ure 5. 

Finally, the TSP was solved on an equilateral triangular grid. The number of 
nodes was varied as 9, 25, 49, 81, 121, and 169. Table 4 lists the obtained results 
with and without the 2-Opt operation. 
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Table 2. TSP results on a circular structure. 

Instance 
Name 

Optimal 
Solution 

With 2-Opt Without 2-Opt 

Result Avg. Difference Result Avg. Difference 

Circle_25 6.28 6.28 0.72 0% 6.28 0.65 0% 

Circle_50 6.28 6.28 4.48 0% 6.28 4.47 0% 

Circle_75 6.28 6.28 15.43 0% 6.28 15.13 0% 

Circle_100 6.28 6.28 38.60 0% 6.28 37.23 0% 

Circle_125 6.28 6.28 80.49 0% 6.28 74.50 0% 

Circle_150 6.28 6.28 146.68 0% 6.28 136.99 0% 

 
Table 3. TSP results on a square structure. 

Instance Name 
Optimal 
Solution 

With 2-Opt Without 2-Opt 

Result Avg. Difference Result Avg. Difference 

Square_9 9.41 9.41 0.10 0% 9.41 0.01 0% 

Square_16 16 16 0.22 0% 16 0.22 0% 

Square_25 25.41 25.41 0.65 0% 25.41 0.64 0% 

Square_36 36 36 1.74 0% 36 1.72 0% 

Square_49 49.41 49.41 4.35 0% 49.41 4.33 0% 

Square_64 64 64 9.90 0% 64 9.55 0% 

Square_81 81.41 81.41 20.53 0% 81.41 19.58 0% 

Square_100 100 100 39.55 0% 100 39.44 0% 

Square_121 121.41 121.41 74.054 0% 121.41 72.38 0% 

Square_144 144 144 130.93 0% 146.89 125.18 0.02% 

 
Table 4. TSP results on a triangular structure. 

Instance Name 
Optimal 
Solution 

With 2-Opt Without 2-Opt 

Result Avg. Difference Result Avg. Difference 

Square_9 9.41 9.41 0.10 0% 9.41 0.01 0% 

Square_16 16 16 0.22 0% 16 0.22 0% 

Square_25 25.41 25.41 0.65 0% 25.41 0.64 0% 

Square_36 36 36 1.74 0% 36 1.72 0% 

Square_49 49.41 49.41 4.35 0% 49.41 4.33 0% 

Square_64 64 64 9.90 0% 64 9.55 0% 

Square_81 81.41 81.41 20.53 0% 81.41 19.58 0% 

Square_100 100 100 39.55 0% 100 39.44 0% 

Square_121 121.41 121.41 74.054 0% 121.41 72.38 0% 

Square_144 144 144 130.93 0% 146.89 125.18 0.02% 

 
The HCA with and without 2-Opt operation produced almost similar results, 

except for the triangles with 121 and 169 nodes where using 2-Opt gave better 
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(i)                                                 (j) 

Figure 5. TSP solutions on square grids. (a) Cost = 9.41; (b) Cost = 16; (c) Cost = 25.41; (d) Cost = 36; (e) 
Cost = 49.41; (f) Cost = 64; (g) Cost = 81.41; (h) Cost = 100; (i) Cost = 121.41; (j) Cost = 144. 

 
results. The TSP is more difficult on the triangular structure than on the other 
structures, because many hypotenuses connect the nodes to different layers. The 
outputs of the HCA using 2-Opt on triangular grids with different node num-
bers are reported in Figure 6. 

The average execution times for solving all the TSP structural instances by 
HCA are presented by Figure 7. The execution time of the HCA increases with 
increasing number of nodes because of the information sharing process. With 
increasing number of nodes the solution space increases exponentially, a defin-
ing characteristic of NP-hard problems which also affects execution time. The 
execution time also largely depends on the implementation of the algorithm, and 
on the compilers, machines specifications, and operating systems used. 

Figure 7 shows that the 2-Opt operation has little effect on the execution time 
in small instances (problems with a low node count), but noticeably increases 
the execution time in larger problems. However, 2-Opt was found to improve 
the quality of the solution for structures with a high number of nodes. 

5.2. Benchmark TSP Instances 

Next, the HCA was applied to a number of standard benchmark instances from 
the TSPLIB library [36]. The selected instances have different structures with 
different numbers of cities. Some of these instances are geographical and based 
on real city maps; others are based on VLSI applications, drilling, and printed 
circuit boards. The edge-weights (distances) between the nodes were calculated 
by the Euclidean distance (Equation (1)), and rounded to integers. The TSP file 
format is detailed in Reinelt [37]. On the benchmark problems, the HCA was 
combined with the 2-Opt operation, which was found to improve the solution 
quality in structural instances with large numbers of nodes. The results are pre-
sented in Table 5. In this table, the number in each instance name denotes the 
number of cities, and the difference column denotes the percentage difference  

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Y
ax

is

Square121.tsp , Cost: 121.4142

 23  34  45

 46

 47

 48  59

 58  69

 70  81  92

 91 80

 79 68 57

 56  67  78  89

 90  101

 100  111

 112

 113 102

 103  114

 115 104 93

 94  105  116

 117

 118

 119

 120

 121 110

 109

 108 97 86

 87  98

 99 88 77 66 55 44 33 22 11

 10  21  32  43  54  65  76

 75 64 53

 52  63  74  85  96  107

 106 95 84

 83

 82 71 60

 61  72

 73 62 51 40

 41

 42 31

 30 19

 20 9

 8

 7

 6

 5  16

 15 4

 3

 2

1  12

 13

 14  25

 26

 27

 17

 18  29

 28  39  50

 49 38

 37

 36

 35 24

0 2 4 6 8 10
0

2

4

6

8

10

12

Y
-a

xi
s

Square144.tsp , Cost: 144

 10

 9

 8

 7

 6  18  30

 29

 28

 27

 26 14

 15

 16

 17 5

 4

 3

 2

1  13  25  37  49  61

 62 50 38

 39  51

 52 40

 41

 42

 43  55

 56 44 32

 31 19

 20

 21  33  45

 46 34 22

 23  35  47  59

 58

 57  69  81  93  105

 104 92 80 68

 67

 66 54

 53  65

 64

 63  75  87  99

 98 86 74

 73  85  97  109  121  133

 134

 135

 136

 137 125

 124

 123

 122 110

 111

 112 100 88 76

 77

 78

 79  91  103

 102 90

 89  101  113

 114  126  138

 139 127 115

 116

 117  129

 128  140

 141

 142

 143

 144 132

 131

 130 118

 119

 120 108 96 84

 83  95  107

 106 94 82 70

 71

 72 60 48 36 24 12

 11

https://doi.org/10.4236/ajor.2018.83010


A. Wedyan et al. 
 

 

DOI: 10.4236/ajor.2018.83010 151 American Journal of Operations Research 
 

 
(a)                                      (b)                                      (c) 

 
(d)                                       (e)                                (f) 

Figure 6. TSP solutions on equilateral triangular grids. (a) Cost = 10.24; (b) Cost = 27.07; (c) Cost = 51.899; (d) Cost = 84.727; (e) 
Cost = 125.556; (f) Cost = 174.38. 

 

 
Figure 7. Relationship between HCA execution time and instance size of TSP on circular, 
square and triangular grids. 
 
from the optimal solution using Equation (7). 

Table 5 shows that the HCA achieved a high performance when solving TSP. 
The HCA found the optimal solution in 20 out of 24 instances, and the differ-
ences in the other instances were minor. According to the P-value, there is no 
significant difference between the results. Table 6 reports the minimum, aver-
age, and maximum values of the cost, time and iteration number among 10 HCA 
executions for each instance. 
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Table 5. HCA results on benchmark TSP instances. 

No. Instance name Node number Optimal result HCA Difference % 

1 berlin52 52 7542 7542 0 

2 ch130 130 6110 6110 0 

3 ch150 150 6528 6528 0 

7 d198 198 15,780 15,780 0 

4 eil51 51 426 426 0 

5 eil76 76 538 538 0 

6 eil101 101 629 629 0 

8 kroA100 100 21,282 21,282 0 

9 kroA150 150 26,524 26,614 0.00339 

10 kroA200 200 29,368 29,368 0 

11 kroB100 100 22,141 22,141 0 

12 kroB150 150 26,130 26,132 0.00008 

13 kroB200 200 29,437 29,455 0.00061 

14 kroC100 100 20,749 20,749 0 

15 kroD100 100 21,294 21,294 0 

16 kroE100 100 22,068 22,068 0 

17 lin105 105 14,379 14,379 0 

18 pr76 76 108,159 108,159 0 

19 pr107 107 44,303 44,303 0 

20 pr124 124 59,030 59,030 0 

21 pr136 136 96,772 96,861 0.00092 

22 rat195 195 2323 2323 0 

23 st70 70 675 675 0 

24 ts225 225 126,643 126,643 0 

Average 29534.6 29542.9  

T-test (P-value) 0.12174  

 

The results in Table 6 demonstrate the efficiency and effectiveness of the 
HCA algorithm. In particular, the average result and optimal solution are very 
close in all instances. The maximum difference was 0.00823% on the kroA150 
benchmark, and zero on the pr124 benchmark. Moreover, the HCA optimized 
the solution on most benchmarks within a few iterations. This early convergence 
is attributed to information sharing among the water drops, and the use of the 
2-Opt operation in the condensation stage. The solutions to the benchmark in-
stances are displayed in the Figure S1 (Appendix). 

The minimal cost in HCA was compared with the reported results of other 
water-based algorithms, namely, the intelligent water drops (IWD) algorithm 
and its modifications, water wave optimization (WWO), the water flow-like  
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Table 6. Minimum, average, and maximum HCA results on benchmark TSP instances. 

Instance name  Cost Time(s) #Iteration Instance name  Cost Time(s) Iteration 

berlin52 

Min 7542 5.15 5 

kroB200 

Min 29,455 455.53 35 

Avg. 7565.3 5.36 37.9 Avg. 29519.9 464.62 200.6 

Max 7758 5.78 55 Max 29,612 474.95 305 

ch130 

Min 6110 93.08 53 

kroC100 

Min 20,749 39.54 11 

Avg. 6128.9 95.79 168.2 Avg. 20,751 39.74 71 

Max 6177 101.61 359 Max 20,769 39.96 303 

ch150 

Min 6528 149.98 17 

kroD100 

Min 21,294 40.10 5 

Avg. 6550.8 157.55 154.4 Avg. 21416.4 40.43 151.4 

Max 6570 162.05 347 Max 21,772 40.79 299 

d198 

Min 15780 415.00 47 

kroE100 

Min 22,068 40.27 23 

Avg. 15785.3 422.04 209.6 Avg. 22152.9 40.63 107 

Max 15,794 432.66 593 Max 22,389 41.07 203 

eil51 

Min 426 4.70 11 

lin105 

Min 14,379 46.59 11 

Avg. 426.85 4.73 47.2 Avg. 14385.6 47.25 111.8 

Max 430 4.79 86 Max 14,412 47.75 263 

eil76 

Min 538 16.19 11 

pr76 

Min 108,159 16.47 5 

Avg. 538.5 16.34 47.8 Avg. 108163.3 16.58 32 

Max 539 16.45 137 Max 108,202 16.84 215 

eil101 

Min 629 41.37 34 

pr107 

Min 44,303 48.25 5 

Avg. 632 41.60 99.9 Avg. 44367.5 48.84 80 

Max 638 41.85 274 Max 44,438 49.35 293 

kroA100 

Min 21,282 40.39 23 

pr124 

Min 59,030 78.60 5 

Avg. 21308.1 40.70 112.4 Avg. 59,030 79.19 47 

Max 21,369 41.03 275 Max 59,030 79.96 101 

kroA150 

Min 26,614 161.42 11 

pr136 

Min 96,861 109.96 41 

Avg. 26742.2 162.67 204.2 Avg. 96985.1 110.93 204.2 

Max 26,917 163.69 371 Max 97,235 113.14 371 

kroA200 

Min 29,368 461.13 29 

rat195 

Min 2323 385.41 29 

Avg. 29396.3 469.99 150.2 Avg. 2334.6 390.44 314.6 

Max 29,518 479.46 299 Max 2343 396.57 557 

kroB100 

Min 22,141 39.72 5 

st70 

Min 675 12.42 11 

Avg. 22,222 40.00 19.4 Avg. 676.5 12.59 77.2 

Max 22,258 40.38 101 Max 681 12.71 182 

kroB150 

Min 26,132 157.96 83 

ts225 

Min 126,643 626.73 125 

Avg. 26216.2 161.33 217.4 Avg. 126788.1 636.24 336.2 

Max 26,329 165.14 419 Max 126,962 643.72 647 
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algorithm (WFA), and river formation dynamics (RFD). The comparisons are 
summarized in Table 7. The results of the original and a modified IWD (col-
umns 4 and 5, respectively) were taken from [1] and from [38], respectively. The 
results of another modified IWD, called the exponential ranking selection IWD 
(ERS-IWD; column 6), were extracted from [3]. The results of columns 7 and 8 
were taken from [5], who implemented the IWD and their proposed adaptive 
IWD on TSP instances. The WWO results (column 9) were taken from [7]. The 
WFA and RFD results (columns 10 and 11) were borrowed from [8] and from 
[9], respectively. The best results are marked in bold font. 

The numbers of instances solved by these algorithms are insufficient for cal-
culating an accurate P-value statistic. Moreover, some of these algorithms per-
form as well as HCA in certain instances. However, as confirmed in Table 7, 
HCA outperforms the original IWD algorithm and its various modifications. 
One plausible reason for the poor performance of the IWD algorithm is the 
premature convergence and stagnation in local optimal solutions. In contrast, 
HCA can escape from local optima by exploiting the depths of the paths along 
with the soil amount. These actions diversify the solutions. The most competi-
tive opponent to HCA was WFA, which also optimized the solutions in the 
tested instances. In contrast, the WWO performed poorly because this algorithm  
 

Table 7. Best results of HCA, the original IWD, modified IWDs, WWO, WFA, and RFD. 

Instance name 
Optimal 

result 
HCA 

Original IWD 
(4) 

IWD 
(5) 

ERS-IWD 
(6) 

Adaptive IWD 
WWO 

(9) 
WFA 
(10) 

RFD 
(11) IWD 

(7) 
AIWD 

(8) 

berlin52 7542 7542 - 7542 - - - - - - 

ch130 6110 6110 - - 6316 - - 6338 6110 - 

ch150 6528 6528 - - - - - 7014 6528 - 

eil51 426 426 471 426 429 434 426 427 426 441.9 

eil76 538 538 559 540 545 552 538 557 538 - 

eil101 629 629 - 639 654 - - - 629 - 

kroA100 21,282 21,282 23,156 21,429 21,959 23,183 21,304 21,668 21,282 - 

kroA150 26,524 26,614 - - - - - - 26,524 - 

kroA200 29,368 29,368 - - 31,680 - - 31,064 29,368 - 

kroC100 20,749 20,749 - 20,816 - - - - - - 

lin105 14,379 14,379 - 14,393 14,696 - - - - - 

pr76 108,159 108,159 - 109,608 - - - - - - 

rat195 2323 2323 - - - 2461 2338   - 

st70 675 675 - 676 - 710 675 - - - 

ts225 126,643 126,643 - - - 275791 127325 - - - 

Average 24791.7 24797.7 8062 19563.2 10,897 50521.8 25434.3 11178 11426 441.9 

P-values vs HCA 0.4025 0.2701 0.1598 0.3219 0.1878 0.1302 0.2813 - 
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was originally designed for continuous-domain problems, and its operations 
need adjustment for combinatorial problems. Moreover, the WWO adopts a re-
ducing population-size strategy, which degrades its performance in some prob-
lems. Finally, the WWO suffers from slow convergence because it depends only 
on the altitude of the nodes. 

The performances of HCA, IWD, adaptive IWD (AIWD) and modified IWD 
(MIWD) are further compared in Table 8. The best and average results of IWD 
and AIWD were taken from [5], while those of MIWD were taken from [6]. 

This comparison aims to compare the robustness of HCA and other algo-
rithms. Despite there being no significant differences between the results (best, 
average), the average results are closer to the optimal in HCA than in the other 
algorithms, suggesting the superior robustness of HCA. Table 9 compares the 
runtimes of the HCA, IWD and AIWD. The best and average execution times 
and iteration numbers of the IWD algorithms were taken from [5]. 

According to Table 9, HCA reaches the best solution after fewer iterations 
than IWD and AIWD. This result confirms the superior efficiency of HCA. 
Moreover, adding the other stages of the water cycle did not affect the average 
execution time of HCA. Figure 8 plots the average execution times of the three 
algorithms implemented on five benchmark problems. 

Optimal-solution searching by HCA was compared with those of other 
well-known algorithms, namely, an ACO algorithm combined with fast opposite 
gradient search (FOGS-ACO) [39], a genetic simulated annealing ant colony 
system with PSO (GSAACS-PSO) [40], an improved discrete bat algorithm 
(IBA) [27], set-based PSO (S-CLPSO) [41], a modified discrete PSO with a newly 
introduced mutation factor C3 (C3D-PSO); results taken from [23], an adaptive 
simulated annealing algorithm with greedy search (ASA-GS) [11], the firefly al-
gorithm (FA) [42], a hybrid ACO enhanced with dual NN (ACOMAC-DNN) 
[43], a discrete PSO (DPSO) [26], a self-organizing neural network using the 
immune system (ABNET-TSP) [44], and an improved discrete cuckoo search 
algorithm (IDCS) [45]. Table 10 summarizes the comparison results. 
 
Table 8. Best and average results of HCA, IWD, AIWD, and MIWD. 

Instance 
Name 

HCA IWD AIWD MIWD 

Best Avg. Best Avg. Best Avg. Best Avg. 

Eil51 426 426.85 434 443.2 426 428.4 428.98 432.62 

St70 675 676.5 710 724.93 675 682.5 677.1 684.08 

Eil76 538 538.5 552 564.43 538 542.86 549.96 558.23 

KroA100 21282 21308.1 23183 23548.37 21,304 21586.73 21407.57 21904.03 

rat195 2323 2334.6 2461 2480.6 2338 2347.8 - - 

ts225 126643 126788.1 755791 276140.75 127,325 128323.5 - - 

Average 29912.8 29947.6 130521.8 50650.4 25434.3 25652.0 5765.9 5894.7 

T-test (P-values) vs HCA 0.3722 0.3656 0.3570 0.2867 0.3209 0.3611 
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Table 9. Average execution times and best and average iteration numbers in HCA, IWD, and Adaptive IWD. 

Instance name 
HCA IWD Adaptive IWD 

Avg. Time (s) Iteration [Best, Avg.] Avg. Time (s) Iteration [Best, Avg.] Avg. Time (s) Iteration [Best, Avg.] 

eil51 4.73 [57, 47.2] 154.537 [1509, 3000] 180.648 [190, 3000] 

st70 12.59 [83, 77.2] 434.193 [960, 3,500] 453.631 [1769, 3500] 

eil76 16.34 [46, 47.8] 567.208 [2147, 3,500] 571.251 [752, 3500] 

kroA100 40.7 [89, 112.4] 1364.979 [3698, 3750] 1365.752 [2397, 3750] 

rat195 390.44 [401, 314.6] 2023.162 [604, 5000] 2335.9392 [4995, -] 

ts225 636.24 [365, 336.2] 3969.892 [1, 5000] 4162.92 [3850, 5000] 

Average 142.1  1419.0  1511.7  

T-test (P-value) for Avg. Time 0.1162  0.1200  

 
Table 10. Best results obtained by HCA and other optimization algorithms. 

Instance  
name 

Optimal 
result 

HCA 

FO
G

S-A
C

O
 

G
SA

A
C

S-PSO
 

IBA 
S-C

LPSO
 

C
3D

-PSO
 

A
SA

-G
S 

FA 

A
C

O
M

A
C

-D
N

N
 

DPSO 

A
BN

ET-TSP 

IDCS 

berlin52 7542 7542 7546.6 7542 7542 7542  7544.7 7544.36 - 7542 7542 7542 

ch130 6110 6110 - 6141 - -  6110.7 - - - 6145 6110 

ch150 6528 6528 - 6528 - -  6530.9 - - - 6602 6528 

eil51 426 426 426 427 426 426 426 428.87 428.87 430.01 427 427 426 

eil76 538 538 546.83 538 539 538 538 544.37  552.61 546 541 538 

eil101 629 629 633.40 630 634 629  640.21   - 638 629 

d198 15,780 15,780  - - 15,809  15830.6  15,955.6 -  15,781 

kroA100 21,282 21,282 22,414 21,282 21,282 21,282 21,282 21285.4 21285.4 21,408.2 - 21,333 21,282 

kroA150 26,524 26,614 - 26,524 - 26,537  26524.9  - - 26,678 26,524 

kroA200 29,368 29,368 29,717 29383 - 29,399  29411.5  - - 29,600 29,382 

kroB100 22,141 22,141 - 22141 22,140* -  22139.1 22139.1 - - 22,343 22,141 

kroB150 26,130 26,132 - 26130 - -  26140.7 - - - 26,264 26,130 

kroB200 29,437 29,455 - 29541 - -  29504.2 - - - 29,637 29,448 

kroC100 20,749 20,749 - 20,749 20,749 20824.6  20750.8 - - - 20,915 20,749 

kroD100 21,294 21,294 - 21,309 21,294 21405.6  21294.3 - - - 21,374 21,294 

kroE100 22,068 22,068 - 22,068 22,068 -  22106.3 - - - 22,395 22,068 

lin105 14,379 14,379 - 14,379 - 14379  14383 14383 - - 14,379 14,379 

pr76 108,159 108,159 108,864 - - 108159  108159  - 108280 - 108,159 

pr107 44,303 44,303 - - 44,303   44301.7* 44346 - - - 44,303 

pr124 59,030 59,030 - - 59,030   59030.7 59030 - - - 59,030 

pr136 96,772 96,861 - - 97,547   96966.3 97182.7 - - - 96,790 

rat195 2323 2323 - - -   2345.2  - - - 2324 

st70 675 675 678.93 - 675 675 675 677.11 677.11 - 675 - 675 

ts225 126,643 126,643 - - - -  126646 - - - - 126,643 

Average 29534.6 29542.9 21353.3 16062.2 24479.2 20585.0 5730 29,554 29,669 9587 23,494 16,051 29536.5 

P-values versus HCA 0.1120 0.6755 0.3327 0.3088 - 0.1129 0.2684 0.1536 0.3360 0.0014 0.1890 

* Incorrect. 
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Figure 8. Average execution times of HCA, IWD, and Adaptive IWD. 

 
Although the complexity of the TSP increases with increasing number of ci-

ties, the HCA outperformed the other algorithms in most instances. The 
P-values indicate there are no significant differences between HCA and other 
algorithms, except between HCA and ABNET-TSP, where the HCA was better. 
The HCA competed with other algorithms such as the IDCS algorithm; indeed, 
the results of HCA and IDCS were not noticeably different even for large prob-
lems. The high performance of HCA was again attributed to the effective design 
of the HCA and that included an information sharing process among the water 
drops. This process helps the HCA exploit the promising solutions and increases 
the speed of algorithm convergence. The additional stages of the HCA assist 
with exploring different solutions (enhancing the search capability), and prevent 
trapping in local optima. 

5.3. HCA Convergence Evaluation 

This section analyses the performance of the HCA and its convergence rate. As 
previously stated, the maximum iteration number was set to three times the 
number of nodes in the instance. Figure 9 shows the convergence of the algo-
rithm on the berlin52 instance. The cost along the Y-axis denotes the total route 
length. 

According to Figure 9, the solution was optimized after 65 iterations. The 
berlin52 benchmark is relatively easy to solve because the node distribution re-
duces the possibility of falling into local optima. The local and global solutions 
are the best solution at the end of each iteration and the best solution among all 
iterations, respectively. Note that the algorithm converges towards the optimal 
solution. In addition, the HCA generated different solutions in every iteration 
and the search process was prevented from stagnating by the depth factor and 
the information sharing among the water drops. The depth factor increases the 
chance of selecting previously unexplored or little-used paths. Figure 10 shows 
the convergence of the algorithm on the eil51 instance. The solution was  
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Figure 9. Local (blue) and global (red) best solutions on berlin52. 

 

 
Figure 10. Local (blue) and global (red) best solutions on eil51. 

 
optimized at the 64th iteration. 

Figure 11 illustrates the convergence behavior of the HCA on the eil67 in-
stance. Here, the solution was optimized at iteration 171. 

Figure 12 illustrates the convergence behavior of the HCA on the eil101 in-
stance. The optimal solution was found at iteration 99. Moreover, the smooth 
convergence rate confirms the good balance between the exploration and ex-
ploitation processes. 

Figure 13 shows the convergence of the global best solution on the st70 in-
stance. The solution was optimized at iteration 125. 

In summary, the convergence rate of the HCA proves the effectiveness of the 
algorithm design. Furthermore, the algorithm searches the optimal solution un-
til the final iterations, without stagnation in local optima. It also converges ra-
pidly on easy instances. 
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Figure 11. Local (blue) and global (red) best solutions on eil76. 

 

 
Figure 12. A graph for local vs. global solution on eil101. 

 

 
Figure 13. Global best solution on st70. 
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6. Conclusions 

In this paper, HCA was applied on an archetypal NP-hard problem (the TSP). 
Initially, the performance of the algorithm was tested on simple geometric 
structures which are easy to design and understand. Parameter tuning was also 
performed on these structures. The obtained results indicate the flexibility and 
capability of the algorithm in solving such problems. Moreover, the algorithm 
provided different same-cost solutions to the same problem. This validates the 
effective design of the exploration and exploitation processes of the algorithm. 
The geometric TSP instances are useful for evaluating other new algorithms due 
to their simple design, and different shapes can be designed by the same prin-
ciple. 

Next, the algorithm was tested on various standard benchmarks taken from 
the literature. The algorithm provided high-quality solutions and outperformed 
other metaheuristic algorithms in seeking the minimum path. Also, the HCA 
found the optimal solution within a few iterations. The HCA showed its ability 
to escape from local optima and find the global solution. The strong optimiza-
tion capability of the HCA is conferred by the efficient design of the exploration 
and exploitation processes. Moreover, by utilizing both direct and indirect 
communication to share information among the water drops, the algorithm 
steers towards better solutions within a small number of iterations and helps to 
diversify the search space. Significance figures show that, at the very least, HCA 
is no worse than other algorithms. The added advantage of HCA is that all stages 
of the hydrological water cycle are included, leading to an overall conceptual 
framework under which other water-based algorithms can be placed. In addi-
tion, the inclusion of all stages allows both direct and indirect communication to 
take place among particles, leading to enhanced swarm intelligence. 

In summary, the HCA demonstrated strong performance in structural and 
benchmark TSP instances. It obtained the optimal solution in most instances, 
confirming the effectiveness of the algorithm framework. Therefore, the HCA 
structure is a feasible approach for solving TSPs. The HCA tends to fully explore 
the graph, providing diverse solutions at fast convergence speeds. Also, as con-
firmed by the convergence behavior of the algorithm, the HCA successfully 
avoids potential stagnation in local optima. 

The HCA performance could additionally be investigated on asymmetric TSP 
instances. Although the HCA optimizes the TSP solution within a reasonable 
timeframe, further enhancements would reduce its execution time on large in-
stances. Furthermore, the HCA can be used for solving other NP-hard optimiza-
tion problems. 
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Appendix 

This appendix provides the outputs of HCA when applied on the benchmark in-
stances. 
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(q)                                         (r) 

 
(s)                                            (t) 

 
(u)                                     (v) 

 
(w)                                         (x) 

Figure S1. HCA outputs on benchmark instances. (a) berlin52, Cost = 7542; (b) ch130, Cost 
= 6110; (c) ch150, Cost = 6528; (d) d198, Cost = 15780; (e) eil51, Cost = 426; (f) eil76, Cost = 
538; (g) eil101, Cost = 629; (h) kroA100, Cost = 21282; (i) kroA150, Cost = 26614; (j) 
kroA200, Cost = 29368; (k) kroB100, Cost = 22141; (l) kroB150, Cost = 26132; (m) kroB200, 
Cost = 29455; (n) kroC100, Cost = 20749; (o) kroD100, Cost = 21294; (p) kroE100, Cost = 
22068; (q) lin105, Cost = 14379; (r) pr76, Cost = 108159; (s) pr107, Cost = 44303; (t) pr124, 
Cost = 59030; (u) pr136, Cost = 96861; (v) rat195, Cost = 2323; (w) st70, Cost = 675; (x) 
ts225, Cost = 126643. 
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