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Abstract 
In a recent paper, we have studied the nature of the electromagnetic energy 
radiated over a single period of oscillation by an antenna working in frequen-
cy domain under ideal conditions and without losses when the oscillating 
charge in the antenna is reduced to the elementary charge. Here we extend 
and expand that study. The energy radiated by an oscillating current in an an-
tenna occurs in bursts of duration T/2, where T is the period of oscillation. 
The results obtained here, based purely on classical electrodynamics, can be 
summarized by the inequality 0U h q eν≥ → ≥  where U is the energy ra-
diated in a single burst of duration T/2, h is the Planck constant, ν is the fre-
quency of oscillation and q0 is the magnitude of the oscillating charge asso-
ciated with the current. The condition 0U h q eν= → =  is obtained when the 
length of the antenna is equal to the ultimate Hubble radius of the universe 
(i.e. the maximum value of the antenna length allowed by nature) and the 
wavelength is equal to the Bohr radius (resulting from the smallest possible 
radius of the conductor allowed by nature). The ultimate Hubble radius is di-
rectly related to the vacuum energy density. The inequality obtained here is in 
general agreement with the one obtained in the previous study. One novel 
feature of this extended analysis is the discovery of an expression, in terms of 
the elementary charge and other atomic constants, for the vacuum energy 
density of the universe. This expression predicts the vacuum energy density to 
be about 104 10−×  J/m3 which is in reasonable agreement with the measured 
value of 106 10−×  J/m3. 
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1. Introduction 

In several recent publications, Cooray and Cooray [1] [2] investigated the lower 
limits of the radiated energy when the charge associated with the current in the 
antenna giving rise to the radiation is equal to the elementary charge. Based on 
the work done, it was shown that the time domain radiation fields satisfy the or-
der of magnitude relationship, 4πA h q e≥ → ≥ , where A is the action asso-
ciated with the energy radiated (i.e. product of energy and the time of emission), 
q is the charge associated with the impulse current in the transmitting antenna, 
and h is the Planck constant. The same relationship is shown to be valid for the 
energy radiated when a relativistic charged particle is suddenly stopped by a 
perfectly conducting plane (i.e. transition radiation). In the case of antennas 
working in frequency domain it was shown in reference [1] (hereinafter referred 
to as Paper 1), that the radiation satisfy the order of magnitude relationship, 
U h q eν≥ → ≥  where U is the energy dissipated over a period of oscillation 
and q is the charge associated with the oscillating current [1]. The results ob-
tained in Paper 1 can be improved in several aspects. First, in that paper the 
energy dissipated over a given period of time was expressed as an integral and it 
was evaluated using numerical techniques. Further investigations by us show 
that, due to the rapidly oscillating nature of the integrand, the rounding off er-
rors associated with the numerical integration could have clamped the energy to 
a constant value at extremely high values of L/λ, where L is the antenna length 
and λ is the wavelength. Subsequent analysis showed that the energy increases 
slowly (i.e. logarithmically) instead of reaching a steady value. This slowly in-
creasing nature of the emitted energy over a given time period with increasing 
L/λ and the limited range of L/λ over which the analysis was carried out in Paper 
1 compelled us to revisit the work. 

2. Analysis 

The starting point of the analysis is a monopole antenna of length L/2 working 
in frequency domain located in free space over a perfectly conducting ground 
plane. The antenna is located along the z-axis and the origin of the Cartesian 
coordinate system to be used in the analysis is located at the point where the an-
tenna meets the perfectly conducting ground plane. The geometry of the prob-
lem is shown in Figure 1. Together with its image in the perfectly conducting 
ground plane, the antenna functions as a dipole of length L radiating into the 
upper half space (region above the perfectly conducting plane). The radius of the 
antenna is denoted by a . The antenna is fed by a current source located at the 
ground end.  
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Figure 1. The geometry relevant to the de-
scription of electromagnetic fields of an 
antenna of length L/2 located over a per-
fectly conducting ground plane. The per-
fectly conducting ground plane coincides 
with the x-y plane. The antenna is directed 
along the z-axis. The dotted line indicates 
the image of the antenna in the ground 
plane. 

 
The one and the only assumption that is being made in Paper 1, and also here, 

is the existence of ideal conditions where all the losses associated with thermal, 
dispersion and radiation as the current oscillates along the antenna can be neg-
lected. This indeed is far from reality and we will discuss the effects of these 
losses on the results in the discussion section. Under this assumed ideal condi-
tions the current distribution along the antenna including its image in the per-
fectly conducting ground plane is given by [3] [4] 

( ) 0
2π, sin e , 0 2

2
j tLI t z I z z Lω

λ
  = − ≤ ≤  
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With this current distribution, the total power dissipation, TP  is given by [4] 
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∫          (3) 

In the above equation 2πk λ=  where λ is the wavelength, t is the time and 
T is the period of oscillation. This equation is valid when aλ  , where a  is 
the radius of the conductor [4]. The angle θ is defined in Figure 1. The average 
total power, avP , is then given by 
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∫              (4) 

If the oscillating charge associated with the current is given by 2π
0e

j tq q ν=  
(note that 2 1j = − ), Equation (4) can be written as 
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If 1L λ   the integral in Equation (5) can easily be solved resulting in 

( )2 22
0

0

2π π
6av

q lP
c
ν

ε λ
 =  
 

                       (6) 

In Paper 1, when L/λ is comparable to or larger than unity, the integral in Eq-
uation (5) was solved numerically. As one can see, for very large values of kL (or 
L/λ) the integrand in Equation (5) oscillates rapidly as a function of θ. This 
could introduce significant errors in the numerical integration specially when 
the value of ( ) 1kL −  becomes comparable to the computational accuracy of the 
computer. Fortunately, an analytical expression in terms of Cosine and Sine In-
tegrals is available for this integral [4]. Using that analytical expression for the 
integral, the average total power radiated by the antenna can be written as  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22
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0
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+ + + −  

   (7) 

In the above equation, iC  is the Cosine Integral, iS  is the Sine Integral and 
γ is the Euler-Mascheroni constant. 

3. Results 

First of all observe that from Equation (3) the power generated by the antenna 
consists of bursts of energy each burst having a duration of T/2, where T is the 
period of oscillation. This is due to the fact that the radiated power is propor-
tional to ( )2sin 2πt T . For example, Figure 2 illustrates the variation of total 
power (with peak normalized to unity) as a function of t/T for any given value of  
 

 
Figure 2. The normalized total power dissipation as given 
by Equation (3) for any given value of kL as a function of 
t/T where t is the time and T is the period. 
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kL. This shows that the radiated energy can be separated into individual bursts 
of duration T/2. Let us consider the radiated energy associated with a single 
burst of energy. This energy, U, is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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This can be written as 
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Observe from Equation (9) that for large values of kL the value of U oscillates 
rapidly with kL. The upper and lower bounds of U occur when πkL n=  and 

πkL m=  where n and m are even and odd integers (i.e. when ( )cos 1kL =  or 
( )cos 1kL = − ). The median value of U is given by  
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c
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ε

= + −                    (10) 

First, note that for large kL the Cosine Integral varies as ( ) ( )2cos kL kL∼  
and it can be neglected with respect to other terms when kL is very large. Thus 
for very large kL the function Um reduces to the following  
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c
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= +                       (11) 

Observe that this function goes to infinity as kL or L/λ goes to infinity. How-
ever, in reality, L/λ is limited by natural bounds. The magnitude of these natural 
bounds has been discussed in previous publications [5] [6]. First, the length of 
the antenna L/2 cannot be larger than the Hubble radius of the universe. This is 
the maximum length that can be realized in the universe by any given observer. 
The Hubble radius continues to increase at the current cosmological time and 
the maximum length that can ever be achieved by an observer is the limiting 
value (or the upper limit) of the Hubble radius of the universe. Let us denote this 
limiting Hubble radius by the parameter R∞ . Second, the radius of the antenna 
cannot be smaller than the Bohr radius 0a  and, therefore, the lower bound for 
the wavelength of oscillation is also equal to 0a . Thus the limiting value of the 
ratio L/λ is equal to 02R a∞  and any value large than this will not make any 
physical sense. Thus, the maximum value of Um that can ever be realized in na-
ture for a given oscillating charge is given by 

( ){ }
2
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π
ln 4π
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c
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γ
ε ∞= +                    (12) 

Let us consider the number of energy units, equivalent to the energy of a 
photon, associated with this radiated energy. Since the energy of a single photon 
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is equal to hν the number of such energy units associated with this energy is 
given by 

( ){ }
2
0

0
0

π
ln 4π

4
qN R a

hc
γ

ε ∞= +                    (13) 

This equation shows that the number of such energy units decreases with de-
creasing charge. The charge associated with a given number of such energy units 
is given by 

( ){ }
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0
0

4
π ln 4π
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ε
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=
+

                    (14) 

When the number of such energy units (or the number of equivalent photons) 
is reduced to one, the oscillating charge reduces to 
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0

0
0

4
π ln 4π

hcq
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ε
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=
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                    (15) 

Interestingly, information concerning the maximum possible value of the 
Hubble radius is ingrained into the fabric of the universe through the magnitude 
of the vacuum energy density. If the density of the vacuum energy, ρΛ , of a flat 
universe is zero then the ultimate size of the Hubble radius is infinity [7]. How-
ever, if the vacuum energy density is finite, the Hubble radius will reach a finite 
value as the cosmological time increases. The experimental evidence shows that 
the vacuum density in the universe is not zero but has a small value of about 

106 10−×  J/m3 [8]. With a finite vacuum energy density the maximum or the ul-
timate Hubble radius is given by [7] [9]  

2 3
8π

R c
Gρ∞

Λ

=                         (16) 

Since this is the maximum ever possible value of the Hubble radius, and its 
value is determined by the microscopic parameters of the fabric of space, it is the 
correct parameter to be inserted into Equation (15). With this value for the 
Hubble radius Equation (15) can be written as 

0
0 2

0

4

4π 3π ln
8π

hcq
c

a G

ε

γ
ρΛ

=
   +  
   

                  (17) 

Substituting values for all the known parameters in Equation (17) we obtain 
19

0 1.603 10q −= ×  C, which is within 0.1% of the elementary charge. It is impor-
tant to point out here that, had we used the current Hubble radius correspond-
ing to cosmological times spanning from less than 0.1 billion years until the time 
at which the Hubble radius had reached a steady value, the values of q0 we would 
have obtained would still remain within the order of magnitude of the elemen-
tary charge. This shows that when the length of the antenna is stretched and the 
radius of the antenna is compressed to its natural limits, and oscillating charge 
in the antenna is equal to the elementary charge, the median value of the energy 
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it radiates during each half period of oscillation is equal to that of a photon cor-
responding to the frequency of oscillation. The Bohr radius is given by 

2 2
0 0 π ea h m eε=  and substituting this expression for the Bohr radius in Equa-

tion (17) we obtain 

0
0 2 2 2

2
0

4

4π 3π ln
8π
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c m e
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ρε Λ

=
   +  
   

               (18) 

In the above equation me is the rest mass of the electron. Recall that Equation 
(17) and (18) are based purely on classical electrodynamics. However, these re-
sults show us that we could have arrived at the same equations if we had made 
the following two assumptions at the beginning of the analysis. (a) The mini-
mum oscillating charge that can radiate in an antenna is the elementary charge 
and (b) The minimum energy associated with a single burst of radiation has to 
be larger than or equal to the energy of a photon. Of course here we are depart-
ing from classical electrodynamics because the quantization of the charge or the 
concept of a photon is not part of the classical electrodynamics. With these two 
reasonable assumptions, we end up with the following relationship between the 
elementary charge and the density of the vacuum energy. 

0
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4π 3π ln
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c

a G

ε
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   

                  (19) 

Note that Equation (17) is identical to Equation (19) except that q0 is replaced 
by e. Equation (19) can be written as  

2
0 0

2 2

3

48π exp
4π π

a hcG
c e

ρ
ε γ

Λ =
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                 (20) 

Note that the basis of the derivation of Equations (17) and (19) is different. 
Equation (17), which is based purely on classical electrodynamics, shows that the 
smallest oscillating charge that can generate a burst of energy equal to that of a 
single photon by an antenna stretched to its limiting dimensions is on the order 
of the elementary charge. On the other hand, Equation (19) results when we as-
sume that the smallest oscillating charge possible is the elementary charge and 
the smallest energy that could be produced by a single burst of radiation by an 
antenna stretched to its limiting dimensions is equal to the energy of a photon.  

One can interpret Equation (20) as an alternative derivation of the vacuum 
energy density of the universe. In fact, this is the first time that a connection 
between the vacuum energy density and the other atomic constants, including 
the elementary charge, is implied. If we insert the values of the known parame-
ters into Equation (20), we will obtain 104.3 10ρ −

Λ = ×  J/m3. This is slightly less 
but a good estimation of the vacuum energy. Indeed, this is the value we have to 
substitute in Equation (17) to make q0 exactly equal to the elementary charge. It 
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is important to point out that this result is based on the median value of the ra-
diated energy. In order to distinguish between upper and lower limits of the 
energy, it is necessary to determine the Hubble radius to an accuracy better than 
about the Bohr radius. Quantum uncertainties as dictated by uncertainty prin-
ciple would prohibit a measurement of the Hubble radius to such an accuracy. 
Thus, the use of median value has its merits. However, this point needs further 
investigations.  

The connection between the vacuum energy density and the elementary charge 
is not surprising given the fact that both the observable value of the elementary 
charge and the vacuum energy are controlled by vacuum fluctuations [10]. 
Moreover, if one treats Equation (19) as an exact relationship, one cannot over-
look its prediction that the magnitude of the elementary charge decreases with 
decreasing vacuum energy density and it becomes zero in the absence of vacuum 
energy. This may be an indication that the vacuum energy is playing a role in 
maintaining the elementary charge. Unfortunately, these considerations are beyond 
the scope of this paper. However, Equation (20) is derived based on several as-
sumptions and more analysis on the derivation of this equation is warranted. 

4. Discussion 

As mentioned in the introduction, a study similar to the one reported here was 
conducted previously in Paper 1. There are several differences both in the me-
thodology and the results obtained between that study and the present one. First, 
in Paper 1 it was observed that the energy dissipation over a given period of time 
reaches more or less a constant value with increasing L/λ. However, the results 
presented above show that instead of reaching a constant value the energy in-
creases slowly (i.e. logarithmically) with increasing L/λ. This slow increase was 
not captured in that paper due to rounding off errors caused by the numerical 
integration. Second, in Paper 1 the energy is calculated over a single period ra-
ther than over half a period as was done in the present study. We believe that the 
energy dissipation over half a period is more appropriate than over a full period 
because the energy is dissipated in bursts of half period durations. Third, in Pa-
per 1 the radiation generated by a dipole antenna fed by two currents at the cen-
ter was investigated. Here, the radiating system is reduced to its basic element by 
placing the antenna over a perfectly conducting ground plane and exciting it by 
a single current. Notwithstanding all these differences the oscillating charge cor-
responding to a single photon of energy estimated in Paper 1 does not differ 
more than a factor of two, approximately, and thus the conclusions made in that 
paper are confirmed in the present study. 

In a previous publication related to a similar topic but with transient currents 
(i.e. [6]) the radius of the universe was assumed to be equal to the radius of the 
observable universe which indeed depends on the cosmological time. This made 
the extracted results time dependent even though the time dependence was weak 
because the cosmological time appeared inside a logarithmic term. Since the 
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results obtained in [6] are order of magnitude estimations, due to this weak time 
dependence they did not change significantly when the cosmological time is 
changed over the history of the universe except for the times very close to the 
beginning of the universe. However, as mentioned earlier, a more correct physi-
cal parameter to be used in these analyses is the ultimate Hubble radius (i.e. the 
maximum radius of the universe) which is a constant and directly coupled to the 
microscopical physical parameters of the fabric of the universe.  

The results presented in the previous section shows that under conditions 
where the dissipated energy by the antenna for a given charge is a maximum (i.e. 
L/λ reaches its upper limit), at least one elementary charge has to be associated 
with the oscillating current so that the energy dissipated over half a period to be 
larger than or equal to that of a photon. However, we have only considered the 
median value of the energy corresponding to a given value L/λ even though the 
number of photons (or the equivalent energy units) associated with a given 
charge oscillates between two limits in the vicinity of any given L/λ. Note that 
the energy oscillates between upper and lower bounds when the ratio L/λ 
changes by 0.5. In the vicinity of 3610L λ   (corresponding to 02R a∞ ) the 
relative change necessary in this ratio to make the radiated energy jump between 
the two bounds is infinitesimally small and we are not in a position to determine 
exactly the value of the charge corresponding to this ratio because neither of the 
parameters R∞  and 0a  are known to such an accuracy. Under these circums-
tances the best one can do is to estimate the median value of the energy and the 
corresponding charge. Figure 3 depicts the charge associated with the oscillating  
 

 
Figure 3. The magnitude of the oscillating charge necessary 
to generate a one photon of energy over half a period of os-
cillation as a function of the ratio L/λ. Results are shown for 
(a) upper bound, (b) median value and (c) lower bound of 
Equation (9). 
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current for N = 1 when one estimates it using either the upper bound, lower 
bound or the median value as given by Equation (9). This shows that in the vi-
cinity of 0L R aλ ∞=  even the upper and lower bounds of the charge neces-
sary to generate a single photon within T/2 are still in the order of magnitude of 
the elementary charge. Thus the results obtained in this paper can be summa-
rized by the order of magnitude relationship U h q eν≥ → ≥  where U is the 
energy dissipated over half a period, q is the charge associated with the oscillat-
ing current and e is the electronic charge.  

Observe that the results presented above are based on absolutely ideal and 
lossless conditions. In reality, the presence of losses will modify the assumed 
ideal current distribution and this in turn will give rise to a reduction in the 
energy radiated. Interestingly, in the presence of losses, a larger charge is neces-
sary to radiate a given amount of energy over a given amount of time than in the 
ideal case. Thus, the relationship U h q eν≥ → ≥  still remains valid. 

Finally, it is important to stress here that the Equations (17) to (19) given in 
this paper are based purely on classical electrodynamics. Given the fact that the 
elementary charge or the concept of photon is not a part of the classical electro-
dynamics (note that the electron was discovered nearly 30 years after the devel-
opment of classical electrodynamics), it is remarkable that its predictions lead to 
the above relationship. Of course, in order to derive an expression for the va-
cuum energy density we had to utilize both the experimental fact that the electric 
charge is quantized and the concept of photons from quantum mechanics. 
However, this semi-classical analysis led to a rather accurate expression for the 
vacuum energy density as a function of the well-known atomic constants in-
cluding the elementary charge. However, as mentioned before more investiga-
tions are needed on this point.  

5. Conclusions 

The energy radiated by an oscillating current in an antenna occurs in bursts of 
duration T/2, where T is the period of oscillation. The results obtained here, 
based purely on classical electrodynamics, can be summarized by the inequality 

0U h q eν≥ → ≥  where U is the energy radiated in a single burst of duration 
T/2, h is the Planck constant, ν is the frequency of oscillation and q0 is the mag-
nitude of the oscillating charge associated with the current. The condition 

0U h q eν= → =  is obtained when the length of the antenna is equal to the ul-
timate radius of the universe and the wavelength is equal to the Bohr radius. The 
inequality obtained here is in general agreement with the one obtained in the 
previous study.  

One novel feature of the analysis is the discovery of an expression in terms of 
atomic constants including the elementary charge for the vacuum energy density 
of the universe. This expression predicts the vacuum energy density to be about 

104 10−×  J/m3 which is in reasonable agreement with the measured value of 
about 106 10−×  J/m3. 
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